
Optimal Output-Sensitive Convex Hull Algorithms inTwo and Three DimensionsTimothy M. Chan�Department of Computer ScienceUniversity of British ColumbiaVancouver, B.C. V6T 1Z4, CanadaAbstractWe present simple output-sensitive algorithms that construct the convex hull of a set of npoints in two or three dimensions in worst-case optimal O(n logh) time and O(n) space, where hdenotes the number of vertices of the convex hull.1 IntroductionGiven a set P of n points in the Euclidean plane E2 or Euclidean space E3, we consider the problemof computing the convex hull of P , conv(P ), which is de�ned as the smallest convex set containingP . The convex hull problem has received considerable attention in computational geometry [11, 21,23, 25]. In E2, an algorithm known as Graham's scan [15] achieves O(n logn) running time, andin E3, an algorithm by Preparata and Hong [24] has the same complexity. These algorithms areoptimal in the worst case, but if h, the number of hull vertices, is small, then it is possible to obtainbetter time bounds. For example, in E2, a simple algorithm called Jarvis's march [19] can constructthe convex hull in O(nh) time. This bound was later improved to O(n log h) by an algorithm dueto Kirkpatrick and Seidel [20], who also provided a matching lower bound; a simpli�cation of theiralgorithm has been recently reported by Chan, Snoeyink, and Yap [2]. In E3, one can obtain anO(nh)-time algorithm using the gift-wrapping method, an extension of Jarvis's march originated byChand and Kapur [3]. A faster but more involved algorithm in E3 was discovered by Edelsbrunnerand Shi [13], having running time O(n log2 h). Finally, by derandomizing an algorithm of Clarksonand Shor [8], Chazelle and Matou�sek [7] succeeded in attaining optimal O(n logh) time in E3. Thesealgorithms, with complexity measured as a function of both n and the \output size" h, are said tobe output-sensitive.In this note, we point out a simple output-sensitive convex hull algorithm in E2 and its extensionin E3, both running in optimal O(n log h) time. Previous optimal (deterministic) methods, includingthe algorithm by Kirkpatrick and Seidel and its improvement by Chan, Snoeyink, and Yap, all relyon the existence of a linear-time procedure for �nding medians. In Chazelle and Matou�sek's three-dimensional algorithm, even more complex tools for derandomization, such as "-approximations, areused. Our algorithms avoid median-�nding and derandomization altogether; Dobkin-Kirkpatrick�Supported by a Killam Predoctoral Fellowship and an NSERC Postgraduate Scholarship.1



p
k

p

k

k

+1
p

-1

Figure 1: Wrapping a set of dn=me convex polygons of size m.hierarchies [9, 10] are the only data structures used in the three-dimensional case. Our idea is tospeed up Jarvis's march and the gift-wrapping method by using a very simple grouping trick.2 An Output-Sensitive Algorithm in Two DimensionsLet P � E2 be a set of n � 3 points. For simplicity, we assume that the points of P are in generalposition, i.e., no three points are collinear; see Section 4 for how to deal with degenerate point sets.Recall that Jarvis's march [19, 23, 25] computes the h vertices of the convex hull one at a time,in counterclockwise (ccw) order, by a sequence of h wrapping steps: if pk�1 and pk are the previoustwo vertices computed, then the next vertex pk+1 is set to be the point p 2 P that maximizes theangle 6 pk�1pkp with p 6= pk. One wrapping step can obviously be done in O(n) time by scanningall n points; with an appropriate initialization the method constructs the entire convex hull in O(nh)time.We observe that a wrapping step can be done faster if we preprocess the points. Choose aparameter m between 1 and n and partition P into dn=me groups each of size at most m. Computethe convex hull of each group in O(m logm) time by, say, Graham's scan [15]. This gives us dn=mepossibly overlapping convex polygons each with at most m vertices, after a preprocessing time ofO( nm(m logm)) = O(n logm). Now, a wrapping step can be done by scanning all dn=me polygonsand computing tangents or supporting lines of the polygons through the current vertex pk, as shownin Figure 1. Since tangent �nding takes logarithmic time for a convex polygon by binary or Fibonaccisearch [5, 25] (the dual problem is to intersect a convex polygon with a ray), the time required for awrapping step is then O( nm logm). As h wrapping steps are needed to compute the hull, the totaltime of the algorithm becomes O(n logm+ h( nm logm)) = O(n(1 + h=m) logm).The following is a pseudocode of the algorithm just described. The procedure always runs withinO(n(1+H=m) logm) time and successfully returns the list of vertices of conv(P ) in ccw order when2



