
Concepts Introduced in Chapter 2

● A more detailed overview of the compilation
process.
– Parsing

– Scanning

– Semantic Analysis

– Syntax-Directed Translation

– Intermediate Code Generation

Context-Free Grammar
● A grammar can be used to describe the possible

hierarchical structure of a program.
● A context free grammar has 4 components:

– A set of tokens, known as terminal symbols.
– A set of nonterminals.
– A set of productions where each production consists of a

nonterminal, called the left side of the production, an arrow,
and a sequence of tokens and/or nonterminals, called the right
side of the production.

– A designation of one of the nonterminals as the start symbol.
● The token strings that can be derived from the start

symbol form the language defined by the grammar.

Example Grammar and Derivation

list list + digit

list list - digit

list digit

digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

list => list+digit => list – digit + digit =>

digit – digit + digit => 9 – digit + digit =>

9 – 5 + digit => 9 – 5 + 2

Parse Trees

● A parse tree pictorially shows how the start
symbol of a grammar derives a specific string in
the language.

● Given a context free grammar, a parse tree is a
tree with the following properties:
– The root is labeled by the start symbol.
– Each leaf is labeled by a token or by .
– Each interior node is labeled by a nonterminal.
– If A is the nonterminal labeling some interior node

and X1, X2, ..., Xn are the labels of the children of
that node from left to right, then A X1X2...Xn is a
production.

Ambiguous Grammars
● The leaves (tokens) of a parse tree read from left

to right form a legal string in the language
defined by the associated grammar.

● If a grammar can have more than one parse tree
generating the same string of tokens, then the
grammar is said to be ambiguous.

● For a grammar representing a programming
language, we need to ensure that the grammar is
unambiguous or there are additional rules to
resolve the ambiguities.

string → string + string | string string

string →0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Precedence and Associativity
● Precedence determines which operator is applied

first when different operators appear in an
expression and parentheses do not explicitly
indicate the order.

● Associativity is used to define the order of
operations when there are multiple operators with
the same precedence in an expression.
– Left associativity means that (x op1 y) is applied first

in the expression (x op1 y op2 z) when op1 and op2
have the same precedence.

– Right associativity means that (y op2 z) is applied
first in the expression (x op1 y op2 z) when op1 and
op2 have the same precedence.

Converting Infix to Postfix

● If E is a variable or constant, then the postfix
notation for E is E itself.

● If E is an expression of the form E1 op E2, where
op is any binary operator, then the postfix
notation for E is E1' E2' op, where E1' and E2' are
the postfix notations for E1 and E2, respectively.

● If E is an expression of the form (E1), then the
postfix notation for E1 is also the postfix notation
for E.

(9-5)+2 ⇒ 95-2+ 9-(5+2) ⇒ 952+-

Syntax-Directed Definition

● Uses a grammar to define the syntactic structure.
● Associates attributes with each grammar symbol.
● Associates semantic rules for computing the

values of the attributes.

Translation Scheme

● A translation scheme is a grammar with program
fragments called semantic actions that are
embedded within the right hand side of the
productions.

● Unlike a syntax-directed definition, the order of
the evaluation of the semantic rules is explicitly
shown.

Parsing

● Parsing is the process of determining if a string of
tokens can be generated by a grammar.

● Parsing Methods
– Top-Down

● Construction starts at the root and proceeds to the leaves.
● Can be more easily constructed by hand.

– Bottom-Up
● Construction starts at the leaves and proceeds to the root.
● Can accept a larger class of grammars.

Syntax Trees
● Concrete Syntax Tree - a parse tree
● Abstract Syntax Tree

– Each interior node is an operator rather than a
nonterminal.

– Convenient for translation.

Recursive Descent Parsing

● Top-down method for syntax analysis.
● A procedure is associated with each nonterminal

of a grammar.
● Can be implemented by hand.

– Decides which production to use by examining the
lookahead symbol.

– The appropriate procedure is invoked for each
nonterminal in the rhs of the production.

● Predictive parsing means that a single lookahead
symbol can be used to determine the procedure to
be called for the next nonterminal.

Example Grammar for Recursive
Descent Parsing

● Must not be left recursive.
● Must be left factored.

expr term rest

rest + term { print('+') } rest | - term { print('-') } rest |
term 0 { print('0') }

term 1 { print('1') }

...

term 9 { print('9') }

Lexical Analysis Terms

● A token is a group of characters having a
collective meaning.
– id

● A lexeme is an actual character sequence forming
a specific instance of a token.
– num

● Characters between tokens are called whitespace.
– blanks, tabs, newlines, comments

Buffering I/O

● It is too expensive to access a file one character at
a time.

● Buffers are used for both input and output.
● Data is read from or written to the buffer until

another buffer needs to be read or written.

Symbol Table

● Used to save lexemes (identifiers) and their
attributes.

● It is common to initialize a symbol table to
include reserved words so the form of an
identifier can be handled in a uniform manner.

● Attributes are stored in the symbol table for later
use in semantic checks and translation.

l-values and r-values

● l-value
– Used on the left side of an assignment statement.

– Used to refer to a location.

● r-value
– Used on the right side of an assignment statement.

– Used to refer to a value.

Abstract Stack Machine

● Stack machines are a common form used for the
intermediate representation of a program.
– push v push v onto the stack

– rvalue l push contents of data location l

– lvalue l push address of data location l

– pop throw away value on top of the stack

– := the r-value on top is placed in the l-value
below it and both are popped

– copy push a copy of the top value on the stack

Example of Stack Machine
Intermediate Code

day := (1461*y) div 4 + (153*m + 2) div 5 + d;

 lvalue day push 2
 push 1461 +
 rvalue y push 5
 * div
 push 4 +
 div rvalue d
 push 153 +
 rvalue m :=
 *

Control Flow

● Support for control flow is needed when
translating statements.
– label l target of jumps to l; has no other effect

– goto l next instruction is taken from statement
with label l

– gofalse l pop the top value; jump if it is zero

– gotrue l pop the top value; jump if it is nonzero

– halt stop execution

