
Protection Levels and Constructors Introduction to Object-Oriented
Programming

Structural programing and object-oriented
programming

 Structural (procedural) programming
 Programming using well defined control structures

– Conditionals, loops, sequence, expression and assignments

– Data (variables, arrays, structures) are separated from their operations

– It provides an abstraction of the hardware.

– You know this from COP3014

 Object-oriented programming
 Built on top of structural (procedural) programming

 Programming based on the concept of object.

‒ Objects bundle data with their operations.

‒ Enables information hiding, which allow us to organize the program in a more
manageable way.

Object-Oriented basics

● A fundamental concept in an object-oriented language is the
encapsulation of data and procedures (functions) together into units
called objects.
 An object consists of:

– Name – a way of referring to an object inside a program (eg. A Fraction object
might be called F1).

– Member Data – data contained within an object (eg. Fraction has an integer
numerator and denominator).

– Member Functions – routines that act upon the data within an object (eg. The
fraction object might have a function that returns the decimal representation of the
fraction stored).

– Interface – defines the ways a programmer may directly access the member
data/functions of an object (more on this next lecture).

Classes

 A class is another fundamental concept in an object-oriented language
that provides a blueprint for a new type ('classification') of object.
 A class outlines the data, functions and the interface objects of that class will

receive.

 A class also defines how objects of that class behave by providing code that
implements the functions associated with the class.

 A programmer can create one or more objects from a class

─ Similar to building multiple houses from one set of blueprints.

How to define and use a class in a program

● DDU – Declare, Define, Use
● Declare a class

– Choose what objects of this class will store (member variables), and how objects
will behave (member functions).

● Define member functions

– Provide an implementation for the member functions in the class.

● Use class to create objects

– You can declare an new object instance of your class just like declaring any other
variable (eg. int x).

Example Class Declaration

class Circle

{

public: /* interface, we will cover later */
void SetRadius(double r); /* sets member variable radius to r */

double AreaOf(); /* returns area of circle as a double */

double radius; /* radius of circle stored as double */

}; /* don't forget ';' */

Define Member Functions

● There are two ways to provide the member function definitions for a
class:
● Inside the class declaration using {} (we will not use)

● After the class declaration (this is the method we choose)

● Refer to a member function: className::memberFuntionName
● This identifier refers to the member function memberFunctionName of class

className (e.g. Circle::SetRadius)

● The double colon :: is called the scope resolution operator

● After the class declaration, member functions are defined just like any
other function

Example member function definition

//Declaration:
class Circle
{
public:
 void SetRadius(double r); /*sets member variable radius to r */
 double AreaOf(); /* returns area of circle as a double */
private:
 double radius; /* radius of circle */
};

/* Definition (Implementation) */
void Circle::SetRadius(double r)
{
 radius = r; /* radius refers to this object’s member variable */
}

double Circle::AreaOf()
{
 return (3.14*radius*radius);
}

Object Use

● After a class has been declared and defined, an object of that class can be
declared (also known as creation or instantiation) and used, a class is just
like another type (int, char, etc).

● A programmer can declare an object with the following format:

ClassName ObjectName;

● This statement creates an object based on the blueprint of class ‘ClassName’
and the object can be referred to by the identifier (variable name)
‘ObjectName’

● The ‘ . ’ (dot) operator can be used to access an object’s public members

● The format for referring to an object’s member is:

 ObjectName.MemberFunction() OR

 ObjectName.MemberVariable

Putting it All Together

 See sample1.cpp

 To recap, this program:
 declares the class Circle and outlines its members and interface

 defines the implementation for the member functions of the Circle class

 declares two objects of the class Circle, referred to as C1 and C2

 uses the interfaces of C1 and C2 to store the radius of two circles and later to
calculate the area of those circles

Summary

 An object is a unit that encapsulates data and functions. It has four
elements: a name, data members, function members, and an interface.

 A class specifies the (user-defined) form of objects.

 The use of an object in a C++ program follows the declare, define, and
use sequence.

 What does scope resolution operator (::) do?

 What does the dot operator (.) do?

	Slide Number 1
	Structural programing and object-oriented programming
	Object-Oriented basics
	Classes
	How to define and use a class in a program
	Example Class Declaration
	Define Member Functions
	Example member function definition
	Object Use
	Putting it All Together
	Summary

