
Efficient Algorithms for Encrypted All-gather Operation

Mehran Sadeghi Lahijani, Abu Naser, Cong Wu, Mohsen Gavahi, Viet Tung Hoang, Zhi Wang, Xin Yuan
Department of Computer Science, Florida State University

Tallahassee, Florida 32306, USA
{sadeghil, naser, wu, gavahi, tvhoang, zwang, xyuan}@cs.fsu.edu

Abstract—As more High-Performance Computing (HPC)
applications that process sensitive data are moving to run on
the public cloud, there is a need for the cloud infrastructure
to provide privacy and integrity support. In this work, we
investigate how to add encryption to all-gather to protect inter-
node communication. This task is challenging since encryption
is often more expensive than communication in contemporary
HPC systems. We derive performance bounds for encrypted all-
gather, and develop new algorithms that meet the theoretical
lower bounds. Our empirical evaluation on production systems
demonstrates that the new algorithms achieve substantially
better performance than the naive approach.

Keywords: Encrypted MPI_Allgather, Algorithm Design,
Security

I. INTRODUCTION

With the ongoing trend of moving HPC applications to
run on the public cloud infrastructures, the security of these
applications has become a rising concern. In particular,
most HPC systems simply send data in the clear, allowing
a network adversary to eavesdrop sensitive information
or even tamper with it. Using an existing network-level
encryption mechanism such as IPSec is a non-solution, as
it severely degrades communication speed [19]. To address
this problem, researchers have considered adding encryption
to the Message Passing Interface (MPI) library [16], [18],
[19], [24], [25], which is a commonly used library in
HPC applications. Still, they all fail to provide an efficient
solution for MPI’s collective routines. To partially bridge
this gap, in this work, we develop efficient algorithms for
encrypting inter-node communication in MPI_Allgather, one
of the most widely used collective operations in scientific
applications [4].

Adding encryption to MPI is challenging, because in con-
temporary HPC systems, encryption is usually more expen-
sive than communication. Figure 1 compares the encryption
throughput and ping-pong throughput on our local Noleland
cluster—a typical HPC cluster today—whose configuration
is described in Section V. In particular, encryption through-
put saturates at about 5,500 MBps, whereas the maximum
ping-pong throughput is twice higher. Given this situation,
clever algorithms for encrypting MPI communication must
be developed to achieve high performance.

Existing work on encrypting MPI [18] only adds encryp-
tion to MPI_Allgather in a naive fashion: (1) each process
encrypts its local data; (2) all processes use the original

 0

 2000

 4000

 6000

 8000

 10000

 12000

1B 256B 1KB 4KB 16KB 32KB 64KB 128KB 512KB 2MB

T
hr

ou
gh

pu
t (

M
B

/s
)

Message Size

ping-pong
encryption

Figure 1: Encryption throughput versus ping-pong through-
put on Noleland (InfiniBand).

MPI_Allgather to gather all ciphertexts at all processes; and
(3) each process decrypts all of the received ciphertexts.
Because of the large gap between encryption and commu-
nication speed, this naive approach performs poorly.

In this work, we derive the performance bounds for the
encrypted all-gather operation, develop new encrypted all-
gather algorithms that meet the theoretical lower bounds, and
run extensive experiments to compare their empirical per-
formance. The results demonstrate that the new algorithms
perform substantially better than the naive approach.

The rest of the paper is organized as follows. In Section II,
we discuss the related work. In Section III, we present the
background of our work, and in Section IV, we explain our
proposed algorithms. In Section V, we present the results of
the performance evaluation, and we conclude our work in
Section VI.

II. RELATED WORK

Since the standardization of MPI, a very large number
of algorithms have been proposed for MPI collectives [7]–
[9], [14], [21]–[23], [26]. Various all-gather algorithms have
been developed, optimizing the performance in different
situations: some are architecture-oblivious [7], [8], [26];
some consider the network topology [6], [12], [15], [29],
[30]; some focus on SMP and multicore clusters [13], [17],
[28]; some use special network features [10]. Encrypted all-
gather adds a new dimension for optimization that has not
been considered by existing schemes.

Most prior papers on encrypting MPI communica-
tion [16], [24], [25] suffer from various security issues,
such as using bad encryption methods and lack of integrity



support. Recent work [18], [19] provides provable security
by using the Galois Counter Mode (GCM) of encryption [5],
but these papers either focus on point-to-point operations or
only use a naive approach for collective operations. In this
work, we focus on encrypted MPI_Allgather and develop
faster algorithms for this operation.

III. BACKGROUND

ENCRYPTION. In this work, following Naser et al. [18], we
use the GCM encryption scheme [5] that provably offers
both privacy (meaning that adversaries learn no additional
information from the ciphertexts, even with partial knowl-
edge of plaintexts) and integrity (meaning that adversaries
cannot modify ciphertexts without being detected).1 GCM is
a nonce-based encryption scheme, meaning that to encrypt
a plaintext P, one needs to additionally provide a nonce N,
i.e., a public value that must appear at most once per key.
The same nonce N is required for decryption, and thus the
sender needs to send both the nonce N and the ciphertext C
to the receiver. In our implementation, we pick nonces at
random, which is standard-compliant.

ALL-GATHER. In MPI_Allgather, each process initially has
a copy of its own data, and upon completion of the operation,
each process has all data from all processes. Figure 2
illustrates an all-gather operation among 4 processes. This
operation has been extensively investigated and is well
understood. Below, we give a recap of a few algorithms
for MPI_Allgather that appear in various production MPI
libraries such as MPICH and MVAPICH, and perform well
across different platforms.

♣
♠

�

�P1

P
2

P3

P4

�P1

P2

P3

P
4

� ♣ ♠
� � ♣ ♠
� � ♣ ♠
� � ♣ ♠

all-gather

Figure 2: The all-gather operation, illustrated for 4 processes.

