
1

Advanced AlgorithmsAdvanced AlgorithmsAdvanced Algorithms
PiyushPiyush KumarKumar
(Lecture 6: Div & Conquer)(Lecture 6: Div & Conquer)

Welcome to COP4531 Source: Kevin Wayne,
Harold Prokop.

Divide and Conquer
• Inversions
• Closest Point problems
• Integer multiplication
• Matrix Multiplication
• Cache Aware algorithms/ Cache

oblivious Algorithms
• Static Van Emde Boas Layout

5.3 Counting
Inversions

5.3 Counting 5.3 Counting
InversionsInversions

• Music site tries to match your song preferences with others.
– You rank n songs.
– Music site consults database to find people with similar tastes.

• Similarity metric: number of inversions between two rankings.
– My rank: 1, 2, …, n.
– Your rank: a1, a2, …, an.
– Songs i and j inverted if i < j, but ai > aj.

• Brute force: check all Θ(n2) pairs i and j.

You
Me

1 43 2 5
1 32 4 5
A B C D E

Songs

Counting Inversions

Inversions
3-2, 4-2

• Applications.
– Voting theory.
– Collaborative filtering.
– Measuring the "sortedness" of an array.
– Sensitivity analysis of Google's ranking function.
– Rank aggregation for meta-searching on the Web.
– Nonparametric statistics (e.g., Kendall's Tau distance).

Counting Inversions:
Divide-and-Conquer

• Divide-and-conquer.

4 8 10 21 5 12 11 3 76 9

2

Counting Inversions:
Divide-and-Conquer

• Divide-and-conquer.
– Divide: separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide: O(1).

Counting Inversions:
Divide-and-Conquer

• Divide-and-conquer.
– Divide: separate list into two pieces.
– Conquer: recursively count inversions in

each half.4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Counting Inversions:
Divide-and-Conquer

• Divide-and-conquer.
– Divide: separate list into two pieces.
– Conquer: recursively count inversions in each half.
– Combine: count inversions where ai and aj are in different halves, and return sum

of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

Combine: ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions:
Combine

• Combine: count blue-green inversions
– Assume each half is sorted.
– Count inversions where ai and aj are in different halves.
– Merge two sorted halves into sorted whole.

•

Count: O(n)

Merge: O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

 T(n) ≤ T n /2⎣ ⎦()+ T n /2⎡ ⎤()+ O(n) ⇒ T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant

Counting Inversions:
Implementation

• Pre-condition. [Merge-and-Count] A and B are sorted.
• Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(rA, A) ← Sort-and-Count(A)
(rB, B) ← Sort-and-Count(B)
(r, L) ← Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L
}

12

5.4 Closest Pair of 5.4 Closest Pair of
PointsPoints

3

Closest Pair of Points
• Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance

between them.

• Fundamental geometric primitive.
– Graphics, computer vision, geographic information systems, molecular modeling,

air traffic control.
– Special case of nearest neighbor, Euclidean MST, Voronoi.

• Brute force. Check all pairs of points p and q with Θ(n2) comparisons.

• 1-D version. O(n log n) easy if points are on a line.

• Assumption. No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

Closest Pair of Points:
First Attempt

• Divide. Sub-divide region into 4
quadrants.

L

Closest Pair of Points:
First Attempt

• Divide. Sub-divide region into 4 quadrants.
• Obstacle. Impossible to ensure n/4 points in each piece.

L

Closest Pair of Points
• Algorithm.

– Divide: draw vertical line L so that roughly ½n points on each side.

L

Closest Pair of Points
• Algorithm.

– Divide: draw vertical line L so that roughly ½n points on each side.
– Conquer: find closest pair in each side recursively.

12

21

L

Closest Pair of Points
• Algorithm.

– Divide: draw vertical line L so that roughly ½n points on each side.
– Conquer: find closest pair in each side recursively.
– Combine: find closest pair with one point in each side.
– Return best of 3 solutions.

12

21
8

L

seems like Θ(n2)

4

Closest Pair of Points
• Find closest pair with one point in

each side, assuming that distance < δ.

12

21

δ = min(12, 21)

L

Closest Pair of Points
• Find closest pair with one point in each side, assuming that

distance < δ.
– Observation: only need to consider points within δ of

line L.

δ

12

21

L

δ = min(12, 21)

12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points
• Find closest pair with one point in each side, assuming that

distance < δ.
– Observation: only need to consider points within δ of line L.
– Sort points in 2δ-strip by their y coordinate.

L

δ = min(12, 21)
12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points
• Find closest pair with one point in each side, assuming that distance < δ.

