Automatic Isolation of Compiler Errors

DAVID B. WHALLEY
Florida State University

This paper describes a tool callgobisothat was deeloped to automatically isolate errors in thy@o com-

piler system. The ta general types of compiler errors isolated by this tool are optimization and nonopti-
mization errors. When isolating optimization errokgoiso relies on thevpo optimizer to identify
sequences of changes, referred to as transformations, that result in semantiozdlgrequide and to pro-
vide the ability to stop performingmproving (or unnecessary) transformations after a specified number
have been performedA compilation of a typical program bypo often results in thousands imfiproving
transformations being performedhe vpoisotool can automatically isolate the fifstproving transforma-

tion that causes incorrect output of thexaution of the compiled program by using a binary search that
varies the number dmproving transformations performed\Not only is the illgd transformation automati-
cally isolated, bt vpoisoalso identifies the location and instant the transformation is performeploin
Nonoptimization errors occur from problems in the front end, code genesadanecessaryransforma-
tions in the optimizer If another compiler is\ailable that can produce correct (but perhaps mordiinef
cient) code, thewpoisocan isolate nonoptimization errors to a single function. Automatic isolation of
compiler errors facilitates retargeting a compiler to &w n&chine, maintenance of the compilard sup-
porting experimentation with meoptimizations.

General Terms: Compilers, Testing

Additional Key Wbrds and Phrases: Diagnosis procedures, nonoptimization errors, optimization errors

1. INTRODUCTION

To increase portability compilers are often split int@ tgarts, a front end and a back end. The front
end processes a high# language program and emits intermediate code. The back end processes the
intermediate code and generates instructions forgettamachine. Thus, the front end is dependent on the
source language and the back end is dependent on the instruction set for the target rRathigeting

such a compiler for a memachine requires creating amback end.

Much of the effort required to retarget a back end occurs during testing. Often much time is spent

determining wly code generated by a compiler for a program does xeaiuge correctly Determining the

A preliminary version of the error isolator was describe®ioceedings of the ACM SIGPLAN '93 Conference an Pr
gramming Languge Design and Implementatiamder the title "Isolation and Analysis of Optimization Errors."
Author’s aldress: Department of Computer Science B-173, Florida Statersity, Tallahassee, FL 32306, U.S.A.; e-
mail: whalley@cs.fsu.edu; phone: (904) 644-3506



reason has been typically accomplished io ®eps. Firstithe compiler writer attempts to isolate the
instructions generated by the compiler that cause incorkecu#on. Thenext step is to determine wh
the compiler generated these incorrect instructions. Both steps can require much tinfierand@lefreso-

lution of a compiler error may easily require hours\enedays.

This paper describes a tool that automatically isolates compiler efForoptimization errors, the
tool can automatically determine the first transformation during the optimization of a program that causes
the output of thexecution to be incorrect. Nonoptimization errors occur from problems in the front end,
code generatoiend necessantransformations in the optimizelf another compiler is\ailable that can
produce correct (but perhaps more inefficient) code, then the first nonoptimization error can be isolated to a

single function.

2. OVERVIEW OF THE COMPILER

The tool described in this paper supports automatic isolation of errorsvpdicempiler system [1].
The optimizey vpo, replaces the traditional code generator used inynsampilers and has been used to
build C, Pascal, and Ada compilers. The back end is retargeted by supplying a description @fethe tar
machine. Usinghe diagrammatic notation of W [2], Figure 1 shows thewverall structure of a set of
compilers constructed usingpa Vertical columns within a box represent logical phases which operate
serially Columns divided horizontally into rows indicate that the subphases of the column may be
executed in an arbitrary ordeilL is the Intermediate Language generated by a front Begister transfers
or register transfer lists (RTLs) describe the effects gdl lmachine instructions and Y& the form of con-

ventional expressions and assignmems the hardwares gorage cells.For example, the RTL
r[1] =r[1] +r[2]; cc =r[1] +r[2] ? O;

represents a gister-to-rgister integer add on mgrmachines. Whileary particular RTL is machine-

specific, thdorm of the RTL is machine-independent.

