
Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Shell Programming and Unix Utilities

Creating Shell Scripts

Variables, Arguments, and Expressions

Shell I/O and Debugging

Testing Conditions and Control Statements

test, if, case, while, until, for, break, continue

Exit Status

Command Substitution

Regular Expressions

Utilities

grep, wc, touch, awk, tr, sort, gtbl, gro�, ghostview, cut, head,
tail, sed, gnuplot

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Shell Scripts

Advantages of schell scripts.

Can very quickly setup a sequence of commands to avoid a
repetitive task.
Can easily make several programs work together to meet a set
of goals.

Disadvantages of schell scripts.

Little support for programming in the large.
Shell scripts are much slower since they are interpreted.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

What Shell to Use

The csh (C) shell and its derivative (tcsh) are recommended
for use at the command line.

The sh (Bourne) shell and its derivatives (ksh, bash) are
recommended for writing shell scripts.

All shell script examples in this course are given using the
Bourne shell syntax.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Finding Information about Bourne Shell and Its Commands

Type "man <command>" or "info <command>" where
<command> is the Bourne shell command of interest.

Type "man sh" and look in the manual page.

Look up information in the text or use other texts.

See me or the TA.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Creating a Shell Script

General convention is to use a .sh extension (<name>.sh) for
shell scripts.

It is useful to know it is a shell script.
Some editors will do syntax coloring of shell commands.

Type a special comment in the �rst line of each shell script �le
to indicate the shell to be invoked:

#!/bin/sh
Makes your shell scripts portable on di�erent systems.

Type in comments after this to indicate the purpose of the
shell script.

This shell script executes a program with speci�c arguments.

Change the permissions on the schell script so it can be
executed by typing the name of the �le.

chmod +x <name>.sh

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Printing a Line to Standard Output

Use the echo command to print a line to stdout.

The echo command always inserts a newline character at the
end unless the -n option is used.

form

echo [-n] <zero or more values>

examples

echo "Hello World!"
echo "Please enter a value."

The echo command is useful when debugging shell scripts.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Implementation of Echo

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Shell Variables

Shell variables are just used and not declared.

The general convention is to use lowercase letters for shell
variable names and uppercase letters for environment variable
names.

Shell variables are assigned strings, which can be interpreted as
numeric values. Note that there can be no blanks before or
after the '='.

form

<name>=<value>

examples

var=0
var="Good"

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Shell Variables (cont.)

Shell variables are initialized to be the empty string by default.

Shell variables can be dereferenced.
form

$<name>

examples

var1=$var2
echo "====" $testcase "===="
echo "deleted" $num "lines from �le" $�le

The number of characters of a shell variable in can be
determined by using the form ${#<name>}.

example

v="Hello World!"
echo "Width of v is" ${#v}"."
Will cause the following line to be printed.
Width of v is 12.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Reading Values into a Shell Variable

Use the read statement to read a line of standard input, split
the line into �elds of one or more strings that were separated
by blanks or tabs, and assign these strings to shell variables.

All leftover strings in the line are assigned to the last variable.
form

read <var1> <var2> ... <varm>

examples

read num
read name �eld1 �eld2
read name1 name2 < input.txt

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Shell Arguments

Can pass arguments on the command line to a shell script, just
like you can pass command line arguments to a program.

run.sh 5

$1, $2, ..., $9 can be used to refer to up to nine command line
arguments (argv[1] ... argv[9]).

Shell command line arguments beyond nine can be referenced
referenced using the form ${#}, such as ${10}.

$0 contains the name of the script (argv[0]).

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Example Using Shell Arguments

Example shell script called prompt.sh.

#!/bin/sh
echo "Please enter �elds for employee" $1 $2"."

Example usage:

prompt.sh John Doe

Example output:

Please enter �elds for employee John Doe.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

More on Command Line Arguments

$# contains the number of command line arguments.

$@ will be replaced with a string containing the command line
arguments separated by spaces.
Example shell script called echo.sh.

#!/bin/sh
echo "The" $# "arguments entered were:" $@

Example usage:
echo.sh cat dog horse

Example output:
The 3 arguments entered were: cat dog horse

Can reset the command line arguments using a set command.
#!/bin/sh
set -- cat dog cow
echo "The" $# "arguments entered were:" $@

Output of the modi�ed shell script would be:
The 3 arguments entered were: cat dog cow

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Debugging Shell Scripts

Shell scripts are interpreted by the shell.

Syntax errors are not detected until that line is interpreted at
run time.
There is no shell script debugger.

However, one can invoke a shell script with command line �ags
to assist in debugging.