– Observation: only need to consider points within δ of line L.
– Sort points in 2δ-strip by their y coordinate.
– Only check distances of those within 11 positions in sorted list!

L

δ = min(12, 21)

Closest Pair of Points

• Def. Let si be the point in the 2δ-strip, with
the ith smallest y-coordinate.

• Claim. If |i – j| ≥ 12, then the distance between
si and sj is at least δ.

• Pf.
– No two points lie in same ½δ-by-½δ box.
– Two points at least 2 rows apart

have distance ≥ 2(½δ). ▪

• Fact. Still true if we replace 12 with 7.

δ

27

29
30

31

28

26

25

δ

½δ

2 rows
½δ

½δ

39

i

j

Closest Pair Algorithm
Closest-Pair(p1, …, pn) {

Compute separation line L such that half the points
are on one side and half on the other side.

δ1 = Closest-Pair(left half)
δ2 = Closest-Pair(right half)
δ = min(δ1, δ2)

Delete all points further than δ from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than δ, update δ.

return δ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

5

Closest Pair of Points:
Analysis

• Running time.

• Q. Can we achieve O(n log n)?

• A. Yes. Don't sort points in strip from scratch each time.
– Each recursive returns two lists: all points sorted by y

coordinate, and all points sorted by x coordinate.
– Sort by merging two pre-sorted lists.

 T(n) ≤ 2T n /2() + O(n) ⇒ T(n) = O(n log n)

 T(n) ≤ 2T n /2() + O(n log n) ⇒ T(n) = O(n log2 n)

26

5.5 Integer 5.5 Integer
MultiplicationMultiplication

Integer Arithmetic
• Add. Given two n-digit integers a and b, compute a + b.

– O(n) bit operations.

• Multiply. Given two n-digit integers a and b, compute a × b.
– Brute force solution: Θ(n2) bit operations.

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

0100000000001011

1

0

1

1

1

1

1

0

0

*

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

Multiply

• To multiply two n-digit integers:
– Multiply four ½n-digit integers.
– Add two ½n-digit integers, and shift to obtain result.

Divide-and-Conquer
Multiplication: Warmup

() 2

add, shiftrecursive calls

T() 4 / 2 () T() ()n T n n n n= + Θ ⇒ = Θ���	��
�����	����

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n / 2 ⋅ x1 + x0() 2n / 2 ⋅ y1 + y0() = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

assumes n is a power of 2

• To multiply two n-digit integers:
– Add two ½n digit integers.
– Multiply three ½n-digit integers.
– Add, subtract, and shift ½n-digit integers to obtain result.

• Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit
integers in O(n1.585) bit operations.

Karatsuba Multiplication

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

= 2n ⋅ x1y1 + 2n / 2 ⋅ (x1 + x0) (y1 + y0) − x1y1 − x0 y0() + x0 y0

() () ()

2

add, subtract, shiftrecursive calls

log 3 1.585

T() / 2 / 2 1 / 2 ()

T() () ()

n T n T n T n n

n O n O n

≤ + + + + Θ⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎢ ⎥ ⎢ ⎥

⇒ = =

�����	����
���������������������	��������������������

A B CA C

Karatsuba: Recursion Tree

T(n) =

0 if n =1
3T(n /2) + n otherwise

⎧
⎨
⎩

n

3(n/2)

9(n/4)

3k (n / 2k)

3 lg n (2)

. . .

. . .

T(n)

T(n/2)

T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

. . .

. . .

T(n) = n 3

2()k

k=0

log2 n

∑ =
3
2()1+ log2 n −1

3
2 −1

 = 3nlog2 3 − 2

6

31

Matrix MultiplicationMatrix Multiplication

Matrix Multiplication
(MM)

∑
=

=
n

k
kjikij bac

1

C
nnnn

n

n

ccc

ccc
ccc

Λ
ΜΟΜΜ

Λ
Λ

21

22221

11211

B
nnnn

n

n

bbb

bbb
bbb

Λ
ΜΟΜΜ

Λ
Λ

21

22221

11211

A
nnnn

n

n

aaa

aaa
aaa

Λ
ΜΟΜΜ

Λ
Λ

21

22221

11211

= ×

Courtesy Harold Prokop

• Matrix multiplication. Given two n-by-n matrices A and B,
compute C = AB.

• Brute force. Θ(n3) arithmetic operations.

• Fundamental question. Can we improve upon brute force?