NOTATIONAL SETUP. We consider MPI_Allgather of m-byte
messages among p processes P0, . . . ,Pp−1 over N nodes.
Without loss of generality, we will assume that p is a
multiple of N. Let `= p/N denote the number of processes
running on each node. We will use the Hockney’s model [11]
to discuss the performance of the algorithms. In this model,
a transmission of m bytes takes α + βm time where α is
the startup cost and β is the per-byte communication cost.
In analyzing algorithms, we assume that processes begin
the operation at the same time, and measure running time
by estimating the time for the last process to complete the

1Actually, the adversary can still replace a ciphertext with a prior one;
this is known as replay attacks. Here we do not consider such attacks.

operation. For simplicity, we will assume that inter-node and
intra-node communication of the same size take the same
amount of time if not specified otherwise. Detailed analyses
of these algorithms can be found in [26].

RING. The communication pattern in the Ring all-gather
algorithm [26] is P0 → P1 → ... → Pp−1 → P0. There are
p−1 iterations of this algorithm. In the first iteration, each
process Pi sends its data to Pi+1, where + is the modular
addition in mod p. In the later iterations, Pi forwards its
current data to Pi+1 and receives new data from Pi−1. After
p−1 iterations, all processes have all the data. The time for
this algorithm is (p−1) ·α +(p−1) ·mβ .

Since the logical traffic pattern is fixed, the performance of
the Ring algorithm can be sensitive to the process mapping.
Most MPI libraries support block order (namely process Pi is
mapped to node bi/Nc), and cyclic order (namely process Pi
is mapped to node i mod N). The ring pattern can have
very different characteristics (and thus performance) for
different process mappings, but a rank-ordered version of
this algorithm allows the performance to be consistent across
different mappings [13].

RECURSIVE DOUBLING (RD). In RD [26], the distance
between the sender and receiver processes and the amount
of data they exchange is doubled after each iteration. In
particular, in the b-th iteration, Pi exchanges its data with
Pi+B, where B = 2b−1, for every i such that (i mod 2B)< B.
It takes lg(p) steps for RD to perform all-gather when p is a
power of two, and its running time is lg(p) ·α+(p−1) ·mβ .
If p is not a power of two, extra steps are needed to complete
the operation, but the total number of steps is still bounded
by 2 · lg(p) [26]. Unlike the Ring algorithm, RD cannot re-
arrange the rank order to achieve good performance across
different process mappings. As a result, its performance is
sensitive to process mapping.

HIERARCHICAL. In the Hierarchical algorithm [28], each
node contains a leader process. The algorithm consists of
three steps: (1) all processes in each node perform a local
intra-node gather to collect the data to the leader of that
node; (2) leaders perform an (inter-node) all-gather operation
to distribute all data among leaders; and (3) all processes in
each node perform a local broadcast, with the leader being
the root.

The running time of the Hierarchical algorithm depends
on the collective algorithms in each of the steps. If we
assume that intra-node communication is much cheaper
than inter-node one, then the performance of the Hierarchi-
cal algorithm is dominated by the inter-node all-gather in
step (2). Assuming further than the inter-node all-gather is
implemented via RD, the running time of the Hierarchical
algorithm is about lg(N) ·α +(p− `) ·βm.



IV. ENCRYPTED MPI_ALLGATHER

We consider encrypted all-gather of m-byte data on p
processes and N nodes, where each node has ` = p/N
processes. For simplicity, here we describe the algorithms
and analyze their complexity for the case where p and N are
powers of two, but the algorithms can be slightly modified
to work for any choice of p and N with the same asymptotic
complexity. The general versions of the algorithms that work
for any values of p and N have been implemented and their
performance is reported in Section V. In GCM, a ciphertext
is 28 bytes longer than the corresponding plaintext, but our
analyses will ignore this constant overhead and assume that
ciphertext and plaintext are of the same length for simplicity.

In an encrypted all-gather, inter-node communication
must be encrypted while intra-node one can be sent in the
clear. We assume that N ≥ 2 since a single-node all-gather
does not need encryption. In our analyses, we assume that all
processes start the operation at the same time, and measure
the running time by estimating the time for the last process
to complete the operation.

A. Performance bounds

SETUP. We assume that encryption and decryption cost also
follows the Hockney’s model. That is, encrypting an m-
byte message takes αe + βe ·m time units and decrypting
an m-byte message takes αd +βd ·m time units. Below, we
establish the lower bounds of six key performance metrics
for encrypted all-gather:
(i) rc: the number of communication rounds

(ii) sc: the total size of data to be sent and received in the
critical path,

(iii) re: the number of encryption rounds,
(iv) se: the size of data to be encrypted in the critical path,
(v) rd : the number of decryption rounds, and

(vi) sd : the size of data to be decrypted in the critical path.
With these metrics, an encrypted all-gather algorithm

will have at least tc = rc ·α + sc · β communication time,
te = re ·αe + se ·βe encryption time, and td = rd ·αd + sd ·βd
decryption time. For small messages, the terms rc,re, and
rd will dominate tc, te, and td , respectively. In contrast, for
large messages, the terms sc,se, and sd will determine the
performance. Depending on how communication, encryp-
tion, and decryption overlap, the time for the algorithm will
be between max{tc, te, td} and tc+te+td . Each of these terms
may dominate the performance of the operation. Thus, the
algorithm design must consider all of the three terms.

THE BOUNDS. Table I shows the bounds for encrypted all-
gather. The lower bounds rc and sc for communication
cost are well known [3], [26], but we list them here for
completeness.

Next, we establish lower bounds for encryption cost. Since
N ≥ 2, at least one encrypted inter-node message must be
sent to complete the all-gather, and thus re ≥ 1. In addition,

Table I: Lower bounds for encrypted all-gather of m-byte
data on p processes and N nodes, with ` = p/N processes
per node.

Metric rc sc re se rd sd

Bound lg(p) (p−1)m 1 m
⌈

lg(N)
lg(`+1)

⌉
(N−1)m

messages in each node with a total size of ` ·m bytes must
be encrypted in order to be sent to every other node. As
there are ` processes in a node to collectively encrypt ` ·m
bytes of data, there is one process that encrypts at least m
bytes, and thus se ≥ m.

