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Data Clustering
• Classification/labeling

• Input:  data composed of elements

• Output:  classification of elements into 
groups with similar objects

• Distance measure

• Machine learning, data mining, pattern 
recognition, statistical analysis, etc...



Cluster distance
• Distance between clusters given by 

distance measure

• Several measures available

• euclidean

• manhattan

• mahalanobis



Data Clustering
• Hierarchical

• Tree

• Divisive vs Agglomerative

• Partitional

• K-Means

• Spectral



K-Means
• Randomized centroids (K groups)

• Object membership determined by 
distance to centroids

• Centroid location recalculated

• Repeated until convergence

• Fuzzy c-Means, QT clustering, etc...



Eigencluster
• Clustering algorithm using “divide-and-

merge” approach

• Published in Journal of the ACM, 2004

• Combination of clustering approaches

• Used for web searches, but can be applied 
to any clustering problem

• http://www-math.mit.edu/cluster/



Eigencluster

• Divide and Merge methodology

• Phase 1:  divide data

• Phase 2:  merge divided data



Divide Phase
• Create hierarchical clustering of data (tree)

• Input:  set of objects w/ distances

• Algorithm recursively divides sets until 
singletons

• Output:  tree with singleton leaves

• internal nodes represent subsets

• Authors suggest spectral clustering



Spectral Clustering
• Input matrix A has objects as rows

• Uses similarity matrix (AAT)

• similarity given by dot product:

• sparse

• knn, etc

a · b =
∑n

i=1 aibi = a1b1 × a2b2 × ...× anbn

1



Spectral Clustering
• Normalize sparse matrix

• Calculate second eigenvector

• eigenvector defines “cut” on original 
matrix

• cut based on: sign, mean, median, 
etc...



Divide Phase
• Main idea

• divide an initial cluster into sub-
clusters using spectral clustering

• compute 2nd eigenvector of 
similarity matrix via power 
method

• find best cut in n-1 possible cuts



Divide Phase

• Definitions:

• Let            be a vector of the row 
sums of AAT

• Let 

• Let R be a diagonal matrix so that
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Divide Phase
• Authors propose the use of the spectral 

algorithm in []

• second largest eigenvalue of normalized 
similarity matrix B = R-1AAT

• For efficiency, eigenvector is computed 
from symmetric matrix Q = DBD-1

• Symmetric Q, power method 



Divide Phase
• Power method steps:

• let v be an arbitrary vector orthogonal 
to πTD-1

• repeat:

• normalize v  (v = v / ||v||)

• set v = Qv

• Converges in O(log n)  (proof in paper)



Divide Phase
• Power method

• used to estimate 2nd largest 
eigenvector

• fast matrix-vector multiplication

• Q = DR-1AATD-1

• For v = Qv, perform four individual 
sparse matrix-vector multiplications    
(ie., v = D-1v, etc...)



Divide Phase
• Problem:

• spectral clustering requires 
normalized similarity matrix (for 
calculating            )

• expensive!

• solution:  do not compute explicitly

a · b =
∑n

i=1 aibi = a1b1 × a2b2 × ...× anbn
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ρ

1



Divide Phase
• Rewrite row sums as:

•                does not depend on i, so 
runtime is O(M), where M is # of 
nonzero entries
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Divide Phase
• Current steps:

• Let           be a vector of the row-sums 
of AAT

• Let 

• Compute 2nd largest eigenvector v’ of 
Q = DR-1AATD-1

• Let v = D-1v’, and sort v so vi < vi+1
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Divide Phase
• N-dimensional eigenvector v defines 

n-1 possible cuts

• Original matrix is sorted according to 
v, and must be cut

• Find t such that the cut (S, T) = 
({1, ..., t}, {t+1, ..., n}) minimizes the 
conductance across the cut



Divide Phase
• Best cut: min-conductance vs min-cut

• min-cut = cut with minimum weight 
across it

• assumes this means 2 resulting groups 
are least similar of possible cuts

• problem: resulting cut may not provide 
best groups



Divide Phase

• Example: cut C2 may 
have minimum weight 
across 2 edges, but cut 
C1 provides better 
grouping



