
Automatic Isolation of Compiler Errors

DAVID B. WHALLEY
Flor ida State University

This paper describes a tool calledvpoisothat was developed to automatically isolate errors in thevpocom-
piler system. The two general types of compiler errors isolated by this tool are optimization and nonopti-
mization errors. When isolating optimization errors,vpoiso relies on thevpo optimizer to identify
sequences of changes, referred to as transformations, that result in semantically equivalent code and to pro-
vide the ability to stop performingimproving (or unnecessary) transformations after a specified number
have been performed.A compilation of a typical program byvpo often results in thousands ofimproving
transformations being performed.Thevpoisotool can automatically isolate the firstimproving transforma-
tion that causes incorrect output of the execution of the compiled program by using a binary search that
varies the number ofimproving transformations performed.Not only is the illegal transformation automati-
cally isolated, but vpoisoalso identifies the location and instant the transformation is performed invpo.
Nonoptimization errors occur from problems in the front end, code generator, and necessarytransforma-
tions in the optimizer. If another compiler is available that can produce correct (but perhaps more ineffi-
cient) code, thenvpoisocan isolate nonoptimization errors to a single function. Automatic isolation of
compiler errors facilitates retargeting a compiler to a new machine, maintenance of the compiler, and sup-
porting experimentation with new optimizations.

General Terms: Compilers, Testing

Additional Key Words and Phrases: Diagnosis procedures, nonoptimization errors, optimization errors

1. INTRODUCTION

To increase portability compilers are often split into two parts, a front end and a back end. The front

end processes a high-level language program and emits intermediate code. The back end processes the

intermediate code and generates instructions for a target machine. Thus, the front end is dependent on the

source language and the back end is dependent on the instruction set for the target machine.Retargeting

such a compiler for a new machine requires creating a new back end.

Much of the effort required to retarget a back end occurs during testing. Often much time is spent

determining why code generated by a compiler for a program does not execute correctly. Determining the

A preliminary version of the error isolator was described inProceedings of the ACM SIGPLAN ’93 Conference on Pro-
gramming Language Design and Implementationunder the title "Isolation and Analysis of Optimization Errors."
Author’s address: Department of Computer Science B-173, Florida State University, Tallahassee, FL 32306, U.S.A.; e-
mail: whalley@cs.fsu.edu; phone: (904) 644-3506

-1-



reason has been typically accomplished in two steps. First,the compiler writer attempts to isolate the

instructions generated by the compiler that cause incorrect execution. Thenext step is to determine why

the compiler generated these incorrect instructions. Both steps can require much time and effort. Thereso-

lution of a compiler error may easily require hours or even days.

This paper describes a tool that automatically isolates compiler errors.For optimization errors, the

tool can automatically determine the first transformation during the optimization of a program that causes

the output of the execution to be incorrect. Nonoptimization errors occur from problems in the front end,

code generator, and necessarytransformations in the optimizer. If another compiler is available that can

produce correct (but perhaps more inefficient) code, then the first nonoptimization error can be isolated to a

single function.

2. OVERVIEW OF THE COMPILER

The tool described in this paper supports automatic isolation of errors in thevpocompiler system [1].

The optimizer, vpo, replaces the traditional code generator used in many compilers and has been used to

build C, Pascal, and Ada compilers. The back end is retargeted by supplying a description of the target

machine. Usingthe diagrammatic notation of Wulf [2], Figure 1 shows the overall structure of a set of

compilers constructed usingvpo. Vertical columns within a box represent logical phases which operate

serially. Columns divided horizontally into rows indicate that the subphases of the column may be

executed in an arbitrary order. IL is the Intermediate Language generated by a front end.Register transfers

or register transfer lists (RTLs) describe the effects of legal machine instructions and have the form of con-

ventional expressions and assignments over the hardware’s storage cells.For example, the RTL

r[1] = r[1] + r[2]; cc = r[1] + r[2] ? 0;

represents a register-to-register integer add on many machines. Whileany particular RTL is machine-

specific, theform of the RTL is machine-independent.