We now derive lower bounds for decryption cost. Since
each node must decrypt all messages from other nodes,
the total data size to be decrypted in each node is at least
(N−1) ·`m. As there are ` processes in a node to collectively
decrypt that amount of data, there is one process that
decrypts at least (N−1) ·m bytes, and thus sd ≥ (N−1) ·m.

To bound rd , without loss of generality, we will assume
the following: (1) a process needs exactly one round to
decrypt a ciphertext of any size, and (2) encryption and
communication time will be ignored, meaning that a process
can encrypt and send data of any size with lightning speed.

With these assumptions, before the first round of decryp-
tion, each node only has unencrypted data from T0 = 1 node
(namely itself), and each ciphertext contains unencrypted
data of just T0 node. Since there are ` processes in each
node, after the first round of decryption, each node can
decrypt at most ` ciphertexts, and obtain unencrypted data
from at most T1 = (`+ 1) · T0 = `+ 1 nodes, including
itself, and each ciphertext now contains unencrypted data
of at most T1 nodes. Likewise, after the second round of
decryption, each node can obtain unencrypted data from at
most T2 = (`+1) ·T1 = (`+1)2 nodes, and each ciphertext
now contains unencrypted data of at most T2 nodes. By
repeating this argument, if the protocol terminates in rd
rounds then at the end of the encrypted all-gather operation,
each node can obtain unencrypted data from at most (`+1)rd

nodes. As each node must gather data from all N nodes, we
must have N≤ (`+1)rd , and thus rd ≥dlg`+1 Ne=

⌈
lg(N)

lg(`+1)

⌉
.

If we treat ` as a constant and N as a parameter then rd ∈
Ω(lg(N)). This is a tight bound, as we will later develop an
algorithm (namely O-RD2) whose rd is lg(N). On the other
hand, if ` can be arbitrarily large then any lower bound for rd
must involve both N and `, because there is an algorithm
in this paper (namely HS1) that has rd = dN/`e, meaning
that rd can be as small as 1 if `≥ N.

PERFORMANCE OF THE NAIVE APPROACH. Consider the
approach in [18] where each process first encrypts its mes-
sage, then calls MPI_Allgather to perform the all-gather op-
eration on the ciphertexts, and finally decrypts the received
ciphertexts. We call this algorithm Naive.



If we run Naive on top of the ordinary all-gather algo-
rithms of MVAPICH, then it achieves the theoretical lower
bounds for communication cost, meaning that rc = lg(p) and
sc = (p− 1)m. Moreover, since each process encrypts its
own message, we have re = 1 and se = m, and thus Naive
also meets the lower bounds on encryption cost. However,
the situation for decryption cost is different. In particular,
since each process must decrypt p− 1 ciphertexts of m
bytes, rd = p− 1 and sd = (p− 1)m ≈ (N− 1)m · `, which
are much larger than the lower bounds. Our evaluation will
later show that Naive introduces very large overheads to all
message sizes.

B. Faster algorithms for encrypted all-gather
OPPORTUNISTIC ALGORITHMS. The Naive algorithm per-
forms poorly because it unnecessarily sends encrypted data
for intra-node communication, leading to excessive decryp-
tion cost. The Opportunistic algorithm improves the situation
by sending encrypted data only for inter-node communica-
tion. For each intra-node send, the sender is required to send
the corresponding plaintext of the data, meaning that it may
need to first decrypt its message to obtain the plaintext. We
write O-X to refer to the Opportunistic algorithm running
on top of an ordinary all-gather algorithm X ∈ {RD, Ring}.
See Figure 3 for an illustration of O-Ring.

P0
P

1 P2
P3

P4

P5

P6

P7P8

Node 0 Node 1

Node 2

encrypt

decrypt

Figure 3: Illustration of O-Ring with p = 9 processes of
block order on N = 3 nodes.

For block-order mapping, the metrics of O-Ring are
shown in Table II. The communication terms rc and sc are
the same as in ordinary Ring-based all-gather. Since the exit
process Pi of each node must encrypt data of every process
Pj with j 6= i+ 1, we have re = p− 1 and se = (p− 1)m.
Similarly, rd = p−1 and sd = (p−1)m.

In O-RD with block-order mapping, in each of the last
lg(N) iterations, each process Pi sends many ciphertexts
to another process Pj in a different node. Alternatively, Pi
can merge them into a single ciphertext via decrypting and
then re-encrypting, which corresponds to a variant O-RD2
of O-RD. This variant reduces the number of decryption
rounds on the receiver side, at the cost of increasing the
amount of data to encrypt. Between O-RD2 and O-RD, we
expect O-RD2 to be better for small messages and O-RD to
be better for large ones.

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
0

Node 0 Node 1 Node 2

Figure 4: Illustration of the Concurrent algorithm on N = 3
nodes and p = 9 processes. Processes in the same shaded
area run an encrypted all-gather on their data.

For O-RD with block-order mapping, the terms rc and sc
are the same as in ordinary RD-based all-gather. The first
lg(`) = lg(p)− lg(N) iterations only involve intra-node com-
munication, and there is no encryption or decryption. In the
next lg(N) rounds, each process only has to encrypt the data
of its node, and thus re = 1 and se =m`. Moreover, each pro-
cess only decrypts the encrypted copy of data of every other
node, and thus rd = N−1 and sd = (N−1)`m = (p− `)m.

For O-RD2 with block-order mapping, only the last lg(N)
rounds involve encryption or decryption, and in each of these
rounds, each process has to decrypt a ciphertext, and then
encrypt another message. Thus re = rd = lg(N) and se =
(p− `)m. The other terms are the same as O-RD.

The Opportunistic algorithms offer some advantages over
the Naive algorithms, such as allowing communication-
computation overlaps and reducing the total number of
encryption and decryption operations. However, as shown
in Table II, they all fail to substantially improve sd , which
is the main issue with the naive approach.

