v

iy
D Parallel Models

AN - An abstract description of a real
world parallel machine.

* Attempts to capture essential
features (and suppress details?)

Piyush Kumar * What other models have we seen so

(Gecture 10: Carallel Afgorithims) ﬂ far?
\/N —1 RAM?

Courtesy Baker 05. External Memory Model?

RAM Parallel RAM aka PRAM

+ Random Access Machine Model + Generalization of RAM

- Memory is a sequence of bits/words. + P processors with their own programs (and

- Each memory access takes O(1) time. unique id)

- Basic operations take O(1) time: * MIMD processors : At each point in time
Add/Mul/Xor/Sub/AND/not... the processors might be executing

- Instructions can not be modified. different instructions on different data.

- No consideration of memory hierarchies. * Shared Memor‘y)

- Has been very successful in modelling real + Instructions are synchronized among the
world machines. processors

PRAM Variants of CRCW

+ Common CRCW: CW iff processors
write same value.

Shared Memory . Ar‘biTI"GI"y CRCW

EREW/ERCW/CREW/CRCW

* Priority CRCW
g é é + Combining CRCW

EREW: A program isnt allowed to access the same memory location
at the same time.

Why PRAM? PRAM Algorithm design.

- Lot of literature available on * Problem 1: Produce the sum of an
algorithms for PRAM. array of n numbers.

+ One of the most "clean" models. - RAM =?

+ Focuses on what communication is * PRAM =?
needed (and ignores the cost/means
to do it)

Problem 2: Prefix

Computation Prefix computation
B _ - Suffix computation is a similar
Let X ={sq, Sy, ..., Spa}p beinasetS pr‘oblem.
Let ® be a binary, associative, closed operator with respect to S . :
(usually ©(L) time — MIN, MAX, AND, +, ... Assumes Binary op takes O(1)
The result of s,® s; ®...® s, is called the k-th prefix * InRAM =?

Computing all such n prefixes is the parallel prefix computation
1stprefix s,

2 prefix s,®s,;

3dprefix s, ®s,®5,

(n-1)th prefix s, ®s,®...®5s,,

Prefix Computation (Akl) IR ‘ ‘mk

W —
a[% gra, [ata; | gvay | ayrm; | ayras | apvag |

ol)] 5y 55 3 7 ‘

t a, [aata, [aytay | atay | astay |
Treration 2
al a A [Fat T8z[at T A3[At A, [azt. +A5[asT *ag]
oo 52 i K i X3 57
—— 3 [% [%td [for v
Treration 3
o 5 52 s o4 S5 %6 7 a‘ ag Ag+a; |[Ag+..+a;|dg+ ...+ 85 |aAg+. .43, [+, +as |agt .. +ag

SRR G .
£ Einally
Flgare 4.1z Prefix computation on the PRAM, 5| 4!1)
= & U/
m_\j -;.;_.-X

EREW PRAM Prefix Problem 3: Array packing
CompUTGTion + Assume that we have

- anarray of nelements, X = {xy, X, ... , X,}

+ Assume PRAM has n processors and n is a power of 2.
P P - Some array elements are marked (or

+ Input: s;fori=01,..,n1. distinguishead).
- Algorithm Steps: * The requirements of this problem are to
for j=0 fo(lgn)-1,do - ?ack the marked elements in the front part of
for i=2ito n-1do he array.
h=i-2i - place the remaining elements in the back of the
- array.
Si=Sh® S + While not a requirement, it is also desirable to
endfor - maintain the original order between the
endfor marked elements

- maintain the original order between the

Total time in EREW PRAM? unmarked elements

EREW PRAM Algorithm

In RAM‘) 1. Sets;inP;to1if x;is marked and set s;= 0
* otherwise.
« How would you do this? 2. Perform a prefix sumon S =(sy, s ..., S,) t0
obtain destination d; = s; for each marked x;.
* Inplace? 3. All PEs set m = s, , the total nr of marked
. . PN elements.
Runnmg Time: 4.P;sets s; to O if x;is marked and otherwise

* Any ideas on how to do this in PRAM? sefss= 1.
5. Perform a prefix sum on S and set d; = s;+ m
for each unmarked x;.
6. Each P; copies array element x;into address d;
inX.

Problem 4: PRAM

Array Packing MergeSort

+ Assume n processors are used above.
+ Optimal prefix sums requires O(lg n) time.
+ The EREW broadcast of s, needed in Step 3 takes

O(lg n) time using a binary free in memory * RAM Merge Sort Recursion?

- All and other steps require constant time. + PRAM Merge Sort recursion?
+ Runs in O(Ig n) time and is cost optimal. . i
+ Maintains original order in unmarked group as well Can welspeed up the rner‘gmg.
Notes: - Merging n elements with n processors can be

done in O(log n) time.

+ Algorithm illustrates usefulness of Prefix Sums
* There many applications for Array Packing - Assume all elements are distinct
algorithm - Rank(a, A) = number of elements in A smaller

than a. For example rank(8, {1,3,56,7,9}) = 4

=
%
xﬁny“/

T

for each i do in parallel

compute rank(a j, Bl and rank(b_.A)

PRAM Merging "7 PRAM Merge Sort

sorted[i+rank(a j . BI] = aj

sorted[i+ranki b, , A1l = bj

i ‘ * T(n) = T(n/2) + O(log n)
* Using the idea of pipelined d&c PRAM

Mergesort can be done in O(log n).
Rank(2)=1 +1 Rank(1)=0 +1

Rank(3)=1 +2 Rank(8)=2 +2 * D&C is one of the most powerful
Rank(10)=2 +3 Rank(12)=3 +3 techniques to solve problems in
Rank(15)=4 +4 Rank(14)=3 +4 parla”el

Rank(16)=4 +5 Rank(19)=5 +5

Closest Pair: RAM Version
Problem 5: Closest Pair E——————

Compute separation line L such that half the points on

. RAM verlsion ? are on one side and half on the other side.

8, = Closest-Pair(left half)
8, = Closest-Pair(right half)
8 = min(§,, §,)

2T(n/ 2)

Delete all points further than & from separation line L O(n)
Sort remaining points by y-coordinate. O(n log
Scan points in y-order and compare distance between

each point and next 11 neighbors. If any of these O(n)

distances is less than §, update §.

return §.

Closest Pair: PRAM Version?

Closest-Pair(p;, .., Pa) { §

Compute separation line L such that half the points o)
are on one side and half on the other side.

Use sorted lists M
8, = Closest-Pair(left half) } In par‘allel T/ 2)

8, = Closest-Pair(right half)

o Other Interesting
Delete all points further than § from separation - .
Sort remaining points by y—cuordinat Ollegy A '90 r' I T h ms

Scan points in y-order and compare distance between
each point and next 11 neighbors. o)
Find min of all these distances, update §.

Olog n)
e Again use prefix
e g

~—_

Recurrence : T(n) = T(n/2) + O(log n)

Interesting Classes at
A List FSU

*+ Approximation Algorithms
+ Online Algorithms . .
- Learning Algorithms In case you liked this class:

+ Network Algorithms P 1] i
- el Algori
+ Advanced Data Structures. ara gor thms

- Flow Algorithms. - Computational Geometry

+ Algorithmic Game Theory - Advanced Algorithms
* Quantum Algorithms.

+ Geometric Algorithms

Next Class

* Practice Problem Solving for Finals.
* Extra Office Hours :

- Wednesday, I will be in office and
accessible anytime for questions.