All phases of the optimizer manipulate RTLs. Oneadvantage of using RTLS is that optimizations

can be performed on machine-specific instructions in a machine-independent manner. Another advantage is

-2-



Front

End

Front

End

Front

End

Ada

Expanders

Code

Expanders

Code

Expanders

Machine

Description

Processor

register

MC68020
VAX-11

MC88100

MIPS
SPARC

transfers

Block Scheduling Delay

Slots

Basic

Analysis

Global

Branch Optimizations

Instruction Selection

Evaluation Order Determination

Register Allocation

Common Subexpression
Elimination

Dead Variable Elimination

Code Motion

Recurrences

Strength Reduction

Induction Variable
Elimination

Object File

Code

IL IL IL

Instruction Fill

Opts Dataflow

CPascal

(source languages)

Intel 80386

Figure 1: Compiler Structure

that many phase ordering problems are eliminated since optimizations are only performed on RTLs. Most

optimizations can be invoked in any order and are allowed to iterate until no more improvements can be

found.

The RTLs are stored in a data structure invpo that also contains information about the order and con-

trolflow of the RTLs within a function.Thevpooptimizer was modified to identify eachchangeto this data

structure and to denote each serial sequence of changes that preserves the meaning of the compiled pro-

gram. Inthis paper these sequences of changes are referred to astransformations.

-3-



3. ISOLATION OF OPTIMIZATION ERRORS

Testing is often the most time-consuming component of retargeting a back end of an optimizing com-

piler to a new machine. Muchof the time spent during testing involves isolating errors in an optimizer to

determine why specific programs do not execute correctly. One must not only determine what was pro-

duced incorrectly in the erroneous program, but also at what point it was produced within the compiler.

3.1. Traditional Isolation of Optimization Errors

Traditionally, the compiler writer initially attempts to determine the specific instruction (or instruc-

tions) generated by the compiler that causes the compiled program to execute incorrectly. One could first

isolate a function that contains incorrect instructions. This is accomplished by compiling some functions

with optimizations and other functions without optimizations and executing the program. If the program

executes correctly, then the compiler writer knows the problem is in the set of functions that were not com-

piled with optimizations.Otherwise, the compiler writer assumes the problem is in the set of functions that

were compiled with optimizations. The compiler writer continues to narrow down the set of functions that

could contain an error until the function with incorrect code is isolated.

The compiler writer can then compile the isolated function with and without various optimizations

until finding the additional optimization being applied to the function that causes the compiled program to

execute incorrectly. At this point the compiler writer can visually inspect the differences between the two

assembly versions of the functions in an attempt to determine the instruction or instructions that appear to

cause incorrect behavior.

Given that the compiler writer is able to conclude that a specific instruction within a function causes

the compiled program to produce incorrect results, finding the reason why the compiler produced this

instruction is the next task. One approach is to successively turn off compiler optimizations until the

offending instruction is no longer produced in an effort to identify the specific optimization that has caused

the problem.

-4-



While these techniques may sometimes be effective, they are also quite tedious.Furthermore, some

compiler optimizations that reduce execution time while increasing code size are becoming more popular.

These optimizations include subprogram inlining [3], loop unrolling [4], and replicating code to avoid

unconditional jumps [5]. When these types of optimizations are applied, a single function may expand into

several thousands lines of assembly code.Visual inspection of such functions to discover incorrect instruc-

tions is impractical.Using traditional methods to identify the point in the compiler that causes an invalid

instruction to be produced in these functions may also be unrealistic.Identifying the optimization that pro-

duces the problem may be difficult since the instruction may only be produced when a specific combination

of optimizations are performed.Even if the compiler writer happens to correctly identify the optimization

that produces the problem, the point in the compiler when the incorrect transformation occurs still has to be

found. Aspecific optimization invpomay be applied in hundreds of transformations on RTLs when com-

piling a single function.

3.2. Automatic Isolation of Optimization Errors

A tool, calledvpoiso, has been developed to automatically isolate errors in thevpocompiler system.

This tool isolates optimization errors by determining the first transformation that causes incorrect output

from the execution of the compiled program. First, the optimization phases applied byvpowere classified

as one of two types,necessaryor improving. A necessaryphase is required to produce code that can be

compiled and executed. Thesephases, which are usually regarded as code generation activities, include

assigning pseudo registers to hardware registers and fixing the entry and exit points of a function to manage

the run-time stack. All phases within the optimizer that are not required are referred to asimproving. Only

improving transformations that cause incorrect output can be isolated byvpoiso.

