
Review

 What does the friend keyword in a class do?

 Is a friended function a public or private member?

 What is the difference between these two calls:

f3 = f1.Add(f2)

f3 = Add(f1, f2)

 Define conversion constructor.

 What does it do?

 How do we suppress what is does?

Protection Levels and Constructors
The ‘const’ keyword

Review: const keyword

● Generally, the keyword const is applied to an identifier (variable) by a programmer to express an
intent that the identifier should not be used to alter data it refers to in some context (scope).

● The compiler enforces this intent, for example (t1.cpp):

● In the above example, x is an identifier that refers to integer data in memory and the compiler
enforces that x should not be used in a way that could result in a change to that data.

● Another example (t2.cpp):

● In this example, the compiler does not allow the 'int *' x_ptr to point to the address of x (which is of
type 'const int *'). This is because x_ptr could then be used to change the data stored for x.

Review: const parameters

 There are two methods of passing arguments to functions in c++:

 Pass-by-value – A copy of the argument is made and the function acts upon the
copy

 Pass-by-reference – No copy of the argument is made, the function parameter is
an identifier that refers to the same data as the argument (like an alias for the
argument).

 The method used to pass arguments is indicated by the function's
parameters:

void foo(int x); //x is passed by value

void foo(int &x); //x is passed by reference

 What is the main different between these two parameter passing
mechanism (see t3.cpp)?

Review: const parameters

 One can add the ‘const’ key word to both parameter passing

mechanisms

void foo(const int x); //x is an input parameter (read only), cannot be modified inside foo

void foo(const int &x); //x is an input parameter (read only), cannot be modified inside foo

 See t4.cpp

 What is the difference between these two parameter passing schemes?

 Pass by value needs to make a copy

 Pass by reference does not make a copy (just pass the reference of the actual
parameter to the subroutine)

— The reference of a variable is just the pointer to the variable (4 bytes mostly).

— Pass by const reference is very useful when the parameter is a large data structure
for reducing the overhead to make a copy.

Passing objects by const reference

 Objects can also be passed by const reference to avoid copy overhead:

 friend Fraction Add(const Fraction& f1, const Fraction& f2);

 Just like with other types, the compiler will enforce that an object

passed by const reference will not be used in a way that may change

it's member data.

Const member function

● Any call to a member function has a

“calling object”

Fraction f1; /* a fraction object */

f1.evaluate(); /* f1 is the calling object */

● Since a member function has access to the

calling objects data, we may want to make

sure the calling object is never altered by

a member function.

● We call this a const member function,

and it is indicated by using the const

keyword after the member function

declaration AND definition.

● See t5.cpp on the right.

const objects

 Const variables are the ones that only have one value (initialized).

const int SIZE = 10;

const double PI = 3.1415;

 Objects can be declared as const in a similar fashion. The constructor will always run

to intialize the object, but after that, the object's member data cannot be changed

const Fraction ZERO; // this fraction is fixed at 0/1

const Fraction FIXED(3,4); // this fraction is fixed at 3/4

 To ensure that a const object cannot be changed, the compiler enforces that a const

object may only call const member functions.

 See const_fraction example

const member data

● Member data of a class can also be declared const. This is a little tricky, because of
certain syntax rules.

● Remember, when a variable is declared with const in a normal block of code, it must be
initialized on the same line:

● const int SIZE = 10;

● However, it is NOT legal to initialize the member data variables on their declaration lines
in a class declaration block:

● But a const declaration cannot be split up into a regular code block. This attempt at a
constructor definition would also not work, if Z were const example

Initialization list

● We can use a special area of a constructor called an initialization list

to overcome the problem of initializing const object members.

● Initialization lists have the following format:

● The initialization list above will set member_var1 to 10 and

member_var2 to the value passed as p1 to the constructor.

● See init_list.cpp example.

const Summary

Class abc {

 public:

 abc();

 void show() const; // const 1

 void what();

 private:

 void print(const abc & x); // const 2

 int c;

 const int d; // const 3

};

void abc:: show() const {

…

}

void abc::abc() : c(0), d(10) {}

Main()

{

 const int I = 10; // const 4

 ……

 const abc xx;

 xx.show();

 xx.what();

}