H � h.Algorithm Hull2D(P;m;H), where P � E2; 3 � m � n; and H � 11. partition P into subsets P1; : : : ; Pdn=me each of size at most m2. for i = 1; : : : ; dn=me do3. compute conv(Pi) by Graham's scan and store its vertices in an arrayin ccw order4. p0  (0;�1)5. p1  the rightmost point of P6. for k = 1; : : : ; H do7. for i = 1; : : : ; dn=me do8. compute the point qi 2 Pi that maximizes 6 pk�1pkqi (qi 6= pk)by performing a binary search on the vertices of conv(Pi)9. pk+1  the point q from fq1; : : : ; qdn=meg that maximizes 6 pk�1pkq10. if pk+1 = p1 then return the list hp1; : : : ; pki11. return incompleteBy choosing m = H , the complexity of the algorithm is then O(n(1+H=m) logm) = O(n logH).Since the value of h is not known in advance, we use a sequence of H 's to \guess" its value as shownbelow (the same strategy is used in Chazelle and Matou�sek's algorithm):Algorithm Hull2D(P ), where P � E21. for t = 1; 2; : : : do2. L Hull2D(P;m;H), where m = H = minf22t; ng3. if L 6= incomplete then return LThe procedure stops with the list of hull vertices as soon as the value of H in the for-loop reachesor exceeds h. The number of iterations in the loop is dlog log he (using base-2 logarithms), and thet-th iteration takes O(n logH) = O(n2t) time. Therefore, the total running time of the algorithm isO(Pdlog loghet=1 n2t) = O(n2dlog loghe+1) = O(n log h). The storage requirement is clearly linear.3 An Output-Sensitive Algorithm in Three DimensionsLet P � E3 be a set of n � 4 points. Again we assume general position, i.e., no four points arecoplanar (see Section 4). It su�ces to construct the 2h � 4 facets (triangular faces) of the convexhull; with the aid of a dictionary, we can easily produce the set of h vertices and 3h�6 edges togetherwith their adjacency and order information in additional O(h log h) time.The higher-dimensional analogue of Jarvis's march is Chand and Kapur's gift-wrapping method [3,25, 26], which computes the hull facets one at a time as follows: from a given facet f , we generateits three adjacent facets fj by performing a wrapping step about each of the three edges ej of f(j = 1; 2; 3). Here, a wrapping step about ej is to compute a point pj 2 P that maximizes the anglebetween f and conv(ej [fpjg) with pj 62 ej . Since such a step can be done in O(n) time, we can �ndthe facets adjacent to f in O(n) time. Assuming an initial facet f0 is given (which can be found intwo wrapping steps), a breadth-�rst or depth-�rst search can then generate all facets of the convex3



hull. Using a dictionary to detect duplication, we can ensure that each facet is processed once. Thisimplies that the algorithm performs 3(2h� 4) wrapping steps and thus runs in O(nh) time.We can use the same grouping idea from the previous section to improve the time complex-ity to optimal O(n logh) while maintaining linear space. The calls to Graham's scan (line 3 ofHull2D(P;m;H)) are now replaced by calls to Preparata and Hong's three-dimensional convex hullalgorithm [24], which has the same complexity. To make line 8 work in E3, we need to calcu-late tangents or supporting planes of convex polyhedra through a given line (or, in dual space,intersect convex polyhedra with a ray). If we use the hierarchical representation of Dobkin andKirkpatrick [9, 10] to store these polyhedra (which requires only linear-time preprocessing), then thetangents can be computed in logarithmic time each, as before. The analysis is thus identical to thatof the two-dimensional algorithm. The pseudocode is as follows:Algorithm Hull3D(P;m;H), where P � E3; 4 � m � n; and H � 11. partition P into subsets P1; : : : ; Pdn=me each of size at most m2. for i = 1; : : : ; dn=me do3. compute conv(Pi) by Preparata and Hong's algorithm and store it ina Dobkin-Kirkpatrick hierarchy4. F;Q ff0g, where f0 is some initial facet of conv(P )5. for k = 1; : : : ; 2H � 4 do6. if Q = ; then return F7. pick some f 2 Q and set Q Q� ffg8. let ej be the edges of f (j = 1; 2; 3)9. for j = 1; 2; 3 do10. for i = 1; : : : ; dn=me do11. compute the point qi 2 Pi that maximizes the angle between f andconv(ej [ fqig) by searching the hierarchy of conv(Pi)12. pj  the point q from fq1; : : : ; qdn=meg that maximizes the angle betweenf and conv(ej [ fqg) (q 62 ej)13. fj  conv(ej [ fpjg)14. if fj 62 F then15. F  F [ ffjg; Q Q [ ffjg16. return incompleteWe can use a queue or a stack to implement Q and a dictionary to implement F . As there areonly O(h) dictionary operations, they can be carried out in O(h log h) time. In fact, more cleverimplementations of the gift-wrapping method via a shelling order replace the need for dictionarieswith just a priority queue.As before, we choose the group size m = H and guess the value of h with a sequence of H 's:Algorithm Hull3D(P ), where P � E31. for t = 1; 2; : : : do2. L Hull3D(P;m;H), where m = H = minf22t; ng3. if L 6= incomplete then return L 4