The vpoisotool performs a binary search that relies on the ability to limit the number ofimproving

transformations applied to a specified function. Preceding and following each transformation,vpo invokes

functions calledstarttrans and endtrans respectively. In the endtrans function, which is

invoked when the end of a transformation is identified,vpo checks a counter to determine if the specified

limit to the number ofimproving transformations has been reached.Unfortunately,vpo can be in quite

-5-



deeply nested routines and logic at a point when a transformation has been completed.To check a status

flag at each of the points after returning from theendtrans function to prevent further improving trans-

formations would have required significant modifications tovpo. To minimize the updates to the optimizer,

the UNIX setjmp andlongjmp functions were used to back out of code withinvpowhen the last trans-

formation was performed.Execution then resumes within a high level routine and only the remainingnec-

essarytransformations are applied.

The vpoisotool is a C program which uses the Csystem function to invoke various UNIX shell

commands. First,vpoisoreads in a file of information indicating how to isolate an error within a program.

This information includes the basenames of the files that are output from the code expander (or input to

vpo), link and execute commands, maximum cpu time in seconds allowed for execution (i.e. in case an

error causes the program to not terminate), desired and actual output filenames, compilation flags (the user

can specify any combination of optimizations to be performed), and strings indicating lines to disregard

(i.e. the output contains information dependent on time).For instance, a manufactured error was inserted

during the compilation of the programyacc. To isolate the error, the following information was input to

vpoiso.

cexfiles: y1 y2 y3 y4 #
link command: cc -o yacc y1.o y2.o y3.o y4.o
execute command: yacc cgram.y
maximum time: 15
desired output file: yacc.out
actual output file: y.tab.c
compilation flags: LVGOCMSFA
disregard strings:

After reading this informationvpoisohas to determine if an incorrect transformation can be isolated.

Thus,vpoiso invokes vpo for each file to be compiled with an option set to record for each function the

basename of the file in which the function resides, the function name, and the number ofimproving trans-

formations required.The vpoisotool then links and executes the program using the specified commands.

If the actual output is the same as the desired output, thenvpoisoquits after informing the user that it could

find no error when all optimizations were applied to each function in the program.Otherwise,vpoisoreads

the information generated during the previous compilation and invokes vpo for each file to be compiled

-6-



indicating that noimproving transformations are to be performed.Again, vpoisoissues commands to link

and execute the program. If the actual output is the same as the desired output, thenvpoisohas determined

that the problem is an optimization error and it performs a binary search to isolate the first incorrect

improving transformation. Thebinary search is depicted in the following pseudocode.

lastmin = 0;
lastmax = total number ofimproving transformations
while (lastmax - lastmin > 0) {

midnum = (lastmin + lastmax)/2;
recompile program with only the firstmidnum transformations performed
remove actual output file
link and execute program
if (actual output file == desired output file)

lastmin = midnum+1;
else

lastmax = midnum;
}

if (last result was incorrect)
badtrans = midnum;

else
badtrans = midnum+1;

At this point vpoisoprints the name of the function containing the first incorrect transformation and the

incorrect transformation number within that function.1 The user can then set a breakpoint in a source-level

debugger executing vpo that will stop when the transformation with that number is encountered.The

starttrans function invpo that is invoked when the start of a transformation is identified contains the

following portion of code.

...
if (opttransnum == breakopttransnum)

fprintf(stderr, "improving transformation breakpoint encountered\n");
...

The user assigns the displayed transformation number to thebreakopttransnum variable, sets a break-

point at the line where the message is printed, and executesvpo. Thus, using this feature, the compiler

writer can quickly access the point during the compilation that precedes the incorrectimproving transfor-

mation.

1 Thevpoisotool is only guaranteed to find the firstimproving transformation that causes incorrect output. It is possible that a
previous transformation was invalid and the isolated transformation was the first transformation that moves inv alid instructions into a
path that was executed. Thissituation has not occurred when testingvpoisowith manufactured or actual errors.

