
Protection Levels and Constructors Introduction to Object-Oriented
Programming

Structural programing and object-oriented
programming

 Structural (procedural) programming
 Programming using well defined control structures

– Conditionals, loops, sequence, expression and assignments

– Data (variables, arrays, structures) are separated from their operations

– It provides an abstraction of the hardware.

– You know this from COP3014

 Object-oriented programming
 Built on top of structural (procedural) programming

 Programming based on the concept of object.

‒ Objects bundle data with their operations.

‒ Enables information hiding, which allow us to organize the program in a more
manageable way.

Object-Oriented basics

● A fundamental concept in an object-oriented language is the
encapsulation of data and procedures (functions) together into units
called objects.
 An object consists of:

– Name – a way of referring to an object inside a program (eg. A Fraction object
might be called F1).

– Member Data – data contained within an object (eg. Fraction has an integer
numerator and denominator).

– Member Functions – routines that act upon the data within an object (eg. The
fraction object might have a function that returns the decimal representation of the
fraction stored).

– Interface – defines the ways a programmer may directly access the member
data/functions of an object (more on this next lecture).

Classes

 A class is another fundamental concept in an object-oriented language
that provides a blueprint for a new type ('classification') of object.
 A class outlines the data, functions and the interface objects of that class will

receive.

 A class also defines how objects of that class behave by providing code that
implements the functions associated with the class.

 A programmer can create one or more objects from a class

─ Similar to building multiple houses from one set of blueprints.

How to define and use a class in a program

● DDU – Declare, Define, Use
● Declare a class

– Choose what objects of this class will store (member variables), and how objects
will behave (member functions).

● Define member functions

– Provide an implementation for the member functions in the class.

● Use class to create objects

– You can declare an new object instance of your class just like declaring any other
variable (eg. int x).

Example Class Declaration

class Circle

{

public: /* interface, we will cover later */
void SetRadius(double r); /* sets member variable radius to r */

double AreaOf(); /* returns area of circle as a double */

double radius; /* radius of circle stored as double */

}; /* don't forget ';' */

Define Member Functions

● There are two ways to provide the member function definitions for a
class:
● Inside the class declaration using {} (we will not use)

● After the class declaration (this is the method we choose)

● Refer to a member function: className::memberFuntionName
● This identifier refers to the member function memberFunctionName of class

className (e.g. Circle::SetRadius)

● The double colon :: is called the scope resolution operator

● After the class declaration, member functions are defined just like any
other function

Example member function definition

//Declaration:
class Circle
{
public:
 void SetRadius(double r); /*sets member variable radius to r */
 double AreaOf(); /* returns area of circle as a double */
private:
 double radius; /* radius of circle */
};

/* Definition (Implementation) */
void Circle::SetRadius(double r)
{
 radius = r; /* radius refers to this object’s member variable */
}

double Circle::AreaOf()
{
 return (3.14*radius*radius);
}

Object Use

● After a class has been declared and defined, an object of that class can be
declared (also known as creation or instantiation) and used, a class is just
like another type (int, char, etc).

● A programmer can declare an object with the following format:

ClassName ObjectName;

● This statement creates an object based on the blueprint of class ‘ClassName’
and the object can be referred to by the identifier (variable name)
‘ObjectName’

● The ‘ . ’ (dot) operator can be used to access an object’s public members

● The format for referring to an object’s member is:

 ObjectName.MemberFunction() OR

 ObjectName.MemberVariable

Putting it All Together

 See sample1.cpp

 To recap, this program:
 declares the class Circle and outlines its members and interface

 defines the implementation for the member functions of the Circle class

 declares two objects of the class Circle, referred to as C1 and C2

 uses the interfaces of C1 and C2 to store the radius of two circles and later to
calculate the area of those circles

Summary

 An object is a unit that encapsulates data and functions. It has four
elements: a name, data members, function members, and an interface.

 A class specifies the (user-defined) form of objects.

 The use of an object in a C++ program follows the declare, define, and
use sequence.

 What does scope resolution operator (::) do?

 What does the dot operator (.) do?

	Slide Number 1
	Structural programing and object-oriented programming
	Object-Oriented basics
	Classes
	How to define and use a class in a program
	Example Class Declaration
	Define Member Functions
	Example member function definition
	Object Use
	Putting it All Together
	Summary