CONCURRENT ALGORITHMS. We now describe a family of
algorithms that are specifically designed to reduce sd , match-
ing the theoretical lower bound (N − 1) ·m. Initially, the
algorithm partitions the p processes into ` groups such that
each node has exactly one process per group. For each group,
we perform an encrypted all-gather on the corresponding N
processes with their m-byte data; the encrypted all-gather
is implemented via the family of Opportunistic algorithms.
That is, we have ` concurrent encrypted sub-all-gathers. This
step brings all data to every node, but in each node, data are
still spread across its ` processes. Next, each node performs
a local ordinary all-gather on its ` processes.

Figure 4 shows an example where 9 processes run on 3
nodes. Initially, we partition the processes to three groups
{P0,P3,P6}, {P1,P4,P7}, and {P2,P5,P8}, and each group
performs an encrypted sub-all-gather. Then each node runs
a local ordinary all-gather on its three processes.

We write C-Ring to refer to the Concurrent algorithm



Table II: Performance of encrypted all-gather algorithms on m-byte messages, p processes on N nodes with `= p/N processes
per node. We assume that p and N are powers of two and block-order mapping is used for Opportunistic algorithms. For
HS1 and HS2, we assume that the RD algorithm is used for the inter-node all-gather, and ignore the cost of intra-node
communication.

Naive O-Ring O-RD O-RD2 C-Ring C-RD HS1 HS2

rc lg(p) p−1 lg(p) lg(p) N + `−2 lg(p) lg(N) lg(N)
sc (p−1)m (p−1)m (p−1)m (p−1)m (p−1)m (p−1)m (p− `)m (p− `)m
re 1 p−1 1 lg(N) 1 1 1 1
se m (p−1)m `m (p− `)m m m `m m
rd p−1 p−1 p− ` lg(N) N−1 N−1 dN/`e N−1
sd (p−1)m (p−1)m (p− `)m (p− `)m (N−1)m (N−1)m max{N, `} ·m (N−1)m

where the encrypted sub-all-gathers are implemented via the
Opportunistic approach and the ranked-ordered version of
the Ring algorithm in [13]. Let C-RD be the Concurrent
algorithm where the encrypted sub-all-gathers are imple-
mented via the O-RD.

For C-Ring, in the first step, the number of communication
rounds is N − 1; each process communicates (N − 1)m
bytes; the number of encryption rounds is 1; each process
encrypts m bytes; the number of decryption rounds is N−1;
and each process decrypts (N − 1)m bytes. In the second
step, the number of communication rounds is `-1; each
process communicates (`− 1)Nm = (p− N)m bytes; and
there is no encryption or decryption. Summing up, we obtain
the complexity of C-Ring as shown in Table II.

For C-RD, in the first step, the number of communication
rounds is lg(N); each process communicates (N − 1)m
bytes; the number of encryption round is 1; the amount of
encrypted data is m bytes; the number of decryption rounds
is N−1; and the amount of decrypted data is (N−1)m bytes.
In the second step, the number of rounds of communication
is lg(`); each process communicates (`−1)Nm = (p−N)m
bytes; and there is no encryption or decryption. Summing
up, we obtain the complexity of C-RD as shown in Table II.

For Naive and Opportunistic algorithms, the size of the
encrypted and decrypted data is Θ(pm). In contrast, for
C-Ring and C-RD, the size of the encrypted and decrypted
data is only Θ(Nm), and their other metrics are comparable
to those of Naive. Thus, both C-Ring and C-RD are expected
to be significantly better than Naive for sufficiently large
data, assuming that ` is fairly large, say ` = 8. Moreover,
on contemporary HPC systems, a single core usually does
not have enough computing power to fully utilize the net-
work link. The concurrent sub-all-gathers in the Concurrent
algorithm can also better utilize the network link bandwidth.

HIERARCHICAL SHARED-MEMORY ALGORITHMS. Recall
that both C-Ring and C-RD have rather large rd = N− 1,
and thus are not competitive for small messages. Our Hierar-
chical Shared-memory (HS1) algorithm in contrast achieves
the optimal sd , yet reduces rd to N/`. Moreover, as shown
later in the experiments, HS1 has even cheaper underlying

communication cost. As a result, it would be competitive for
both small and large messages. The scheme HS1 consists of
the following steps:

1) Each node performs an unencrypted gather to collect
the data in the node to a leader process, using a shared-
memory plaintext buffer.

2) Each leader encrypts its `m-byte data, and runs an
ordinary all-gather on ciphertexts among the N leaders,
and the results are stored in a shared-memory ciphertext
buffer.

3) All processes in each node jointly decrypt the N− 1
ciphertexts from other nodes, and place the results in
the shared-memory plaintext buffer.

4) All processes in each node copy the results from the
shared-memory plaintext buffer to the user buffer.

Assuming that the local data transfer to a shared memory
is free, we will ignore the cost in Steps 1 and 4. Assume
further that RD is used for the inter-node all-gather in Step 3.
Then the communication cost is only from the inter-node all-
gather among N nodes on `m-byte messages, meaning that
rc = lg(N) and sc = (p− `)m. Here rc and sc are smaller
than the lower bounds in Table I because we ignore the data
transfer cost to shared memory buffers. As the encryption is
performed once by each leader, re = 1 and se = `m. Since
each process decrypts up to d(N−1)/`e ciphertexts of `m-
byte messages, rd = d(N−1)/`e and sd = d(N−1)/`e · `m.
As N and ` are powers of two, we can simplify these terms
to rd = dN/`e and sd = max{N, `} ·m.

Although HS1 reduces rd significantly, it has higher se
than the Concurrent algorithms as only leaders perform
encryption. We also consider the following variant HS2:

1) Each process encrypts its m-byte data and puts the
ciphertext to a shared-memory ciphertext buffer.

2) Each leader runs an ordinary all-gather on ciphertexts
among the N leaders, and the results are stored in a
shared-memory ciphertext buffer.