-7-



3.3. Decreasing the Isolation Time

The potentially most time-consuming component of the execution ofvpoisowhen isolating an opti-

mization error is the recompilation of each instance of the compiled program during the binary search per-

formed. Anaive implementation ofvpoisowould recompile the entire program before each execution. Ina

previous implementation ofvpoiso[6], recompilation was limited to the files that were within the current

search range.If the transformations on functions in a file were not within the current search range that

could contain the first incorrect transformation, then the file was not recompiled. Recompilation of a file

was also unnecessary when all the functions in the file would be compiled with the same number of trans-

formations as in the previous compilation. In addition, if a function was in a file that needed to be compiled

and it was not within the current search range, then the function was compiled with no optimizations to

decrease the compilation time.

The current implementation ofvpoisofurther decreases isolation time by substituting file merging for

recompilation when possible.Even recompiling a function with no optimizations requires much more time

than simply copying the function from a file.Somenecessarytransformations, such as assigning pseudo

registers to hardware registers and parsing each RTL using the machine description to translate it to an

assembly code instruction, are expensive operations. Asmentioned previously, vpoisofirst compiles the

program with allimproving transformations applied and then noimproving transformations applied.This

determines if there is an error and if it is the result of animproving transformation. Thevpoisotool saves

the assembly and object code files from both of these compilations. An assembly comment was also

inserted between functions to facilitate the identification of the start and end of a function. The algorithm

for performing the binary search was slightly modified.Themidnum value, which represents the middle

of the current search range ofimproving transformations that could contain the error, gets adjusted to the

closest function boundary. Instead of having vpo process the code expander files, the assembly file that is

to contain both optimized and unoptimized functions is created by merging these functions from the corre-

sponding assembly files produced by the two initial compilations.At the point that the error is isolated to a

single function, the portion of the code expander file containing information for that function is extracted.

-8-



The binary search that is performed on the transformations within that function only requires recompilation

of this single function.The preceding functions in the file are merged in from the corresponding optimized

assembly file and the subsequent functions are merged from the unoptimized assembly file.

To illustrate the performance ofvpoisofor finding optimization errors, the results for finding a manu-

factured optimization error inserted into the compilation of theyaccprogram is described. There were a

total of 13,955improving transformations applied with the complete optimization ofyacc. Three different

versions ofvpoisowere executed to illustrate the effect of attempting to avoid unnecessary recompilation.

All three versions perform a binary search to isolate the first invalid improving transformation. However,

the level of recompilation at each point during the binary search varied with each version. Thefirst was the

naive approach that processes all the files for each recompilation. The second version was the previous

implementation ofvpoiso[6] that avoided unnecessary recompilation of files that were outside the current

search range or were processed the same as during the previous compilation. The third version was the cur-

rent implementation that avoids recompilation by using file merging when possible.The vpoiso tool

required 16 compilations/executions ofyaccfor each version to correctly isolate the erroneous transforma-

tion on a Sun SPARC IPC.2 The time required for each version is shown in Table 1.

Version Minutes:Seconds

1 17:41
2 9:56
3 6:08

Table 1: Time Required to Isolate an Optimization Error in Yacc

4. ISOLATION OF NONOPTIMIZATION ERRORS

If the execution of a program that was compiled with no optimizations byvpodoes not produce cor-

rect output, then the error must have been introduced by the front end, code expander, or anecessarytrans-

formation in the optimizer. Unlike improving transformations in the optimizer, actions performed by the

2 Note that the first 2 executions were only performed to verify that an incorrect transformation could be isolated.

-9-



front end, code expander, or necessarytransformations by the optimizer cannot be selectively disabled to

isolate an error. Yet mistakes in constructing the code expander, which expands each intermediate opera-

tion to instructions for the machine, are typically encountered more frequently than problems in the coding

of the optimizer when thevpo compiler system is retargeted to a new machine.3 Invalid code expander

operations often result in nonoptimization errors. If another compiler is available that can produce correct

(but perhaps more inefficient) code, thenvpoisocan isolate nonoptimization errors to a single function.

The isolation of nonoptimization errors byvpoiso is accomplished in the following manner. It is

assumed that for each specified code expander file, there exists a corresponding assembly file generated by

a native compiler for the machine.For this paper the native compiler waspcc (Portable C Compiler) [7].

