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Advanced Computational Geometry


http://www.ams.sunysb.edu/~piyush

i Reading Material

» Duda/Hart/Stork : 5.4/5.5/9.6.8
» Any neural network book (Haykin, Anderson...)

» Look at papers of related people
% Santosh Vempala
“ A. Blum
“ J. Dunagan
% F. Rosenblatt
“ T. Bylander



i Introduction

= Supervised Learning

Input
Pattern

Output
Pattern

—_—

Compare and Correct

if necessary



i Linear discriminant functions

= Definition
It is a function that is a linear combination of the components of x
g(x) = wix+ wy (1)

where w is the weight vector and w, the bias

= A two-category classifier with a discriminant function of the form (1) uses
the following rule:

Decide o, if g(x) >0 and w, if g(x) <0
< Decide o, if wix > -w, and o, otherwise
If g(x) = 0 = x Is assigned to either class



i LDFs

= The equation g(x) = 0 defines the
decision surface that separates points
assigned to the category w, from
points assigned to the category w,

= When g(x) is linear, the decision
surface Is a hyperplane



i Classification using LDFs

= TWwo main approaches

= FIscher’s Linear Discriminant

Project data onto a line with ‘good’
discrimination; then classify on the real line

= Linear Discrimination in d-dimensions
Classify data using suitable hyperplanes.
(We'll use perceptrons to construct these)



i Perceptron: The first NN

= Proposed by Frank Rosenblatt in 1956

= Neural net researchers accuse
Rosenblatt of promising ‘too much’ ©

< Numerous variants

=~ We’'ll cover the one that’'s most
geometric to explain ©

» One of the simplest Neural Network.



Perceptrons : A Picture
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‘L Where is the geometry?

O
[] Class 2 : (-1)
A o O
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Class 1 : (+1) Is this unique?




i Assumption

= Lets assume for this talk that the red
and green points Iin ‘feature space’ are
separable using a hyperplane.

Two Category Linearly separable case



i Whatz the problem?

»Why not just take out the convex hull of
one of the sets and find one of the
‘right’ facets?

s Because Iits too much work to do in d-
dimensions.

»What else can we do?
“ Linear programming == Prrceprrons
% Quadratic Programming == SUMs



i Perceptrons

= Aka Learning Half Spaces

= Can be solved in polynomial time using
|P algorithms.

= Can also be solved using a simple and
elegant algorithm

(Which | present today)



In Math notation

Nsamples - 1(Xy Y1)y (Xp0 ¥ )i (X0 Vi)

Where y = +/- 1 are labels for the data. )_(’ e R d

Can we find a hyperplane W.X =0 that separates the two classes?
(labeled by y) i.e.

)_('j W>0 :Foralljsuchthaty =+1

s

j'W< O :Foralljsuchthaty =-1

x|



Which we will relax later!

i Further assumption 1

Lets assume that the hyperplane that we are looking for
passes thru the origin




Relax now!! ©

i Further assumption 2

= Lets assume that we are looking for a
halfspace that contains a set of points




i Lets Relax FA 1 now

= “Homogenize” the coordinates by
adding a new coordinate to the input.

= Think of it as moving the whole red and
blue points in one higher dimension

= From 2D to 3D it is just the x-y plane
shifted to z = 1. This takes care of the
“bias” or our assumption that the
halfspace can pass thru the origin.



Relax now! ©

i Further Assumption 3

= Assume all points on a unit sphere!

= If they are not after applying
transformations for FA 1 and FA 2 , make
them so.



i Restatement 1

= Given: A set of points on a sphere in d-dimensions,
such that all of them lie in

a half-space.

= Output: Find one such halfspace

= Note: You can solve the LP feasibility problem.
<> You can solve any general LP !!

Take Estie’s class 1T you
Want to know why. ©



http://www.ams.sunysb.edu/~estie/courses/546/ams546.html

i Restatement 2

= Glven a convex body (in V-form), find a
halfspace passing thru the origin that
contains It
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!'_ Support Vector Machines

A small break from perceptrons



i Support Vector Machines

e Linear Learning Machines like
perceptrons.