The -v �ag indicates the verbose option and the shell prints
the commands as they are read.
The -x �ag causes the shell to print the interpolated
commands after they are read.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Debugging Shell Scripts (cont.)

Invoke your shell script as follows so that each line of the
script is echoed as it is interpreted.

form

sh -xv <scriptname>

example usage

sh -xv echo.sh a b c

example output

#!/bin/sh
echo "The" $# "arguments entered were:" $@
+ echo The 3 arguments entered were: a b c
The 3 arguments entered were: a b c

One can also set these options in the shell script itself.
The "set -xv" command will turn on these options.
The "set +xv" command will turn o� these options.
One can also modify the initial comment to turn on debugging
options.

#!/bin/sh -xv

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Testing Conditions

Can test for various conditions. There are two general forms.

test <condition> or [<condition>]

I think the latter is easier to read. Be sure to include a space
before and after each of the brackets.

To test the result of a command, just use the command, which
will return an exit status.

Can reverse a condition by putting ' !' before it.

[! <condition>]

A ':' command always returns true.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Testing File Attributes

Test if a �le exists and is readable.

[-r employees.txt]
[-r data.txt]

Test if a �le doesn't exist or is not writeable.

[! -w employees.txt]

Test if a �le exists and is executable.

[-x echo.sh]

Test if a �le exists and is not a directory.

[-f tmp.txt]

Test if a �le exists and is a directory.

[-d tmp]

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Numeric Tests

The following {-eq, -ne, -gt, -ge, -lt, -le} operations can be
used for numeric tests.

[$1 -lt $2]
[$1 -gt 0]
[$1 -eq $#]

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Exit Command

The exit command causes the current shell script to terminate.

There is an implicit exit at the end of each shell script.

The status indicates the success of the script with generally
zero indicating success.

If the status is not given, then the script will exit with the
status of the last command.

examples

exit 0
exit 1

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

String Relational Operators

The string relational operators are:

=, !=, >, >=, <, <=

The (>, >=, <, <=) operators assume an ASCII ordering
when performing comparisons.

They have to be used with the expr command, which will be
covered later.

The backslash has to be placed before these operators so they
are not confused with I/O redirection.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Testing Strings

Can perform string comparisons. It is good practice to put the
shell variable being tested inside double quotes ("$v" instead
of $v).

["$1" = "yes"]

The following will give a syntax error when $1 is empty since:

[$1 != "yes"]

becomes

[!= "yes"]

Can check if a string is empty to avoid a syntax error.

[-z $1]

Can also check if a string is nonempty.

[-n $1]

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Quoting Rules

'xxx' disables all special characters in xxx.

"xxx" disables all special characters in xxx except $, `, and \.

\x disables the special meaning of the character x.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Quoting Examples

animal="horse"

echo '$animal'

prints: $animal

echo "$animal"

prints: horse

cost=2000

echo 'cost: $cost'

prints: cost: $cost

echo "cost: $cost"

prints: cost: 2000

echo 'cost: \$cost'

prints: cost: $cost

echo "cost: \$$cost"

prints: cost: $2000

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Testing with Multiple Conditions

Can check if multiple conditions are all met.

["$1" = "yes"] && [-r $2.txt]

Can also check if one of a set of conditions are met.

["$2" = "no"] || [! -r $2.dat]

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

General If Statement

The "if condition", initial "then", and "�" are required.

Can have zero or more "elif condition".

The "else" is also optional.

General form.

if condition

then

one-or-more-commands

elif condition

then

one-or-more-commands

...

else

one-or-more-commands

fi

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

If Statement Examples

if [! -r $1]

then

echo "tmp.txt is readable."

fi

if [$1 = $2]

then

echo $1 "is equal to" $2

else

echo $1 "is not equal to" $2

fi

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

If Statement Examples (cont.)

if [$var1 -lt $var2]

then

echo $var1 "is less than" $var2

elif [$var1 -gt $var2]

then

echo $var1 "is greater than" $var2

else

echo $var1 "is equal to" $var2

fi

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Case Statement

Compares stringvalue to each of the strings in the patterns.

On the �rst match it does the corresponding commands.

;; indicates to jump to the statement after the esac.

*) means the default case

General form.

case stringvalue in

pattern1) one-or-more-commands ;;

pattern2) one-or-more-commands ;;

...

*) one-or-more-commands ;;

esac

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Case Statement Example

echo "Please answer yes or no."

read answer

case $answer in

"yes"|"Yes") echo "We are pleased you agree."

...

;;

"no"|"No") echo "We are sorry you disagree."

...

;;

*) echo "Please enter \"yes\" or \"no\"."

esac

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

While Statement

The commands in the loop are performed while the condition

is true.