After determining that incorrect output is still produced when noimproving transformations are applied,

vpoisofirst modifies the labels in the native assembly files to ensure they are unique from the labels in the

nonoptimized assembly files generated byvpo. Thevpoisotool then performs a binary search on the func-

tions in the program.For instance, in theyaccprogram there are 48 functions and they were associated

with numbers from 0-47.Functions associated with a number less than or equal to themidnum value,

which now represents the middle of the current search range of functions that could contain the error, are

obtained from the nonoptimized assembly files generated byvpo. Functions associated with a number

greater than themidnum value are obtained from the native assembly files.4 If a file is to contain both

nonoptimized functions generated byvpo and functions generated by the native compiler, then the file is

created by merging the appropriate functions from thevpoand native compiler generated files.5

Ideally, a compiler writer would like to obtain a finer level of isolation of nonoptimization errors

comparable to that whenvpoisoisolates optimization errors.One possibility is to isolate the error to a C

3 Most optimizations are performed in machine-independent code withinvpo since the general form of an RTL is machine-
independent. Therefore,errors in the retargeting of the optimizer occur relatively infrequently compared to non-optimization errors
since most of the errors have already been diagnosed and corrected whenvpo was retargeted to other machines. It may be that opti-
mization errors are more frequently encountered during the maintenance of a compiler since most nonoptimization errors can be de-
tected during the initial testing of the compiler. It has been the experience of this author that optimization errors are typically more
difficult to isolate by hand than nonoptimization errors.

4 Note that bothvpoand the native compiler have to use similar calling sequences since functions compiled by each of the com-
pilers will be intermixed.

5 Isolation of nonoptimization errors introduced some machine-dependencies invpoisosince the native assembly files were
used. Thisincluded machine-dependent functions to modify labels and to identify the start of a function.

-10-



statement since most front ends, including the C front end forvpocalledvpcc[8], can identify the interme-

diate operations associated with each C statement. One approach would be to attempt to merge the assem-

bly code generated by thevpoand the native compiler within the function that was identified as containing

the nonoptimization error. While no user-allocable registers are typically live across C statements when no

optimizations are performed, other problems may arise.For instance, the offset of local variables on the

run-time stack or the amount of space allocated on the run-time stack could differ. In addition, labels that

are the target of goto statements will have to be consistent with the labels referenced in the jump instruc-

tions used to implement the gotos.While such an approach may be feasible, the implementation would be

very dependent on the code generation strategies used by the native compiler.

Another approach is to use a tool that separates each C statement within a function into separate

functions (i.e. each C statement would be replaced with a function call). This tool could be applied to the

function with the nonoptimization error. A binary search could then occur on the newly generated func-

tions to identify the first C statement with the error. Unfortunately, access to local variables and parameters

must somehow be permitted. Introductionof new C statements to allow this access may introduce new

nonoptimization errors, which would subvert the isolation process.

5. APPLYING THE TECHNIQUES TO OTHER OPTIMIZERS

There are certain features ofvpo that simplified the development of the tool to isolate optimization

errors. Performingcode generation before all optimizations allows vpoisoto accurately determine that a

code generation error was not caused by the optimizer. If code generation was performed after optimiza-

tions, then a code generation error may only occur when the intermediate representation is in a specific

form (e.g. a particular instance of a dag).When the number of optimizations performed is reduced, this

specific form may not appear. In this situation it would be difficult to have a tool automatically determine

that the error was not caused by the optimizer. The structure of thevpooptimizer also made it easy to stop

performing improving transformations at any point during a compilation. This ability may not be as

straightforward to implement in other optimizers.

-11-



6. COMPARISON WITH RELATED WORK

A tool known asbugfind [9] was developed to assist in the debugging of optimizing compilers.The

bugfind tool attempts to determine the highest optimization level at which each file within a program can be

compiled and produce correct output.To isolate a function that was not optimized correctly, one has to

place each function within the program in a separate file.The bugfind tool uses themakefacility in Unix

and is generalized enough to work with different compilers.

While bugfind and vpoisoshare some similar ideas, there are also considerable differences. Both

bugfind andvpoisouse a binary search technique to isolate optimization errors.The vpoisotool finds not

only the failing module, but also the first transformation within a function that causes incorrect results.The

transformation number can be used to access the point invpo when the transformation is about to be

applied. Thisfiner level of isolating errors is important when optimization errors occur in large functions

or code size increasing transformations are performed.Thevpoisotool also isolates nonoptimization errors

to the first function that causes incorrect output.Unlike bugfind, vpoisocan only isolate errors within the

vpocompiler system. However, the techniquesvpoisouses can be applied with many other compilers.

