
1

Advanced Algorithms

Piyush Kumar
(Lecture 10: Parallel Algorithms)

Courtesy Baker 05.

Parallel Models
• An abstract description of a real

world parallel machine.

• Attempts to capture essential
features (and suppress details?)

• What other models have we seen so
far?

RAM?
External Memory Model?

RAM
• Random Access Machine Model

– Memory is a sequence of bits/words.
– Each memory access takes O(1) time.
– Basic operations take O(1) time:

Add/Mul/Xor/Sub/AND/not…
– Instructions can not be modified.
– No consideration of memory hierarchies.
– Has been very successful in modelling real

world machines.

Parallel RAM aka PRAM
• Generalization of RAM
• P processors with their own programs (and

unique id)
• MIMD processors : At each point in time

the processors might be executing
different instructions on different data.

• Shared Memory
• Instructions are synchronized among the

processors

PRAM

Shared Memory

EREW/ERCW/CREW/CRCW

EREW: A program isnt allowed to access the same memory location
at the same time.

Variants of CRCW
• Common CRCW: CW iff processors

write same value.

• Arbitrary CRCW

• Priority CRCW

• Combining CRCW

2

Why PRAM?
• Lot of literature available on

algorithms for PRAM.

• One of the most “clean” models.

• Focuses on what communication is
needed (and ignores the cost/means
to do it)

PRAM Algorithm design.
• Problem 1: Produce the sum of an

array of n numbers.

• RAM = ?

• PRAM = ?

Problem 2: Prefix
Computation

Let X = {s0, s1, …, sn-1} be in a set S

Let be a binary, associative, closed operator with respect to S

(usually Q(1) time – MIN, MAX, AND, +, ...)

The result of s0s1 … sk is called the k-th prefix

Computing all such n prefixes is the parallel prefix computation

s0

s0 s1

s0 s1 s2

...

s0 s1 ... sn-1

1st prefix

2nd prefix

3rd prefix

...

(n-1)th prefix

Prefix computation
• Suffix computation is a similar

problem.

• Assumes Binary op takes O(1)

• In RAM = ?

Prefix Computation (Akl)

3

EREW PRAM Prefix
computation

• Assume PRAM has n processors and n is a power of 2.

• Input: si for i = 0,1, ... , n-1.
• Algorithm Steps:

for j = 0 to (lg n) -1, do
for i = 2j to n-1 do

h = i - 2j

si = sh  si

endfor
endfor

Total time in EREW PRAM?

Problem 3: Array packing
• Assume that we have

– an array of n elements, X = {x1, x2, ... , xn}
– Some array elements are marked (or

distinguished).
• The requirements of this problem are to

– pack the marked elements in the front part of
the array.

– place the remaining elements in the back of the
array.

• While not a requirement, it is also desirable to
– maintain the original order between the

marked elements
– maintain the original order between the

unmarked elements

In RAM?
• How would you do this?

• Inplace?

• Running time?

• Any ideas on how to do this in PRAM?

EREW PRAM Algorithm
1. Set si in Pi to 1 if xi is marked and set si = 0

otherwise.
2. Perform a prefix sum on S =(s1, s2 ,..., sn) to

obtain destination di = si for each marked xi .
3. All PEs set m = sn , the total nr of marked

elements.
4. Pi sets si to 0 if xi is marked and otherwise

sets si = 1.
5. Perform a prefix sum on S and set di = si + m

for each unmarked xi .
6. Each Pi copies array element xi into address di

in X.

Array Packing
• Assume n processors are used above.
• Optimal prefix sums requires O(lg n) time.
• The EREW broadcast of sn needed in Step 3 takes

O(lg n) time using a binary tree in memory
• All and other steps require constant time.
• Runs in O(lg n) time and is cost optimal.
• Maintains original order in unmarked group as well
Notes:
• Algorithm illustrates usefulness of Prefix Sums
• There many applications for Array Packing

algorithm

Problem 4: PRAM
MergeSort

• RAM Merge Sort Recursion?

• PRAM Merge Sort recursion?

• Can we speed up the merging?
– Merging n elements with n processors can be

done in O(log n) time.

– Assume all elements are distinct

– Rank(a, A) = number of elements in A smaller
than a. For example rank(8, {1,3,5,7,9}) = 4

4

PRAM Merging

A = 2,3,10,15,16 B = 1,8,12,14,19

Rank(2)=1

Rank(3)=1

Rank(10)=2

Rank(15)=4

Rank(16)=4

Rank(1)=0

Rank(8)=2

Rank(12)=3

Rank(14)=3

Rank(19)=5

+1

+2

+3

+4

+5

+1

+2

+3

+4

+5

1 2 3 8 10 12 14 15 16 19

PRAM Merge Sort
• T(n) = T(n/2) + O(log n)

• Using the idea of pipelined d&c PRAM
Mergesort can be done in O(log n).

• D&C is one of the most powerful
techniques to solve problems in
parallel.

Problem 5: Closest Pair
• RAM Version ?

12

21

1

2

3

4
5

6

7

L

 = min(12, 21)

Closest Pair: RAM Version

Closest-Pair(p1, …, pn) {

Compute separation line L such that half the points

are on one side and half on the other side.

1 = Closest-Pair(left half)

2 = Closest-Pair(right half)

 = min(1, 2)

Delete all points further than  from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between

each point and next 11 neighbors. If any of these

distances is less than , update .

return .

}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

Closest Pair: PRAM Version?

Closest-Pair(p1, …, pn) {

Compute separation line L such that half the points

are on one side and half on the other side.

1 = Closest-Pair(left half)

2 = Closest-Pair(right half)

 = min(1, 2)

Delete all points further than  from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between

each point and next 11 neighbors.

Find min of all these distances, update .

return .

}

O(1)

T(n / 2)

O(log n)

O(1)

O(log n)

In parallel

Use sorted lists

Use presorting and
prefix

computation.

Again use prefix
computation.

Recurrence : T(n) = T(n/2) + O(log n)

Other Interesting
Algorithms

5

A List
• Approximation Algorithms

• Online Algorithms

• Learning Algorithms

• Network Algorithms

• Advanced Data Structures.

• Flow Algorithms.

• Algorithmic Game Theory

• Quantum Algorithms.

• Geometric Algorithms

Interesting Classes at
FSU

In case you liked this class:
– Parallel Algorithms

– Computational Geometry

– Advanced Algorithms

Next Class
• Practice Problem Solving for Finals.

• Extra Office Hours :
– Wednesday, I will be in office and

accessible anytime for questions.