« Map non-linearly to higher dimension to
overcome the linearity constraint.

e Select between hyperplanes, Use margin
as a test
(This 1s what perceptrons don’t do)

From learning theory, maximum margin i1Is good W







i Another Reformulation

A

Unlike Perceptrons SVMs
have a unique solution
but are harder to solve.
<QP>




i Support Vector Machines

= There are very simple algorithms to
solve SVMs ( as simple as perceptrons )

( If there Is enough demand,
| can try to cover it )

( and If my job hunting lets me ;) )



!'_ Back to perceptrons



i Perceptrons

= SO0 how do we solve the LP ?
= Simplex
= Ellipsoid
= IP methods
= Perceptrons = Gradient Decent

So we could solve the classification
problem using any LP method.



i Why learn Perceptrons?

= YOU can write an LP solver in 5 mins !

= A very slight modification can give u a
polynomial time guarantee (Using
smoothed analysis)!



i Why learn Perceptrons

= Multiple perceptrons clubbed together are
used to learn almost anything in practice.
(Idea behind multi layer neural networks)

= Perceptrons have a finite capacity and so
cannot represent all classifications. The
amount of training data required will need to
be larger than the capacity. We'll talk about
capacity when we introduce VC-dimension.

From learning theory, limited capacity i1s good




‘L Another twist : Linearization

= If the data Is separable with say a
sphere, how would you use a
perceptron to separate it? (Ellipsoids?)




Delaunay!??

i Linearization

Lift the points to a paraboloid In one higher dimension,
For instance i1f the data i1s In 2D,

x,y) -> (X,y,Xx*+y?)



i The kernel Matrix

= Another trick that ML community uses for
Linearization is to use a function that
redefines distances between points.

O Example i K(X, z) — e—llx—z||2/20

= There are even papers on how to learn
kernels from data !



Perceptron Smoothed
i Complexity

Let L be a linear program and let L” be the
same linear program under a Gaussian
perturbation of variance sigma?, where sigma’ <=
1/2d. For any delta, with probability at least
1 — delta either

solution 1n poly(d,m,1/sigma,l/delta)

The perceptron finds a feasible 1

L” is infeasible or unbounded W
|




!'_ The Algorithm

In one line



i The 1 Line LP Solver!

s Start with a random vector w, and If a
point is misclassified do:

Wi = W + X,
(until done)

OM»O{M&M/IZIZMMM(/ LD Solvers ['ve ever



i A better description

Initialize w=0, 1=0
do 1 = (1+1) mod n
IT X; 1s misclassified by w
then w = w + Xx;
until all patterns classiftied
Return w



That’s the entire code!

Written 1n 10 mins.

i An even better description

function w = perceptron(r,b)

r = [r (zeros(length(r),1)+1)]; % Homogenize

b = -[b (zeros(length(b),1)+1)]; % Homogenize and flip
data = [r;b]; % Make one pointset

S = size(data); % Size of data?

w = zeros(1,s(1,2)); % Initialize zero vector

IS _error = true;
while 1s_error
IS error = false;
for k=1:s(1,1)
1T dot(w,data(k,:)) <=0
w = w+data(k,:); Is_error = true;
end
end

end .
And 1t can be solve any LP!






i In other words

At each step, the algorithm picks any
vector x that Is misclassified, or is on
the wrong side of the halfspace, and
brings the normal vector w closer into
agreement with that point



The math behind..

i Still: Why the hell does it work?

Back to the most advanced presentation
tools available on earth !

The blackboard ©
Wait (Lemme try the whiteboard)

The Convergence Proof




‘L Proof
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‘L Proof
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!'_ That's all folks ©



	Perceptrons
	Reading Material
	Introduction
	Linear discriminant functions
	LDFs
	Classification using LDFs
	Perceptron: The first NN
	Perceptrons : A Picture
	Where is the geometry?
	Assumption
	Whatz the problem?
	Perceptrons
	In Math notation
	Further assumption 1
	Further assumption 2
	Lets Relax FA 1 now
	Further Assumption 3
	Restatement 1
	Restatement 2
	Support Vector Machines
	Support Vector Machines
	SVMs
	Another Reformulation
	Support Vector Machines
	Back to perceptrons
	Perceptrons
	Why learn Perceptrons?
	Why learn Perceptrons
	Another twist : Linearization
	Linearization
	The kernel Matrix
	Perceptron Smoothed Complexity
	The Algorithm
	The 1 Line LP Solver!
	A better description
	An even better description
	An output
	In other words
	Still: Why the hell does it work?
	Proof
	Proof
	Proof
	Proof
	Proof
	Proof
	That’s all folks 