7. CONCLUSIONS

The tool described in this paper provides several important benefits.Both the isolation of optimiza-

tion and nonoptimization errors are important when retargeting the back end of a compiler. A tool with the

ability to automatically isolate the first function containing incorrect instructions will be very valuable for

finding many nonoptimization errors.For instance, a common code generation error when retargeting a

compiler to a new machine is to incorrectly implement the calling sequence. An oversite when constructing

the code expander, such as an inappropriate indication of a dead register, may result in an invalid improving

transformation. Thus,isolation of optimization errors may also be useful for finding problems not in the

optimizer itself.

The vpoiso tool will also be useful when experimenting with new optimizations. Whileit may be

obvious that the newly introduced optimization was responsible for causing an error, manual isolation of

the actual error can still be quite challenging, particularly when employing code size increasing

-12-



optimizations. For instance, a new loop optimization may be applied to 50 different loops in a given pro-

gram. Thevpoisotool not only isolates the illegal improving transformation, but also identifies the location

and instant the transformation is performed invpo.

There are other benefits of using a tool that can automatically isolate compiler errors.If a compiler is

used as a commercial product, then it typically has to be maintained for several years after its initial release.

This maintenance includes responding to bug reports from users.Automatic isolation of compiler errors

will ease this task. Compilers can also be used to guide instruction set design to determine if proposed

architectural features can be exploited [10]. Decreasing the time to retarget a compiler to a proposed archi-

tecture would also decrease the time required to design and develop a new machine.

The techniques described in this paper could perhaps also be used with other applications besides

compilers. Thetechniques of isolating optimization errors could be applied to any application that per-

forms a series of optional transformations on its input.A technique similar to isolating nonoptimization

errors may be used with applications that are developed with a configuration management tool. One could

develop a system to automatically determine the first set of changes to an application that causes incorrect

results. Testing and maintenance are expensive phases in the software product life cycle. Tools that can

automatically isolate programming errors would have enormous potential benefits.

ACKNOWLEDGEMENTS

The authors thank Jack Davidson for allowing vpo to be used for this research. The identification of

each change and the sequences of changes that comprised the transformations invpowas simplified by the

high quality of coding ofvpo, which in a very large part is due to the efforts of Manuel Benitez.Indrakshi

Ray testedvpoisoand made several suggestions that resulted in an improved tool.

REFERENCES

1. M. E. Benitez and J. W. Davidson, “A Portable Global Optimizer and Linker,” Proceedings of the
SIGPLAN ’88 Symposium on Programming Language Design and Implementation, pp. 329-338
(June 1988).

2. W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs, and C. M. Geschke,The Design of an Opti-
mizing Compiler,American Elsevier, New York, NY (1975).

-13-



3. J. Davidson and A. Holler, “A Study of a C Function Inliner,” Software—Practice & Experience
18(8) pp. 775-790 (August 1988).

4. J.Hennessy and D. Patterson,Computer Architecture: A Quantitative Approach,Morgan Kaufmann,
San Mateo, CA (1990).

5. F. Mueller and D. B. Whalley, “Av oiding Unconditional Jumps by Code Replication,” Proceedings of
the SIGPLAN ’92 Conference on Programming Language Design and Implementation, pp. 322-330
(June 1992).

6. M. R. Boyd and D. B. Whalley, “Isolation and Analysis of Optimization Errors,” Proceedings of the
SIGPLAN ’93 Conference on Programming Language Design and Implementation, pp. 26-35 (June
1993).

7. S.C. Johnson, “A Tour Through the Portable C Compiler,” Unix Programmer’s Manual, 7th Edition
2B p. Section 33 (January 1979).

8. J.W. Davidson and D. B. Whalley, “Quick Compilers Using Peephole Optimizations,” Software—
Practice & Experience19(1) pp. 195-203 (January 1989).

9. J. M. Caron and P. A. Darnell, “Bugfind: A Tool for Debugging Optimizing Compilers,” Sigplan
Notices25(1) pp. 17-22 (January 1990).

10. J.W. Davidson and D. B. Whalley, “A Design Environment for Addressing Architecture and Com-
piler Interactions,”Microprocessors and Microsystems15(9) pp. 459-472 (November 1991).

-14-