Matrix Multiplication

cij = aik bkj

k=1

n

∑
11 12 1 11 12 1 11 12 1

21 22 2 21 22 2 21 22 2

1 2 1 2 1 2

n n n

n n n

n n nn n n nn n n nn

c c c a a a b b b
c c c a a a b b b

c c c a a a b b b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ×
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

" " "
" " "

% # # # % # # # %
" " "

© Harald Prokop 18 Oct 99 12

8 multiplications of (n/2) × (n/2) matrices.
1 addition of n × n matrices.

Divide and conquer on n × n matrices.

=

=

×

+

Recursive Matrix MultiplicationRecursive Matrix Multiplication

C11 C12

C21 C22

A11 A12

A21 A22

A11B11 A11B12

A21B11 A21B12

B11 B12

B21 B22

A12B21 A12B22

A22B21 A22B22

© Harald Prokop 18 Oct 99 12

8 multiplications of (n/2) × (n/2) matrices.
1 addition of n × n matrices.

Divide and conquer on n × n matrices.

=

=

×

+

Recursive Matrix MultiplicationRecursive Matrix Multiplication

C11 C12

C21 C22

A11 A12

A21 A22

A11B11 A11B12

A21B11 A21B12

B11 B12

B21 B22

A12B21 A12B22

A22B21 A22B22

ti
m

e
/ n

3
[i

n
na

no
se

co
nd

s]

Θ(n3)-Matrix Multiplication (n,n) Matrix Multiplication (n,n) × (n,n) (n,n)

450-MHz AMD K6-III processor with 32kB L1-cache,
64kB L2-cache, and 1MB L3-cache.

0

0.01

0.02
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

16 48 80 11
2

14
4

17
6

20
8

24
0

27
2

30
4

33
6

36
8

40
0

43
2

46
4

49
6

52
8

56
0

59
2

n [double precision numbers]

iterative algorithm

recursive algorithm

© H ld P k 18 O t 99 4

ti
m

e
/ n

3
[i

n
na

no
se

co
nd

s]

Θ(n3)-Matrix Multiplication (n,n) Matrix Multiplication (n,n) × (n,n) (n,n)

450-MHz AMD K6-III processor with 32kB L1-cache,
64kB L2-cache, and 1MB L3-cache.

0

0.01

0.02
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

16 48 80 11
2

14
4

17
6

20
8

24
0

27
2

30
4

33
6

36
8

40
0

43
2

46
4

49
6

52
8

56
0

59
2

n [double precision numbers]

iterative algorithm

recursive algorithm

Matrix Multiplication: Warmup
• Divide-and-conquer.

– Divide: partition A and B into ½n-by-½n blocks.
– Conquer: multiply 8 ½n-by-½n recursively.
– Combine: add appropriate products using 4 matrix

additions.

() 2 3

add, form submatricesrecursive calls

T() 8 / 2 () T() ()n T n n n n= + Θ ⇒ = Θ�������	������
����	���

7

Matrix Multiplication: Key Idea
• Key idea. multiply 2-by-2 block matrices with only 7

multiplications.

– 7 multiplications.
– 18 = 10 + 8 additions (or subtractions).

P1 = A11 × (B12 − B22)
P2 = (A11 + A12) × B22

P3 = (A21 + A22) × B11

P4 = A22 × (B21 − B11)
P5 = (A11 + A22) × (B11 + B22)
P6 = (A12 − A22) × (B21 + B22)
P7 = (A11 − A21) × (B11 + B12)

C11 = P5 + P4 − P2 + P6

C12 = P1 + P2

C21 = P3 + P4

C22 = P5 + P1 − P3 − P7

C11 C12

C21 C22

⎡

⎣
⎢

⎤

⎦
⎥ =

A11 A12

A21 A22

⎡

⎣
⎢

⎤

⎦
⎥ ×

B11 B12

B21 B22

⎡

⎣
⎢

⎤

⎦
⎥

Fast Matrix Multiplication
• Fast matrix multiplication. (Strassen, 1969)

– Divide: partition A and B into ½n-by-½n blocks.
– Compute: 14 ½n-by-½n matrices via 10 matrix additions.
– Conquer: multiply 7 ½n-by-½n matrices recursively.
– Combine: 7 products into 4 terms using 8 matrix

additions.

• Analysis.
– Assume n is a power of 2.
– T(n) = # arithmetic operations.

() 2log 72 2.81

add, subtractrecursive calls

T() 7 / 2 () T() () ()n T n n n n O n= + Θ ⇒ = Θ =�����	����
����	���

Fast Matrix Multiplication in Practice
• Implementation issues.

– Sparsity.
– Caching effects.
– Numerical stability.
– Odd matrix dimensions.
– Crossover to classical algorithm around n = 128.