All phases of the optimizer manipulatd I5. Oneadvantage of using RTLS is that optimizations

can be performed on machine-specific instructions in a machine-independent. Marotkeer advantage is



(source languages)

Pascal C Ada
Front Front Front
End End End
IL IL IL
Code Code Code
Expanders Expanders Expanders

register| transfer

Intel 80386—
MC68020—

Machine

VA X-11——-=| Description

MC88100—*
MIPS—

SPARC——»

Processor

that man phase ordering problems are eliminated since optimizations are only performdd &n FRost

optimizations can be woked in any arder and are allowed to iterate until no more inweroents can be

found.

The RILs are stored in a data structurevpothat also contains information about the order and con-
trolflow of the RTLs within a functionThevpooptimizer was modified to identify eaathangeto this data

structure and to denote each serial sequence of changes that preserves the meaning of the compiled pro-

Branch Optimizations

Instruction Selection

Evaluation Order Determination

Basic
Block
Opts

Register Allocation

Common Subexpressio
Global Elimination

Dead Variable Eliminatig

Dataflow

Analysis Code Motion

Recurrences

n Instruction

n

Strength Reduction

Induction Variable

Elimination

Scheduling

Fill
Delay
Slots

Figu

v

Object File

re 1: Compiler Structure

gram. Inthis paper these sequences of changes are referrettansfermations



3. ISOLATION OF OPTIMIZATION ERRORS

Testing is often the most time-consuming component ofgetarg a back end of an optimizing com-
piler to a n&v machine. Muclof the time spent during testingvisives isolating errors in an optimizer to
determine whi specific programs do notxecute correctly One must not only determine what was pro-

duced incorrectly in the erroneous program, but also at what point it was produced within the compiler.

3.1. Traditional Isolation of Optimization Errors

Traditionally, the compiler writer initially attempts to determine the specific instruction (or instruc-
tions) generated by the compiler that causes the compiled progratectdesincorrectly One could first
isolate a function that contains incorrect instructions. This is accomplished by compiling some functions
with optimizations and other functions without optimizations axetwing the program. If the program
executes correctlythen the compiler writer knows the problem is in the set of functions that were not com-
piled with optimizations.Otherwise, the compiler writer assumes the problem is in the set of functions that
were compiled with optimizations. The compiler writer continues to madmwn the set of functions that

could contain an error until the function with incorrect code is isolated.

The compiler writer can then compile the isolated function with and without various optimizations
until finding the additional optimization being applied to the function that causes the compiled program to
execute incorrectly At this point the compiler writer can visually inspect thdedénces between the aw
assembly versions of the functions in an attempt to determine the instruction or instructions that appear to

cause incorrect behavior.

Given that the compiler writer is able to conclude that a specific instruction within a function causes
the compiled program to produce incorrect results, finding the reasgriehcompiler produced this
instruction is the next task. One approach is to sucabgdiurn off compiler optimizations until the
offending instruction is no longer produced in aforfto identify the specific optimization that has caused

the problem.



While these techniques may sometimes lfectfe, they are also quite tediouskFurthermore, some
compiler optimizations that reduc&eeution time while increasing code size are becoming more popular
These optimizations include subprogram inlining [3], loop unrolling [4], and replicating codeoitb a
unconditional jumps [5]. When these types of optimizations are applied, a single functiorpaag ato
several thousands lines of assembly codésual inspection of such functions to digeincorrect instruc-
tions is impractical.Using traditional methods to identify the point in the compiler that causewalid in
instruction to be produced in these functions may also be unrealdictifying the optimization that pro-
duces the problem may befédifilt since the instruction may only be produced when a specific combination
of optimizations are performedtven if the compiler writer happens to correctly identify the optimization
that produces the problem, the point in the compiler when the incorrect transformation occurs still has to be
found. Aspecific optimization irvpomay be applied in hundreds of transformations on RTLs when com-

piling a single function.

3.2. Automatic Isolation of Optimization Errors

A tool, calledvpoisqg has been dedloped to automatically isolate errors in thy@o compiler system.
This tool isolates optimization errors by determining the first transformation that causes incorrect output
from the &ecution of the compiled program. First, the optimization phases appliegdoyere classified
as one of tw types,necessanor improving. A necessaryphase is required to produce code that can be
compiled and xecuted. Thesghases, which are usuallygeeded as code generation aites, include
assigning pseudo registers to hardware registers and fixing the entritgmuirgs of a function to manage
the run-time stack. All phases within the optimizer that are not required are referreidhfragng. Only