3) All processes in each node jointly decrypt the (N−1)`
ciphertexts from other nodes, and place the results in a
shared-memory plaintext buffer.

4) All processes in each node copy the results from the
shared-memory plaintext buffer to the user buffer.



The communication cost of HS2 is the same as HS1. Each
process however only encrypts its own data, and thus re = 1
and se = m. Since all processes on each node have to jointly
decrypt (N− 1)` ciphertexts of m-byte data, rd = (N− 1)
and sd = (N − 1)m. Thus HS2 improves se at the cost of
increasing rd . We therefore expect HS2 to perform better
than HS1 for large messages, but the latter is a more suitable
option for small messages.

V. PERFORMANCE STUDY

A. System setup

We implemented all of the encrypted all-gather algorithms
in Table II for MVAPICH2-2.3.3, compiled with the default
MVAPICH compilation flags and optimization level O2. We
used the AES-GCM-128 encryption scheme in the Bor-
ingSSL cryptographic library [2]; this library was compiled
under the default settings and linked with MPI during the
compilation of MVAPICH2-2.3.3.

The experiments were performed on two systems: a
local Noleland cluster and the Bridges-2 supercomputer at
Pittsburgh Supercomputing Center (PSC) [1]. The Noleland
system is a cluster at Florida State University of Intel Xeon
Gold 6130 CPUs with 2.10 GHz frequency. Each node has
32 cores, and 192GB DDR4-2666 RAM. This cluster runs
CentOS-7, and the underlying network is a 100Gbps Mel-
lanox MT28908 Infiniband. We allocated nodes manually,
and the same nodes were chosen for all measurements on
this cluster.

We also used the PSC Bridges-2 supercomputer with
Regular Memory partition. This system has 504 nodes, each
equipped with 2 AMD EPYC 7742 CPUs (with 64 cores
and 128 threads each). Among those nodes, 448 ones have
256GB RAM and 16 nodes are equipped with 512GB RAM.
We use the nodes of 256GB RAM for our experiments
in this work. This supercomputer uses 200Gbps Mellanox
ConnectX-6-HDR Infiniband and runs CentOS-8.

We used the OSU_Allgather benchmark from the OSU
benchmark suite [20] to measure the latency of the all-
gather operation with different algorithms and message sizes.
Each reported latency is an average of 10 runs. In most
experiments, the standard deviation is within 10% of the
reported mean. In some rare cases the standard deviation is
higher, but still within 25% of the reported mean.

B. Results on Noleland

Table III shows the performance of the baseline unen-
crypted scheme (the MPI_Allgather routine in MVAPICH2-
2.3.3), the naive encrypted version (the naive approach
with the MPI_Allgather in MVAPICH2-2.3.3), and the best-
performing encrypted algorithm for p = 128 and N = 8
with a block-order process mapping. The best-performing
algorithms are also listed. The performance of the baseline
is given as the latency in micro-seconds. The performance
of Naive and the best-performing encrypted scheme is given

Table III: Performance of the unencrypted MPI, Naive, and
the best-performing algorithm on Noleland (p = 128 and
N = 8, with block-order mapping). The third and fourth
columns show the overhead (%) of Naive and the best
encrypted all-gather algorithm (listed in the last column),
compared to unencrypted MPI, respectively.

Size Latency (µs)
of MPI

Overhead
of Naive

Overhead of
best scheme

Best
scheme

1B 10.64 293.20 31.49 O-RD2
2B 9.26 342.86 51.49 HS1
4B 9.35 348.05 51.50 HS1
8B 9.52 364.69 55.96 O-RD
16B 9.91 309.57 53.06 O-RD
32B 10.87 301.63 50.86 O-RD
64B 12.77 265.33 39.14 O-RD
1KB 56.58 111.57 9.91 O-RD
2KB 108.43 95.54 −0.05 C-RD
4KB 227.00 75.93 −16.02 C-RD
8KB 407.83 92.21 6.25 C-Ring
16KB 1602.35 59.35 −45.89 HS2
32KB 2522.14 87.22 −33.54 HS2
256KB 15902.40 136.51 −12.42 HS2
2MB 136604.31 137.50 −13.97 HS2

as the overhead in percentage (%) with respect to the
baseline. The negative overhead for a scheme means that
the scheme runs faster than the baseline. For example, for
4KB message size, the baseline latency is 227.00 µs; the
overhead for Naive is 75.93% and thus the latency for Naive
is 227.00 · (1+ 0.7593) = 339.36 µs; the overhead for the
best scheme is −16.02% and thus the latency for the best
scheme is 227.00 · (1−0.1602) = 190.63 µs.

As shown in Table III, for block-order mapping, compared
to unencrypted MPI, Naive has very significant overheads
across all message sizes. In contrast, our algorithms have
much smaller overheads thanks to the minimal use of
encryption and decryption, and the overlapping of commu-
nication and computation. For messages larger than 2KB
(except for 8KB), they even outperform unencrypted MPI,
because the underlying communication cost of HS1,C-Ring,
and C-RD is cheaper than that of MPI, as shown in Figure 5.

Specifically, for small messages, O-RD2, O-RD and HS1
are generally the best, because of their small number of en-
cryption, decryption, and communication rounds. For large
messages, C-Ring, HS1, and HS2 are the best thanks to their
small amount of encrypted and decrypted data. HS2 and
HS1 in most cases perform better than C-Ring, as they have
smaller communication cost. As expected, HS2 performs
better than HS1 due to its smaller amount of encrypted
data. C-RD achieves the best performance for medium sized
messages.

On the other hand, MPI’s default algorithms are sensitive
to process mapping. For cyclic-order mapping, as shown in
Table IV, for messages larger than 2KB, unencrypted MPI’s
performance degrades significantly compared to block-order
mapping. For example, for 256KB all-gather, MPI’s latency



Table IV: Performance of the unencrypted MPI, Naive, and
the best-performing algorithm on Noleland (p = 128 and
N = 8, with cyclic-order mapping).

