Concepts Introduced in Chapter 2

* A more detailed overview of the compilation
process.

- Parsing

— Scanning

— Semantic Analysis

— Syntax-Directed Translation

- Intermediate Code Generation

Context-Free Grammar

e A grammar can be used to describe the possible
hierarchical structure of a program.

* A context free grammar has 4 components:
— A set of tokens, known as terminal symbols.
— A set of nonterminals.

— A set of productions where each production consists of a
nonterminal, called the left side of the production, an arrow,
and a sequence of tokens and/or nonterminals, called the right
side of the production.

— A designation of one of the nonterminals as the start symbol.

» The token strings that can be derived from the start
symbol form the language defined by the grammar.

Example Grammar and Derivation

list — list + digit

list — list - digit

list — digit
digit—0|1]|2|3|4|5|6]7|8]|9

list => list+digit => list — digit + digit =>
digit — digit + digit => 9 — digit + digit =>
9-5+digit=>9-5+2

Parse Trees

* A parse tree pictorially shows how the start
symbol of a grammar derives a specific string in
the language.

» Given a context free grammar, a parse tree is a
tree with the following properties:
— The root is labeled by the start symbol.
— Each leaf is labeled by a token or by €.
— Each interior node is labeled by a nonterminal.

- If A is the nonterminal labeling some interior node
and X1, X2, ..., Xn are the labels of the children of

that node from left to right, then A — X1X2...Xn is a
production.

Ambiguous Grammars

» The leaves (tokens) of a parse tree read from left
to right form a legal string in the language
defined by the associated grammar.

e If a grammar can have more than one parse tree
generating the same string of tokens, then the
grammar is said to be ambiguous.

e For a grammar representing a programming
language, we need to ensure that the grammar is
unambiguous or there are additional rules to
resolve the ambiguities.

string — string + string | string — string
string—=>0]1|2|3|4|5|6|7|8]|9

Precedence and Associativity

» Precedence determines which operator is applied
first when different operators appear in an
expression and parentheses do not explicitly
indicate the order.

 Associativity is used to define the order of
operations when there are multiple operators with
the same precedence in an expression.

— Left associativity means that (x op1 y) is applied first
in the expression (x opl y op2 z) when op1 and op2
have the same precedence.

- Right associativity means that (y op2 z) is applied
first in the expression (x op1l y op2 z) when op1 and
op2 have the same precedence.

Converting Infix to Postfix

 If E is a variable or constant, then the postfix
notation for E is E itself.

 If E is an expression of the form E1 op E2, where
op is any binary operator, then the postfix
notation for E is E1' E2' op, where E1' and E2' are
the postfix notations for E1 and E2, respectively.

 If E is an expression of the form (E1), then the
postfix notation for E1 is also the postfix notation
for E.

(9-5)+2 = 95-2+ 9-(5+2) = 952+-

Syntax-Directed Definition

» Uses a grammar to define the syntactic structure.
» Associates attributes with each grammar symbol.

 Associates semantic rules for computing the
values of the attributes.

: Parsing
Translation Scheme

* Parsing is the process of determining if a string of
* A translation scheme is a grammar with program tokens can be generated by a grammar.
fragments called semantic actions that are
embedded within the right hand side of the
productions.

» Parsing Methods
— Top-Down

. . e s * Construction starts at the root and proceeds to the leaves.
» Unlike a syntax-directed definition, the order of

the evaluation of the semantic rules is explicitly
shown.

* Can be more easily constructed by hand.
- Bottom-Up

* Construction starts at the leaves and proceeds to the root.

* Can accept a larger class of grammars.

Syntax Trees

* Concrete Syntax Tree - a parse tree

Recursive Descent Parsing

Top-down method for syntax analysis.

~ Each interior node is an operator rather than a A procedure is associated with each nonterminal
nonterminal. of a grammar.

Can be implemented by hand.

— Decides which production to use by examining the

» Abstract Syntax Tree

— Convenient for translation.

Cancrete Syntax Tree Abstract Syntax Tree
list + lookahead symbol.
VAR VAR — The appropriate procedure is invoked for each
list + digit - 2 nonterminal in the rhs of the production.
. t/ | \d_ o . 7N . * Predictive parsing means that a single lookahead
is - gl

| symbol can be used to determine the procedure to
digit 5 be called for the next nonterminal.

9

Example Grammar for Recursive
Descent Parsing

e Must not be left recursive.
e Must be left factored.

expr — term rest

rest — + term { print('+") } rest | - term { print(’-") } rest | €
term — 0 { print('0") }

term — 1 { print('1") }

term — 9 { print('9") }

Lexical Analysis Terms

» Atoken is a group of characters having a
collective meaning.

- id
* A lexeme is an actual character sequence forming
a specific instance of a token.
- num
» Characters between tokens are called whitespace.

- blanks, tabs, newlines, comments

Buffering I/0

* It is too expensive to access a file one character at
a time.

 Buffers are used for both input and output.

» Data is read from or written to the buffer until
another buffer needs to be read or written.

Symbol Table

» Used to save lexemes (identifiers) and their
attributes.

* It is common to initialize a symbol table to
include reserved words so the form of an
identifier can be handled in a uniform manner.

* Attributes are stored in the symbol table for later
use in semantic checks and translation.

l-values and r-values

e |-value

— Used on the left side of an assignment statement.

— Used to refer to a location.

e r-value

— Used on the right side of an assignment statement.

— Used to refer to a value.

Abstract Stack Machine

e Stack machines are a common form used for the
intermediate representation of a program.

- push v
- rvalue |
- lvalue]
— pop

- COpy

push v onto the stack

push contents of data location 1

push address of data location 1
throw away value on top of the stack

the r-value on top is placed in the l-value
below it and both are popped

push a copy of the top value on the stack

Example of Stack Machine

day := (1461*y) div 4 + (153*m + 2) div 5 + d;

Intermediate Code

lvalue day push 2
push 1461 +

rvalue vy push 5

* div

push 4 +

div rvalue d
push 153 +

rvalue m =

*

Control Flow

 Support for control flow is needed when
translating statements.

- label 1
- goto |

— gofalse |
- gotrue |
— halt

target of jumps to 1; has no other effect

next instruction is taken from statement
with label 1

pop the top value; jump if it is zero
pop the top value; jump if it is nonzero

stop execution