4 Re�nementsIn this section, we suggest ideas on possible improvements that may speed up our algorithms inpractice; we also discuss how degenerate cases can be handled.Idea 1. First, points found to be in the interior of conv(Pi) in line 3 of Hull2D(P;m;H) orHull3D(P;m;H) can be eliminated from further consideration. This may potentially save workduring future iterations of the algorithm, although it does not a�ect the worst-case complexity.Idea 2. In Hull2D(P ) and Hull3D(P ), we choose the group size m = H so as to balance theO(n logm) preprocessing cost and the O(H( nm logm)) cost for the O(H) wrapping steps. Alterna-tively, we can choose m = minfH logH; ng (or set H = m= logm). This choice of m does not a�ectthe former cost except in the lower-order terms, but it reduces the latter cost from O(n logH) toO(n) and thus results in a smaller constant factor overall.Idea 3. With Idea 2, the dominant cost of algorithm Hull2D(P;m;H) lies in the preprocessing, i.e.,the computation of the convex hulls of the groups in line 3. To reduce this cost, we may considerreusing hulls computed from the previous iteration and merging them as the group size is increased.Suppose m0 is the previous group size. Since the convex hull of two convex polygons can be computedin linear time (the dual problem is to intersect two convex polygons), we can compute the convex hullof dm=m0e convex m0-gons in O(m log(m=m0)) time by the standard \mergehull" divide-and-conqueralgorithm [25]. Thus, the dn=me hulls in line 3 can be constructed in O(n log(m=m0)) rather thanO(n logm) time. The same can be said for the three-dimensional case, but merging two convexpolyhedra, though possible in linear time [4], is more complicated.Idea 4. In Hull2D(P ), we use the sequence of group sizes m = 22t, t = 1; 2; : : :, to guess h. Theimprovements from Ideas 2 and 3 in fact permit us to choose slower growing sequences and still retainoptimal O(n log h) complexity. For example, one possible sequence is simply m = 2t, t = 2; 3; : : :,which corresponds to doubling the group size after each iteration. Note that a coarser sequenceapproximates h less well while a denser sequence requires more iterations. We may try to optimizethe worst-case constant factor and lower-order terms using sequences with di�erent growth rates.We suggest the sequence m = 2t2 , t = 2; 3; : : :Idea 5. E. Welzl has observed that the binary search in line 8 of algorithm Hull2D(P;m;H) canbe replaced by a simpler linear search without changing the time complexity of the algorithm. Thefollowing monotonicity property provides the justi�cation: during the course of the algorithm, thevariable qi in line 8 can only advance in the ccw direction along conv(Pi) for each �xed i. As a result,the h-vertex convex hull of p convex polygons with a total of n vertices can be computed in O(n+hp)time by gift-wrapping; the two-polygon (p = 2) version of the algorithm is in fact the dual of anintersection algorithm by O'Rourke et al. [22] (see also [23, 25]). The total cost of Hull2D(P;m;H)can then be reduced to O(n logm+H(n=m)) time, which is a logm factor saving in the second term.Although the overall constant factor is una�ected by the saving if Idea 2 is employed (as the �rstterm is the dominant one), the linear search is easier to implement. There does not seem to be ananalogous simpli�cation in three dimensions. 5