Size Latency (µs)
of MPI

Overhead
of Naive

Overhead of
best scheme

Best
scheme

1B 10.27 305.67 47.70 O-RD
32B 10.18 324.35 51.21 O-RD
1KB 50.10 128.59 11.54 O-RD
2KB 93.99 104.73 7.33 O-RD
4KB 862.26 18.21 −76.50 O-RD2
8KB 1633.01 20.79 −75.16 HS2
32KB 5541.96 50.85 −63.54 HS2
64KB 10889.97 44.12 −66.45 C-Ring
256KB 43355.27 38.92 −61.86 C-Ring
2MB 346830.02 39.32 −60.92 C-Ring

is 15.9 ms with the block-order mapping, but rises to
43.3 ms with the cyclic-order mapping. Therefore, Naive has
better relative overheads in this case, because encryption and
decryption are oblivious to process mapping. In addition, as
mentioned in Section III, the RD algorithm is sensitive to
process mapping, making C-RD somewhat sensitive. The
performance of HS1 and HS2 also suffers, because an extra
copy is needed for maintaining the correct order of messages
when mapping is not in block-order. In contrast, C-Ring is
oblivious to process mapping, and thus it becomes the best
algorithm for large messages in this setting.

THE UNDERLYING COMMUNICATION COST. To understand
the performance of encrypted MPI_Allgather algorithms,
we first examine the performance of their unencrypted
counterparts. We note that MVAPICH 2.3.3 on Noleland
uses RD for small messages and Ring for large messages.
For simplicity, we use the same name of each encrypted all-
gather algorithm to refer to its unencrypted counterpart, and
only consider the most competitive and relevant algorithms
for each range of message sizes. Since the unencrypted
versions of HS1 and HS2 are identical, we only report the
results of the former scheme.

Figure 5 gives the performance of different unencrypted
all-gather algorithms with p = 128, N = 8, and block-
order mapping. In general, the MVAPICH implementation
is still the best for small messages, but it is considerably
outperformed by the best algorithms for medium and large
messages. A similar trend is observed on PSC Bridges-2.

Figure 6 reports the performance of unencrypted all-gather
algorithms with p = 128, N = 8, and cyclic-order mapping.
As mentioned in Section III, the RD algorithm is sensitive
to the process mapping, resulting in a performance drop of
the MVAPICH implementation and C-RD when we move
from block-order mapping to cyclic-order mapping. The
performance of the HS1 algorithm also suffers, because
in its Step 4, (i) for block-order mapping, each process
can directly copy the entire shared-memory plaintext buffer
to the user buffer, but (ii) for cyclic-order mapping, it

 0

 50

 100

 150

 200

 250

 300

1B 128B 512B 1KB 2KB

L
at

en
cy

 (
us

)

Message Size

MVAPICH (RD)
C-RD
HS1

(a) Small messages

 0

 1

 2

 3

 4

8KB 16KB 32KB 64KB

L
at

en
cy

 (
m

s)

Message Size

MVAPICH (Ring)
C-Ring
C-RD
HS1

(b) Medium messages

 20

 40

 60

 80

 100

 120

 140

512KB 1MB 2MB

L
at

en
cy

 (
m

s)

Message Size

MVAPICH (Ring)
C-Ring
C-RD
HS1

(c) Large messages

Figure 5: Performance of unencrypted counterpart of all-
gather algorithms on Noleland, with block-order mapping.

instead needs to perform p memory copies to re-arrange
the messages to proper locations in the user buffer.

PERFORMANCE OF ENCRYPTED ALGORITHMS. Figure 7
shows the performance of encrypted all-gather algorithms
with p = 128, N = 8, and block-order mapping. For small
messages, O-RD has the overall best performance. This is
consistent with the trend in Figure 5, as the underlying
unencrypted version of O-RD is exactly the MVAPICH
implementation for small messages. For medium and large
messages, C-Ring, C-RD, HS1, and HS2 have comparable
performance, but HS2 performs slightly better in most
cases. This happens because (i) HS2 has cheaper underlying
communication cost than C-Ring or C-RD, as shown in
Figure 5, and the three schemes have the same se and sd , and
(ii) as expected, HS2 is better than HS1 for large messages
thanks to its smaller se.

We note that C-Ring, C-RD, and HS2, with a decryp-
tion size of (N − 1)m, have very low overheads for large
messages with respect to their corresponding unencrypted
algorithms. For example, for 1MB message size, latency



 0

 20

 40

 60

 80

 100

 120

1B 64B 128B 256B 2KB

L
at

en
cy

 (
us

)

Message Size

MVAPICH (RD)
C-RD
HS1

(a) Small messages

 0

 2

 4

 6

 8

4KB 8KB 16KB 32KB

L
at

en
cy

 (
m

s)

Message Size

MVAPICH (Ring)
C-Ring
C-RD
HS1

(b) Medium messages

 0

 20

 40

 60

 80

 100

 120

 140

128KB 512KB 1MB 2MB

L
at

en
cy

 (
m

s)

Message Size

C-Ring
HS1

(c) Large messages

Figure 6: Performance of unencrypted counterpart of all-
gather algorithms on Noleland, with cyclic-order mapping.

of the unencrypted C-Ring is 63.3 ms while latency of
the encrypted C-Ring is 67.6 ms, meaning 6.8% overhead;
latency of the unencrypted C-RD is 67.1 ms while latency
of the encrypted C-RD is 67.6 ms, meaning 0.7% overhead;
latency of the unencrypted HS2 is 51.5 ms while latency
of the encrypted HS2 is 58.2 ms, meaning 13.0% overhead.
This is consistent with the theoretical analysis. For these
algorithms, each node must receive (p−1)m messages while
only decrypting (N − 1)m = (p−1)m

` ciphertexts. In other
words, the communication cost will dominate the operation
when ` is large. In contemporary clusters, `—the number
of processes per node—is usually a large value. In such
a system, with any of these algorithms, the overhead for
encryption and decryption is reduced to almost negligible
for large messages.