improving transformations that cause incorrect output can be isolateddigo

The vpoisotool performs a binary search that relies on the ability to limit the numbienpsbving
transformations applied to a specified function. Preceding and following each transformaimvokes
functions calledst arttrans and endtrans respectiely. In the endtrans function, which is
invoked when the end of a transformation is identifiedp checks a counter to determine if the specified

limit to the number ofmproving transformations has been reachédhfortunately,vpo can be in quite



deeply nested routines and logic at a point when a transformation has been confuleteeck a status
flag at each of the points after returning from émalt r ans function to preent furtherimproving trans-
formations would hee required significant modifications tpa To minimize the updates to the optimizer
the UNIX set j mp andl ongj np functions were used to back out of code with{io when the last trans-
formation was performedExecution then resumes within a higlvderoutine and only the remaininggc-

essanytransformations are applied.

The vpoisotool is a C program which uses thes@st emfunction to irvoke various UNIX shell

commands. Firstypoisoreads in a file of information indicating wdo isolate an error within a program.
This information includes the basenames of the files that are output from the code expander (or input to
vpo), link and &ecute commands, maximum cpu time in seconds allowedx@ugon (i.e. in case an
error causes the program to not terminate), desired and actual output filenames, compilation flags (the user
can specify ap combination of optimizations to be performed), and strings indicating lines tqdidre
(i.e. the output contains information dependent on tink@y.instance, a manufactured error was inserted
during the compilation of the prograpacc To isolate the errorthe following information was input to
Vpoisa

cexfiles: yl y2 y3 y4 #

link command: cc -o yacc yl.0 y2.0 y3.0 y4.0

execute command: yacc cgramy

maxi mum tine: 15

desired output file: yacc. out

actual output file: y.tab.c

conpi | ation flags: LVGOCMSFA
di sregard strings:

After reading this informationpoisohas to determine if an incorrect transformation can be isolated.
Thus, vpoisoinvokes vpo for each file to be compiled with an option set to record for each function the
basename of the file in which the function resides, the function name, and the nuiniggowhg trans-
formations required.The vpoisotool then links and»ecutes the program using the specified commands.
If the actual output is the same as the desired outputypgmsoquits after informing the user that it could
find no error when all optimizations were applied to each function in the progdamerwise vpoisoreads

the information generated during the yaoris compilation and irokes vpo for each file to be compiled



indicating that ndmproving transformations are to be performefigain, vpoisoissues commands to link
and eecute the program. If the actual output is the same as the desired outpwpdisaas determined
that the problem is an optimization error and it performs a binary search to isolate the first incorrect

improving transformation. Théinary search is depicted in the following pseudocode.

lastmin = 0;
| ast max = total number ofmproving transformations
while (lastmax - lastmin > 0) {
m dnum = (lastmn + | astmax)/ 2;
recompile program with only the firei dnumtransformations performed
remove atual output file
link and execute program
i f (actual output file == desired output file
lastmn = m dnumt1;
el se
| ast max = m dnum
}
i f (lastresult was incorrect
badtrans = m dnum
el se
badtrans = m dnumtl;

At this pointvpoisoprints the name of the function containing the first incorrect transformation and the
incorrect transformation number within that functfofihe user can then set a breakpoint in a sourab-le
delugger aecuting vpo that will stop when the transformation with that number is encounterfée.

st arttrans function invpothat is ivoked when the start of a transformation is identified contains the
following portion of code.

if (opttransnum == breakopttransnum
fprintf(stderr, "inproving transformati on breakpoi nt encountered\n");

The user assigns the displayed transformation number tur th@kopt t r ansnumvariable, sets a break-
point at the line where the message is printed, aeduéesvpo. Thus, using this feature, the compiler
writer can quickly access the point during the compilation that precedes the inaopesing transfor-

mation.

! Thevpoisotool is only guaranteed to find the filstproving transformation that causes incorrect output. It is possible that a
previous transformation s irvalid and the isolated transformation was the first transformation theesivdid instructions into a
path that wasxecuted. Thissituation has not occurred when testupgisowith manufactured or actual errors.