General form.

while condition

do

one-or-more-commands

done

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

While Statement Examples

process commands until a stop is encountered

read cmd

while [$cmd != "stop"]

do

...

read cmd

done

process a loop forever

while :

do

...

done

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Until Statement

The commands in the loop are performed until the condition is
true.

General form.

until condition

do

one-or-more-commands

done

Until Statement Example

read cmd

until [$cmd = "stop"]

do

...

read cmd

done

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Shift

The shift command removes an argument from the script �le's
argument list by shifting all the others over one ($1=$2;
$2=$3; $3=$4; ...).

The shift command also decrements the $# value by one.

Example:

print the command line arguments, two per line

while [$# -gt 0]

do

echo $1 $2

shift

if [$# -gt 0]

then

shift

fi

done

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Exit Status

Zero normally indicates success.

Nonzero values normally indicate some type of failure.

It is a good practice to end each shell script with an "exit 0"
command if everything succeeded.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Exit Command Example

Below could be a script to get a yes/no answer.

#!/bin/sh

echo "Please answer yes or no."

read answer

while :

do

case $answer in

"yes") exit 0 ;;

"no") exit 1 ;;

*) echo "Invalid response."

echo "Please answer yes or no."

read answer ;;

esac

done

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Testing the Exit Status

All conditions tested in control statements can also be the exit
status of commands.

The condition below uses the exit status of the yes.sh script
shown in the previous slide.

if yes.sh

then

echo "Please enter filename:"

...

fi

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Regular Expressions

Many shell commands and Unix utilities use regular
expressions.

A regular expression is a description of a possible sequence of
symbols (e.g. characters).

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Regular Expression Operations

Concatentation is implicit.

ab # 'a' followed by 'b'
abc # 'a' followed by 'b' followed by 'c'

* indicates zero or more instances of the preceding regular
expression.

a* # "", a, aa, aaa, ...
a*b # b, ab, aab, aaab, ...

+ indicates zero or more instances of the preceding regular
expression.

a+ # a, aa, aaa, ...
a+b # ab, aab, aaab, ...

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Character Classes

'.' indicates any single character except a newline

a.b # 'a' followed by any character followed by 'b'

Use [...] to indicate one of a set of characters. The '-'
operator within [] indicates a range. The '�' after the '['
means match anything not in the set.

[abc] # a, b, c
[0-9] # any decimal digit
[a-z] # any lowercase letter
[A-Z] # any uppercase letter
[a-zA-Z] # any letter
[�0-9] # any character other than a decimal digit
[�\n] # same as '.'

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Anchors

Anchors can be used to indicate that a pattern will only match
when it is at the beginning or end of a line.

� indicates the beginning of the line.

$ indicates the beginning of the line.

Examples of regular expressions with anchors:

�echo # "echo" at the beginning of the line
[A-Za-z]+$ # a name at the end of the line
�done$ # "done" on a line by itself

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Alternation and Grouping

Use the '|' character to choose between alternatives.

Use parentheses for grouping.

a|b # a or b
a*|b # "", a, aa, aaa, ..., b
(ab)*c # c, abc, ababc, abababc, ...
(a|b)*c # any combination of a's or b's followed by c

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Testing If a Variable Matches a Regular Expression

Can test if a variable matches a regular expression.

General form.

[[$var =� regexpr]]

Example.

check if $1 is not an acronym

if [[! $1 =� �[A-Z]+$]]

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Additional RE References

This table shows which symbols can be used within some Unix
utilities.

Symbol ed vi sed awk grep Action

. • • • • • Match any character but newline.

* • • • • • Match zero or more preceding.

ˆ • • • • • Match beginning of line.

$ • • • • • Match end of line.

\ • • • • • Escape character following.

[] • • • • • Match one from a set.

{ } • • • Match a range of instances.

+ • Match one or more preceding.

? • Match zero or one preceding.

| • Separate choices to match.

() • Group expressions to match.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Grep

grep searches for strings in �les that match a regular expression
and prints the lines that contain these matches to stdout.

The pattern below is the regular expression.

You can specify zero or more �les.

If no �les are speci�ed, then grep reads from standard input.

The [...] below means that whatever is inside the brackets is
optional.

The command line options will be covered later.

grep [-i] [-w] [-c] [-v] pattern [files]

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Grep Examples

grep [Ww]halley *.txt

Detect Whalley or whalley in .txt �les.

grep interger *.c

Detect where "integer" is misspelled as "interger".

grep �\begin{table} report.tex

Are there any tables in report.tex?

grep Whalley report.tex | grep David > tmp.out

Where did I put my last and �rst name on the

same line in report.tex. Place output in tmp.out.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Grep Options

-i will make the search case insensitive.