NON-POWER-OF-TWO SETTINGS. Table V reports the per-
formance of encrypted all-gather algorithms for N = 91 and
p= 7 and block-order mapping. As mentioned in Section III,
when N and p are not powers of two, the RD algorithm
has to take some extra steps, although the total cost is still

 0

 20

 40

 60

 80

 100

 120

 140

1B 2B 4B 64B 128B 512B

L
at

en
cy

 (
us

)

Message Size

O-RD
O-RD2
C-RD
HS1

(a) Small messages

 0

 0.5

 1

 1.5

 2

 2.5

1KB 2KB 4KB 8KB 16KB 32KB

L
at

en
cy

 (
m

s)

Message Size

C-Ring
C-RD
HS1
HS2

(b) Medium messages

 0

 20

 40

 60

 80

128KB 512KB 1MB

L
at

en
cy

 (
m

s)

Message Size

O-Ring
C-Ring
C-RD
HS1
HS2

(c) Large messages

Figure 7: Performance of encrypted all-gather algorithms
on Noleland, with block-order mapping.

Table V: Performance of the unencrypted MPI, Naive, and
the best-performing algorithm on Noleland (p = 91 and
N = 7, with block-order mapping).

Size Latency (µs)
of MPI

Overhead
of Naive

Overhead of
best scheme

Best
scheme

1B 15.85 166.60 −0.49 HS1
32B 18.97 135.55 −6.05 HS1
256B 47.46 65.98 −33.78 HS1
512B 76.64 48.20 −40.40 C-RD
1KB 138.91 35.45 −54.35 C-RD
4KB 154.49 74.46 5.42 C-RD
8KB 261.20 91.08 15.43 C-Ring
32KB 1586.33 77.23 −32.57 C-Ring
64KB 3056.25 74.10 −30.56 HS2
256KB 11068.30 91.04 −19.26 HS2
2MB 92496.05 87.95 −19.44 HS2

bounded by 2 · lg(p). As a result, the performance of RD-
based encrypted algorithms decreases in this setting. For
messages of 8KB and more, the results are similar to those in
Table III (when N = 8 and p = 128) because the dominating
encrypted algorithms in both cases are Ring-based.



 0

 20

 40

 60

 80

 100

 120

 140

1B 32B 512B 1KB 2KB

L
at

en
cy

 (
us

)

Message Size

O-RD
O-RD2
C-RD
HS1

(a) Small messages

 0

 0.5

 1

 1.5

 2

 2.5

4KB 8KB 16KB 32KB

L
at

en
cy

 (
m

s)

Message Size

C-Ring
HS1
HS2

(b) Medium messages

 0

 20

 40

 60

 80

64KB 128KB 512KB 1MB

L
at

en
cy

 (
m

s)

Message Size

O-RD2
C-Ring
HS1
HS2

(c) Large messages

Figure 8: Performance of encrypted all-gather algorithms
on Noleland, with cyclic-order mapping.

C. Results on PSC Bridges-2

We ran large-scale experiments on the Bridges-2 su-
percomputer at PSC, and observed similar trends in the
results. Table VI shows the performance of unencrypted
MPI, Naive, and our best-performing algorithms on Bridges-
2, with p = 1024 and N = 16. In Bridges-2, a default
mapping is used; for our experiments, processes were in
block-order mapping.

Again, Naive has heavy overheads across all message
sizes, but the penalty on small messages is the most se-
vere. Our algorithms significantly improve the performance
of Naive, and for messages of 1KB or more, the best-
performing algorithm can even beat unencrypted MPI. We
observe that on Bridges-2, the shared-memory algorithms
are the best algorithms overall. HS1 outperforms other
algorithms for small messages up to 1KB (except for 512B
where O-RD is the best algorithm). For messages of size
2KB or more, HS2 is the best algorithm. In this range of
messages, the overhead of Naive over the default MVAPICH
algorithm decreases, but the overhead of our best-performing
algorithm also drops, which makes it significantly better than
the Naive approach. Other results have also been collected,

Table VI: Performance of on Bridges-2 for p = 1024 and
N = 16.

Size Latency (µs)
of MPI

Overhead
of Naive

Overhead of
best scheme

Best
scheme

1B 118.57 344.50 −32.47 HS1
64B 167.21 201.26 16.43 HS1
128B 250.93 512.47 2.22 HS1
512B 750.43 265.85 16.20 O-RD
1KB 1438.99 191.99 −3.15 HS1
2KB 6882.52 11.18 −71.25 HS2
16KB 62871.60 21.52 −78.10 HS2
64KB 250752.32 20.88 −80.14 HS2
256KB 1007353.08 20.85 −79.41 HS2
512KB 2007558.81 20.75 −79.57 HS2

and the trends on Bridges-2 are the same as those on
Noleland. We omit those results due to a lack of space.

VI. CONCLUSION

We derive lower bounds on six important performance
metrics for encrypted all-gather, and develop new encrypted
all-gather algorithms that match these theoretical bounds.
The optimizations in the algorithm design significantly re-
duce the encryption and decryption cost, compared to the
naive approach. In particular, for clusters where each node
runs many processes, the encryption and decryption over-
head in our algorithms are negligible for large messages. Our
algorithms even outperform the unencrypted MPI_Allgather
in many cases, which indicates that the unencrypted all-
gather routines need to be updated to achieve the best
performance on modern HPC systems.

VII. ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grants CICI-1738912, CRI-
1822737, SHF-2007827 and CRII-1755539. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. This
work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Sci-
ence Foundation grant number ACI-1548562. Specifically,
through allocations ECS190004 and CCR200042, it used
the Bridges-2 system, which is supported by NSF award
number ACI-1445606, at the Pittsburgh Supercomputing
Center (PSC) [27].

REFERENCES

[1] PSC Bridges. https://www.psc.edu/bridges.