3.3. Decreasing thelsolation Time

The potentially most time-consuming component of tkeegion of vpoisowhen isolating an opti-
mization error is the recompilation of each instance of the compiled program during the binary search per
formed. Anaive implementation o¥poisowould recompile the entire program before eaxécation. Ina
previous implementation ofpoiso[6], recompilation was limited to the files that were within the current
search rangelf the transformations on functions in a file were not within the current search range that
could contain the first incorrect transformation, then the file was not recompiled. Recompilation of a file
was dso unnecessary when all the functions in the file would be compiled with the same number of trans-
formations as in the previous compilation. In addition, if a function was in a file that needed to be compiled
and it was not within the current search range, then the functiencampiled with no optimizations to

decrease the compilation time.

The current implementation epoisofurther decreases isolation time by substituting filegimey for
recompilation when possibléeven recompiling a function with no optimizations requires much more time
than simply copying the function from a fil&omenecessargransformations, such as assigning pseudo
registers to hardware registers and parsing eath &sing the machine description to translate it to an
assembly code instruction, argpensve qoerations. Asmentioned préously, vpoisofirst compiles the
program with allimproving transformations applied and then ingproving transformations appliedThis
determines if there is an error and if it is the result oingproving transformation. The&poisotool saies
the assembly and object code files from both of these compilations. An assembly comment was also
inserted between functions tacilitate the identification of the start and end of a function. The algorithm
for performing the binary searchaw slightly modified.The ni dnumvalue, which represents the middle
of the current search range iofproving transformations that could contain the erigats adjusted to the
closest function boundaryinstead of hang vpo process the code expander files, the assembly file that is
to contain both optimized and unoptimized functions is created by merging these functions from the corre-
sponding assembly files produced by the tmitial compilations. At the point that the error is isolated to a

single function, the portion of the codepander file containing information for that function idracted.



The binary search that is performed on the transformations within that function only requires recompilation
of this single function.The preceding functions in the file are merged in from the corresponding optimized

assembly file and the subsequent functions are merged from the unoptimized assembly file.

To illustrate the performance wpoisofor finding optimization errors, the results for finding a manu-
factured optimization error inserted into the compilation of yhec program is described. There were a
total of 13,955mproving transformations applied with the complete optimizatioyadfc Three diferent
versions ofvpoisowere eecuted to illustrate the fefct of attempting tovaid unnecessary recompilation.
All three versions perform a binary search to isolate the fivstihimproving transformation. Havever,
the level of recompilation at each point during the binary search varied with easton. Thdirst was the
naive gproach that processes all the files for each recompilation. The second version wasitlus pre
implementation o¥/poiso[6] that asoided unnecessary recompilation of files that were outside the current
search range or were processed the same as during Wi@ipreompilation. The third version was the-cur
rent implementation thatvaids recompilation by using file merging when possibléhe vpoiso tool
required 16 compilationstecutions ofyaccfor each ersion to correctly isolate the erroneous transforma-

tion on a Sun SPARC IPEThe time required for each version is shown in Table 1.

Version | Minutes:Seconds

1 17:41
2 9.56
3 6.08

Table 1: Time Required to Isolate an Optimization Error in Yacc

4. ISOLATION OF NONOPTIMIZATION ERRORS

If the execution of a program that was compiled with no optimizationggdxydoes not produce cor
rect output, then the error mustvieaeen introduced by the front end, codg@andey or anecessaryrans-

formation in the optimizer Unlike improving transformations in the optimizeactions performed by the

2 Note that the first 2xecutions were only performed to verify that an incorrect transformation could be isolated.



front end, code>gpandey or necessaryransformations by the optimizer cannot be selelstidisabled to

isolate an error Yet mistales in constructing the codepandey which expands each intermediate opera-

tion to instructions for the machine, are typically encountered more frequently than problems in the coding
of the optimizer when thg&po compiler system is retargeted to asnmachine® Invalid code &pander
operations often result in nonoptimization errors. If another compileraitable that can produce correct

(but perhaps more inefficient) code, thgmisocan isolate honoptimization errors to a single function.

The isolation of nonoptimization errors lwoisois accomplished in the following mannelt is
assumed that for each specified code expander file, there exists a corresponding assembly file generated by
a mative ompiler for the machineFor this paper the natt compiler waspcc (Portable C Compiler) [7].
After determining that incorrect output is still produced whenmproving transformations are applied,
vpoisofirst modifies the labels in the nadiassembly files to ensure thare unique from the labels in the
nonoptimized assembly files generatedvpg. The vpoisotool then performs a binary search on the func-
tions in the programFor instance, in thgaccprogram there are 48 functions andytheere associated
with numbers from 0-47 Functions associated with a number less than or equal toi ttheum value,
which nav represents the middle of the current search range of functions that could contain theeeerror
obtained from the nonoptimized assembly files generatedpby Functions associated with a number
greater than thei dnumvalue are obtained from the nadi &sembly filed. If a file is to contain both
nonoptimized functions generated o and functions generated by the watiompiler, then the file is

created by merging the appropriate functions fromviieand natie compiler generated files.