-c will cause the number of lines matched to be printed.

-w will make the search look for entire words.

-v will cause the lines that don't match to be output.

-A num will print num lines after each line that was matched.

-B num will print num lines before each line that was matched.

-C num will print num lines before and after each line that was
matched.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Grep Examples Using Options

grep -i whalley tmp.tr

Finds both Whalley and whalley.

grep -c "do " prog.c

Counts number of do-whiles in prog.c.

grep -w "int abs" *.c

Find implementation of abs function.

grep -wc if prog.c

Counts if statements in prog.c.

grep -v "�#" prog.c

Prints preprocessor commands in prog.c.

grep -c "/"[*/] prog.c

Counts number of comments in prog.c.

grep -C 1 Whalley

Prints 3 lines around each line containing Whalley.

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Wc

wc counts the number of lines, words, and characters in �les
and prints this information to stdout.

You can specify zero or more �les.

Like grep and most Unix utilities, it reads from standard input
if no �les are speci�ed.

Again the [...] below means that the ... inside the brackets is
optional.

The options indicate to only print the number of lines (-l),
words (-w), or characters (-c). By default, it prints all three.

wc [-l] [-w] [-c] [files]

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Wc Examples

wc *.txt *.c # How big are all of my .txt and .c �les?

wc -l *.c # How many lines of code have I written?

wc -w report.tex # How many words are in my report?

wc -c doc.pdf # How many bytes are in this document?

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Touch

touch creates a �le with no data if it does not exist.
Sometimes you need to create an empty �le.

touch employee.txt

touch updates the last modi�cation date/time to be the
current date/time if the �le does exist.

This feature can be useful if you copied �les into a directory
and you need to have the Make�le recompile everything.

touch *.cpp

make

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Command Substitution

A pair of backquotes, �...�, does command substitution.

This means that the standard output of the command within
the backquotes is used as arguments to another command.

count=�wc -w < $1�

assigns to count the number of words in �le $1

if [�wc -l < $2.txt� -lt 1000]

checks if number of lines in $2.txt �le is < 1000

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Xargs

The xargs command reads a group of arguments from
standard input and then runs the speci�ed Unix command with
that group of arguments.

General form.

xargs <command>

Example:

ls *.c > all_c_files.txt

capture *.c �lenames

vi all_c_files.txt

can edit and delete some �lenames

xargs gcc -g -c < all_c_files.txt

compile the list of �les

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

For Statement

The shell variable is assigned each word in the list, where the
set of commands is performed each time the word is assigned
to the variable.

If the "in <word_list>" is omitted, then the variable is
assigned each of the command-line arguments.

General form.

for <variable> [in <word_list>]

do

one-or-more-commands

done

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

For Statement Examples

make a backup of each of the C �les in the current directory

for file in �ls *.c�

do

cp $file "$file".bak

done

echo each of the command line arguments to a separate line

for arg

do

echo $arg

done

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

For Statement Examples (cont.)

place the command line args into a single string variable

where the arguments are separated by blanks

s=

for arg

do

s="$s $arg"

done

...

compile each of the �les speci�ed in the list in $s

for file in $s

do

gcc -g -c $file

done

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Break and Continue

A break statement causes immediate termination of a loop.

A continue statement skips the rest of the commands in the
loop and starts the next iteration.

for file in �ls *.c�

do

if [! -r $file] || [-d $file]

then

continue

elif ! gcc -c $file

then

echo "could not compile" $file

break

fi

done

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Expr

Expr evaluates an arithmetic or relational expression and prints
its results to standard output.

Useful when your shell script needs to perform a calculation.

Outputs 1 (true) or 0 (false) when evaluating a relational
expression.

Note that the arguments and the operators must be separated
by spaces.

At least one argument must be speci�ed.

expr arg1 [oper1 arg2 [oper2 arg3 ...]]

Shell Scripts Vars Args Dbg Testing Conds Cond Stmts Reg Exprs Grep Wc Touch CmdSub For Expr

Expr Examples

var=�expr "$var" + 1�

add 1 to var

if [�expr "$s1" \< "$s2"� = 1]

check if $s1 < $s2, works for strings as well

a=�expr "$a" * 2�

double the value of a

	Shell Scripts
	

	Vars
	

	Args
	

	Dbg
	

	Testing Conds
	

	Cond Stmts
	

	Reg Exprs
	

	Grep
	

	Wc
	

	Touch
	

	CmdSub
	

	For
	

	Expr
	