[2] BoringSSL. https://boringssl.googlesource.com/boringssl,
2018.

[3] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby.
Efficient algorithms for all-to-all communications in multiport
message-passing systems. IEEE Transactions on parallel and
distributed systems, 8(11):1143–1156, 1997.



[4] S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Ku-
maran. Characterization of MPI usage on a production
supercomputer. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis,
pages 386–400. IEEE, 2018.

[5] M. J. Dworkin. NIST SP 800-38D. Recommendation for
block cipher modes of operation: Galois/Counter Mode
(GCM) and GMAC. 2007.

[6] A. Faraj, P. Patarasuk, and X. Yuan. Bandwidth efficient all-
to-all broadcast on switched cluster. International Journal of
Parallel Programming, 36(4):426–453, 2007.

[7] A. Faraj and X. Yuan. Automatic generation and tuning of
MPI collective communication routines. In Proceedings of
the 19th Annual International Conference on Supercomput-
ing, ICS ’05, pages 393–402, New York, NY, USA, 2005.
Association for Computing Machinery.

[8] A. Faraj, X. Yuan, and D. Lowenthal. STAR-MPI: Self
tuned adaptive routines for MPI collective operations. In
Proceedings of the 20th Annual International Conference on
Supercomputing, ICS ’06, pages 199–208, New York, NY,
USA, 2006. Association for Computing Machinery.

[9] A. Faraj, X. Yuan, and P. Patarasuk. A message scheduling
scheme for all-to-all personalized communication on Ether-
net switched clusters. IEEE Transactions on Parallel and
Distributed Systems, 18(2):264–276, 2007.

[10] S. D. Girolamo, P. Jolivet, K. Underwood, and T. Hoefler.
Exploiting offload enabled network interfaces. 2015 IEEE
23rd Annual Symposium on High-Performance Interconnects,
pages 26–33, 2015.

[11] R. W. Hockney. The communication challenge for MPP: Intel
Paragon and Meiko CS-2. Parallel computing, 20(3):389–
398, 1994.

[12] S. L. Johnsson and C. . Ho. Optimum broadcasting and per-
sonalized communication in hypercubes. IEEE Transactions
on Computers, 38(9):1249–1268, 1989.

[13] K. Kandalla, H. Subramoni, G. Santhanaraman, M. Koop,
and D. K. Panda. Designing multi-leader-based allgather
algorithms for multi-core clusters. In 2009 IEEE International
Symposium on Parallel Distributed Processing, pages 1–8,
2009.

[14] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and
R. A. F. Bhoedjang. MagPIe: MPI’s collective communication
operations for clustered wide area systems. SIGPLAN Not.,
34(8):131–140, May 1999.

[15] S. Kumar and L. V. Kale. Scaling all-to-all multicast on fat-
tree networks. In Proceedings of the Tenth International Con-
ference on Parallel and Distributed Systems, 2004. ICPADS
2004, pages 205–214, 2004.

[16] M. A. Maffina and R. S. RamPriya. An improved and
efficient message passing interface for secure communication
on distributed clusters. In 2013 International Conference
on Recent Trends in Information Technology (ICRTIT 2013),
pages 329–334, July 2013.

[17] S. H. Mirsadeghi and A. Afsahi. Topology-aware rank
reordering for MPI collectives. In 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 1759–1768, Los Alamitos, CA, USA, may
2016. IEEE Computer Society.

[18] A. Naser, M. Gavahi, C. Wu, V. T. Hoang, Z. Wang, and
X. Yuan. An empirical study of cryptographic libraries for
MPI communications. In 2019 IEEE International Confer-
ence on Cluster Computing (CLUSTER), pages 1–11, 2019.

[19] A. Naser, C. Wu, M. S. Lahijani, M. Gavahi, V. T. Hoang,
Z. Wang, and X. Yuan. CryptMPI: A fast encrypted MPI
library, 2020.

[20] D. Panda. OSU micro-benchmark suite, 2011.

[21] P. Patarasuk and X. Yuan. Bandwidth optimal all-reduce
algorithms for clusters of workstations. J. Parallel Distrib.
Comput., 69(2):117–124, Feb. 2009.

[22] P. Patarasuk, X. Yuan, and A. Faraj. Techniques for pipelined
broadcast on Ethernet switched clusters. Journal of Parallel
and Distributed Computing, 68(6):809 – 824, 2008.

[23] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg,
E. Gabriel, and J. J. Dongarra. Performance analysis of MPI
collective operations. In 19th IEEE International Parallel and
Distributed Processing Symposium, 2005.

[24] X. Ruan, Q. Yang, M. I. Alghamdi, S. Yin, and X. Qin.
ES-MPICH2: A Message Passing Interface with enhanced
security. IEEE Trans. Dependable Secur. Comput., 9(3):361–
374, May 2012.

[25] S. Shivaramakrishnan and S. D. Babar. Rolling curve ECC for
centralized key management system used in ECC-MPICH2.
In 2014 IEEE Global Conference on Wireless Computing
Networking (GCWCN 2014), pages 169–173, Dec 2014.

[26] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of
collective communication operations in MPICH. The Interna-
tional Journal of High Performance Computing Applications,
19(1):49–66, 2005.

[27] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D.
Peterson, et al. XSEDE: accelerating scientific discovery.
Computing in science & engineering, 16(5):62–74, 2014.

[28] J. L. Träff. Efficient allgather for regular SMP-clusters. In
B. Mohr, J. L. Träff, J. Worringen, and J. Dongarra, editors,
Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 58–65, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[29] E. A. Varvarigos and D. P. Bertsekas. Communication
algorithms for isotropic tasks in hypercubes and wraparound
meshes. Parallel Computing, 18(11):1233 – 1257, 1992.

[30] Yuanyuan Yang and Jianchao Wang. Efficient all-to-all
broadcast in all-port mesh and torus networks. In Proceedings
Fifth International Symposium on High-Performance Com-
puter Architecture, pages 290–299, 1999.