Ideally, a compiler writer would lile to dotain a finer leel of isolation of nonoptimization errors

comparable to that wherpoisoisolates optimization errorsOne possibility is to isolate the error to a C

3 Most optimizations are performed in machine-independent code wigluisince the general form of an RTL is machine-
independent. Thereforerrors in the retargeting of the optimizer occur relyi infrequently compared to non-optimization errors
since most of the errors V@ dready been diagnosed and corrected wimwas retageted to other machines. It may be that opti-
mization errors are more frequently encountered during the maintenance of a compiler since most nonoptimization errors can be de-
tected during the initial testing of the compildt has been the experience of this author that optimization errors are typically more
difficult to isolate by hand than nonoptimization errors.

“ Note that bottvpoand the natie mmpiler hae o use similar calling sequences since functions compiled by each of the com-
pilers will be intermixed.

5 Isolation of nonoptimization errors introduced some machine-dependencigsifosince the natie assembly files were
used. Thisncluded machine-dependent functions to modify labels and to identify the start of a function.

-10-



statement since most front ends, including the C front endpfacalledvpcc[8], can identify the interme-
diate operations associated with each C statement. One approaichbs to attempt to merge the assem-
bly code generated by tiwpoand the natie compiler within the function that was identified as containing
the nonoptimization errorWhile no user-allocable registers are typicalelecross C statements when no
optimizations are performed, other problems may ari3&.instance, the et of local variables on the
run-time stack or the amount of space allocated on the run-time stack cderd Idifddition, labels that

are the target of goto statements wiléa be onsistent with the labels referenced in the jump instruc-
tions used to implement the gotdd/hile such an approach may be feasible, the implementation would be

very dependent on the code generation strategies used by treematpiler.

Another approach is to use a tool that separates each C statement within a function into separate
functions (i.e. each C statemendwld be replaced with a function call). This tool could be applied to the
function with the nonoptimization erroA binary search could then occur on the newly generated func-
tions to identify the first C statement with the erronfortunately access to local variables and parameters
must somehw be permitted. Introductiorof new C gatements to alle this access may introducewe

nonoptimization errors, which would st the isolation process.

5. APPLYING THE TECHNIQUESTO OTHER OPTIMIZERS

There are certain features o that simplified the deslopment of the tool to isolate optimization
errors. Performingcode generation before all optimizations alos/poisoto accurately determine that a
code generation error was not caused by the optimizeode generation was performed after optimiza-
tions, then a code generation error may only occur when the intermediate representation is in a specific
form (e.g. a particular instance of a dagyhen the number of optimizations performed is reduced, this
specific form may not appeam this situation it would be difficult to hae a bol automatically determine
that the error was not caused by the optimiZére structure of thgpooptimizer also made it easy to stop
performing improving transformations at gnpoint during a compilation. This ability may not be as

straightforward to implement in other optimizers.

-11-



6. COMPARISON WITH RELATED WORK

A tool known ashugfind [9] was deeloped to assist in the debugging of optimizing compilérise
bugfindtool attempts to determine the highest optimizatienl lat which each file within a program can be
compiled and produce correct outpuifo isolate a function that as not optimized correcthpne has to
place each function within the program in a separate Titee bugfind tool uses thenakefacility in Unix

and is generalized enough to work with different compilers.

While bugfind and vpoisoshare some similar ideas, there are also consideralfidgedifes. Both
bugfind andvpoisouse a binary search technique to isolate optimization erfidie.vpoisotool finds not
only the failing module, Wit also the first transformation within a function that causes incorrect resuks.
transformation number can be used to access the powpdmnvhen the transformation is about to be
applied. Thidfiner level of isolating errors is important when optimization errors occur igeldunctions
or code size increasing transformations are performiée:vpoisotool also isolates nonoptimization errors
to the first function that causes incorrect outpunlike bugfind vpoisocan only isolate errors within the

vpocompiler system. Hower, the techniquespoisouses can be applied with nyasther compilers.