Degeneracies. In both algorithms Hull2D(P;m;H) and Hull3D(P;m;H), we have assumed thatthe points of P are in general position. One way to cope with degenerate point sets is to applygeneral perturbation methods such as [12, 14]; however, these methods may cause the output size hto increase, as a point that is not a hull vertex but lies on the hull boundary may become a ver-tex after perturbation. Thus, it is better to handle the degenerate cases directly. For algorithmHull2D(P;m;H), this is not di�cult to do: when there is more than one point q that maximizes theangle 6 pk�1pkq in line 9, pick the point q that is farthest from pk; use the same rule to break ties inline 8.For algorithm Hull3D(P;m;H), we can do the following: In line 8, let ej = ajbj with aj andbj oriented in ccw order around f . When there is more than one point q that maximizes the anglebetween f and conv(ej [ fqg) in line 12, pick the point q that maximizes the angle 6 bjajq; and ifthere is still more than one q that achieves the maximum, pick the one farthest from aj . Use thesame rule to break ties in line 11. For degenerate point set, it is easier to keep track of edges ratherthan facets, since facets can be convex polygons rather than triangles. So, make F and Q sets ofedges instead, and in line 15, add the oriented edges �!bjaj and �!ajq to F and Q. Although we maynot have a complete description of the facet incident to these two edges, we know the equation ofthe plane containing the facet; this equation is su�cient to perform wrapping about these edges.5 ExtensionsWe have presented new optimal output-sensitive convex hull algorithms in E2 and E3. The algorithmsare simpler than previous O(n log h) algorithms, particularly in the three-dimensional case, and theconstant factors behind the big-Oh are likely to be smaller than those of the previous algorithms (inthe worst case).Besides its simplicity, our approach has the advantage that it is applicable to a variety of otherproblems. As an illustration, consider the problem of computing the lower envelope L(S) of a set Sof n line segments in the plane, which we de�ne as the boundary of Ss2S ŝ where ŝ denotes theunbounded trapezoid conv(s[ f(0;+1)g) for a given segment s. (Convex hulls correspond to lowerenvelopes of lines in the dual.) Let h be the output size, i.e., the number of edges in the envelope; itis known that h is at most O(n�(n)) [16]. Hershberger [17] has given a worst-case optimal algorithmthat computes lower envelopes in O(n logn) time. We now describe how his algorithm can be madeoutput-sensitive with our technique.First, observe that we can trace the h edges in L(S) from left to right by performing h rayshooting operations, where a ray shooting operation is: given a ray � emanating from a point onor beneath L(S), �nd the �rst trapezoid ŝ (s 2 S) that � crosses. As such an operation can bedone in O(n) time, this gives us a na��ve O(nh) method, like Jarvis's march. To improve the runningtime, partition S into dn=me groups each of at most m segments and compute the lower envelopeof each group by Hershberger's algorithm; this takes O(n logm) time in total. Using known datastructures such as [6, 18], we can perform ray shooting under each of these dn=me envelopes inO(logm) time after O(m�(m)) preprocessing (the ray shooting methods can be simpli�ed in ourcase since envelopes are monotone). This implies that the h ray shooting operations on L(S) can bedone in O(h( nm logm)) time. Choosing an appropriate group size m and guessing the output size hgive us an optimal output-sensitive O(n log h) algorithm for computing the lower envelope.6
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[15] R. L. Graham. An e�cient algorithm for determining the convex hull of a �nite planar set. Inform.Process. Lett., 1:132{133, 1972.[16] S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of generalized path compressionschemes. Combinatorica, 6:151{177, 1986.[17] J. Hershberger. Finding the upper envelope of n line segments in O(n logn) time. Inform. Process. Lett.,33:169{174, 1989.[18] J. Hershberger and S. Suri. A pedestrian approach to ray shooting: shoot a ray, take a walk. In Proc.4th ACM-SIAM Sympos. on Discrete Algorithms, 54{63, 1993.[19] R. A. Jarvis. On the identi�cation of the convex hull of a �nite set of points in the plane. Inform. Process.Lett., 2:18{21, 1973.[20] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J. Comput.,15:287{299, 1986.[21] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. PrenticeHall, New York, 1993.[22] J. O'Rourke, C.-B. Chien, T. Olson, and D. Naddor. A new linear algorithm for intersecting convexpolygons. Comput. Graph. Image Process., 19:384{391, 1982.[23] J. O'Rourke. Computational Geometry in C. Cambridge University Press, 1994.[24] F. P. Preparata and S. J. Hong. Convex hulls of �nite sets of points in two and three dimensions.Commun. ACM, 20:87{93, 1977.[25] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, NewYork, 1985.[26] G. F. Swart. Finding the convex hull facet by facet. J. Algorithms, 6:17{48, 1985.
8