Divide Phase
• Conductance:

• find a cut such that 

• minimize:

• where 



Divide Phase
• Conductance:

• helps find cuts with approximately equal 
size

• eg., t=2 vs t=n/2

• t=2 yields large numerator, small 
denominator

• larger overall fraction, not minimizing 
conductance



Divide Phase
• Complete divide algorithm:



Merge Phase

• Applied to tree produced by divide 
phase

• Idea:  find best classification 
produced by divide phase



Merge Phase
• Input: hierarchical tree T

• Output: partition C1, ..., Ck where Ci is a node 
in T

• Dynamic program to evaluate objective 
function g

• Bottom up traversal: OPT for interior nodes 
computed by merging OPT in Cl, Cr



Merge Phase
• Properties of tree T:

• each node is a subset of objects

• L,R children form partition for parent

• Clustering: subset S of nodes in T s.t. 
every leaf node is covered (leaf-root path 
encounters exactly 1 node in S)



Merge Phase
• Objective function g

• describes optimal merge

• choice of g may vary, crucial!

• note: g(COPT) may not be OPT clustering

• choice of g

• OPT may not respect tree



Merge Phase
• K-Means objective function

• k-clustering minimizing sum of squared 
distances of the pts in each cluster to the 
centroid pi

• pi = mean of points in a cluster Ci

• NP-Hard!



Merge Phase
• K-Means objective functions

• Let OPT-TREE(C,i) be optimal tree-
respecting clustering for C with i clusters

• OPT-TREE(C,1) = {C}

• OPT-TREE(C,i) =                                     
OPT-TREE(Cl,j) ∪ OPT-TREE(Cr,i-j)

• where j = argmini≤j<i g(OPT-TREE(Cl,j) ∪ 
OPT-TREE(Cr,i-j))



Merge Phase
• Compute OPT clustering for leaf nodes 

first

• Interior nodes computed efficiently via 
dynamic programming

• OPT-TREE(root, k) gives optimal 
clustering of data

• root = root node of divide phase tree



Merge Phase
• Min-diameter objective function

• k-clustering minimizing max diameter

• diameter - max distance between pair of 
objects in Ci

• defined as:



Merge Phase
• Min-sum objective function

• minimize sum of pairwise distances within Ci

• computed via dynamic program

• approximation algorithms exist, but not 
useful in practice



Merge Phase
• Correlation clustering objective function

• G = {V, E}; for each ei∈E, ei is red (similar 
vertices) or blue (dissimilar vertices)

• find partition maximizing red edges within 
cluster, and blue edges between clusters



Merge Phase

• Time complexity

• Divide

• Merge

• choice of g

• iterations



Web Search

• Sample implementation: web search

• Typical search engine: linear rank

• fails to show inherent correlation when 
ambiguity is present (ie, “Mickey” - 
Rooney, Mantle, Mouse, ...)



Web Search
• Input query: retrieve 400 results from 

Google

• title, location, snippet

• Construct document-term matrix:

You like hate Bob
D1 1 1 0 1
D2 1 0 2 1

D1 = “You like Bob”
D2 = “You hate hate Bob”



Web Search

• Divide phase - spectral algorithm

• Merge phase - relaxed correlation 
clustering

• similar to correlation clustering but 
relaxed components α, β remove 
dependency on predefined k



Web Search
• Relaxed correlation objective function:

• first component: dissimilarity within cluster

• second component:  similarity failed to be 
captured

• eigencluster: α = 0.2, β = 0.8



Web Search



Web Search



Analysis
• Experiment on Boley dataset

• 185 web pages

• 10 classes

• different objective functions

• quality of results measured by entropy

• randomness within cluster

• lower value



Web Search

• k-means and min-sum typically 
outperform min-diam

• 7 of 11 - k-means or min-sum found best 
possible clustering









Conclusion
• clustering based on divide-merge

• idea:  divide groups data 
hierarchically, merge finds best 
cluster within

• divide phase: spectral clustering

• merge: objective functions