7. CONCLUSIONS

The tool described in this paper providegesal important benefitsBoth the isolation of optimiza-
tion and nonoptimization errors are important when getting the back end of a compilek tool with the
ability to automatically isolate the first function containing incorrect instructions will be very valuable for
finding mary nonoptimization errors.For instance, a common code generation error whengedtag a
compiler to a n& machine is to incorrectly implement the calling sequence. Varsie when constructing
the code epandey such as an inappropriate indication of a deagister may result in an ivalid improving
transformation. Thussolation of optimization errors may also be useful for finding problems not in the

optimizer itself.

The vpoisotool will also be useful whenxperimenting with n& optimizations. Whileit may be
obvious that the newly introduced optimization was responsible for causing annaarwral isolation of

the actual error can still be quite challenging, particularly when enmgjocode size increasing

-12-



optimizations. Br instance, a meloop optimization may be applied to 50 different loops invargpro-
gram. Thevpoisotool not only isolates the ilgg improving transformation, but also identifies the location

and instant the transformation is performedpa.

There are other benefits of using a tool that can automatically isolate compiler Hreocempiler is
used as a commercial product, then it typically has to be maintained/éoalseears after its initial release.
This maintenance includes responding to bug reports from uéetematic isolation of compiler errors
will ease this task. Compilers can also be used to guide instruction set design to determine if proposed
architectural features can be exploited [10]. Decreasing the time to retarget a compiler to a proposed archi-

tecture would also decrease the time required to design sddpl@ nev machine.

The techniques described in this paper could perhaps also be used with other applications besides
compilers. Thetechniques of isolating optimization errors could be applied yoapplication that per
forms a series of optional transformations on its inpAitechnique similar to isolating nonoptimization
errors may be used with applications that anseldped with a configuration management tool. One could
develop a system to automatically determine the first set of changes to an application that causes incorrect
results. Bsting and maintenance angpensie phases in the software product lifgcte. Tools that can

automatically isolate programming errors woulddanormous potential benefits.

ACKNOWLEDGEMENTS

The authors thank Jack Davidson for afilog vpoto be used for this research. The identification of
each change and the sequences of changes that comprised the transformgtionssrsmplified by the
high quality of coding of/pg which in a very large part is due to the efforts of Manuel Benitedrakshi

Ray tested/poisoand made s@ral suggestions that resulted in an immadtool.

REFERENCES

1. M. E. Benitez and J. W\Davidson, ‘A Portable Global Optimizer and Liek” Proceedings of the
SIGPLAN ’'88 Symposium on dgramming Languge Design and Implementatipnpp. 329-338
(June 1988).

2. W WuIf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs, and C. M. Gestih Design of an Opti-
mizing CompilerAmerican Elsevier, N& York, NY (1975).

-13-



10.

J.Davidson and A. Holler“A Study of a C Function Inlingr Software—Pactice & Experience
18(8) pp- 775-790 (August 1988).

J.Hennessy and D.a®ersonComputer Achitecture: A Quantitative Apfrach,Morgan Kaufmann,
San Mateo, CA (1990).

F Mueller and D. B. Whallg “Avoiding Unconditional Jumps by Code ReplicatioRroceedings of
the SIGPLAN '92 Confence on Rygramming Languge Design and Implementatiorpp. 322-330
(June 1992).

M. R. Boyd and D. B. Whallg “Isolation and Analysis of Optimization Errér&roceedings of the
SIGPLAN '93 Conference on &gramming Languge Design and Implementatiprpp. 26-35 (June
1993).

S.C. Johnson,A Tour Through the Portable C Compijfednix Programmers Manual, 7th Edition
2B p. Section 33 (January 1979).

J.W. Davidson and D. B. Whalile “Quick Compilers Using Peephole OptimizatiénSpftware—
Practice & Experiencd9(1) pp. 195-203 (January 1989).

J.M. Caron and PA. Darnell, “Bugfind: A Tool for Debugging Optimizing CompilérsSigplan
Notices25(1) pp. 17-22 (January 1990).

J.W. Davidson and D. B. Whalig “A Design Environment for Addressing Architecture and Com-

piler Interactions,Microprocessos and Microsystem&5(9) pp. 459-472 (Neember 1991).

-14-