• Common misperception: "Strassen is only a theoretical curiosity."
– Advanced Computation Group at Apple Computer reports 8x

speedup on G4 Velocity Engine when n ~ 2,500.
– Range of instances where it's useful is a subject of

controversy.

• Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and
other matrix ops.

Fast Matrix Multiplication in Theory

• Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
• A. Yes! [Strassen, 1969]

• Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
• A. Impossible. [Hopcroft and Kerr, 1971]

• Q. Two 3-by-3 matrices with only 21 scalar multiplications?
• A. Also impossible.

• Q. Two 70-by-70 matrices with only 143,640 scalar multiplications?
• A. Yes! [Pan, 1980]

• Decimal wars.
– December, 1979: O(n2.521813).
– January, 1980: O(n2.521801).

 Θ (n log3 21) = O(n 2.77)

 Θ (n log70 143640) = O(n 2.80)

 Θ(n log2 6) = O(n 2.59)

 Θ(n log2 7) = O(n 2.81)

Fast Matrix
Multiplication in Theory

• Best known. O(n2.376)
[Coppersmith-Winograd, 1987.]

• Conjecture. O(n2+ε) for any ε > 0.

• Caveat. Theoretical improvements to
Strassen are progressively less
practical.

BLOCK-MULT (A,B,C,n)
1 for i ← 1 to n/s
2 do for j ← 1 to n/s
3 do for k ← 1 to n/s
4 do ORD-MULT (Aik,Bkj,Cij,s)

BLOCK-MULT (A,B,C,n)
1 for i ← 1 to n/s
2 do for j ← 1 to n/s
3 do for k ← 1 to n/s
4 do ORD-MULT (Aik,Bkj,Cij,s)

CacheCache--Aware MMAware MM

s

s

n

n
[HK81]

s

s

n

n

8

Towards faster matrix multiplication…
(Blocked version)

• Advantages
– Exploit locality using blocking
– Do not assume that each access to memory is O(1)
– Can be extended to multiple levels of cache
– Usually the fastest algorithm after tuning.

• Disadvantages
– Needs tuning every time it runs on a new machine.
– Usually “s” is a voodoo parameter that is unknown.

© Harald Prokop 18 Oct 99 10

BLOCK-MULT (A,B,C,n)
1 for i ← 1 to n/s
2 do for j ← 1 to n/s
3 do for k ← 1 to n/s
4 do ORD-MULT (Aik,Bkj,Cij,s)

BLOCK-MULT (A,B,C,n)
1 for i ← 1 to n/s
2 do for j ← 1 to n/s
3 do for k ← 1 to n/s
4 do ORD-MULT (Aik,Bkj,Cij,s)

Voodoo!

CacheCache--Aware Matrix MultiplicationAware Matrix Multiplication

s

s

n

n

• Tune s so that Aik, Bkj, and Cij
just fit into cache ? ()Zs Θ=

() ()
().

)()(
3

23

ZLn
LssnnQ

Θ=
Θ=

• If n > s, then

• Optimal [HK81].

TwoTwo--Level CacheLevel Cache
n

n

s

s
t

ThreeThree--Level CacheLevel Cache

BLOCK-MULT (A,B,C,n)
1 for i1 ← 1 to n/s
2 do for j1 ← 1 to n/s
3 do for k1 ← 1 to n/s
4 do ORD-MULT (Aik,Bkj,Cij,s)

BLOCK-MULT (A,B,C,n)
1 for i1 ← 1 to n/s
2 do for j1 ← 1 to n/s
3 do for k1 ← 1 to n/s
4 do ORD-MULT (Aik,Bkj,Cij,s)

BLOCK-MULT (A,B,C,n)
1 for i1 ← 1 to n/s
2 do for j1 ← 1 to n/s
3 do for k1 ← 1 to n/s
4 do for i2 ← 1 to s /t
5 do for j2 ← 1 to s /t
6 do for k2 ← 1 to s /t
7 do ORD-MULT (Aik,Bkj,Cij,t)

BLOCK-MULT (A,B,C,n)
1 for i1 ← 1 to n/s
2 do for j1 ← 1 to n/s
3 do for k1 ← 1 to n/s
4 do for i2 ← 1 to s /t
5 do for j2 ← 1 to s /t
6 do for k2 ← 1 to s /t
7 do ORD-MULT (Aik,Bkj,Cij,t)

BLOCK-MULT (A,B,C,n)
1 for i1 ← 1 to n/s
2 do for j1 ← 1 to n/s
3 do for k1 ← 1 to n/s
4 do for i2 ← 1 to s /t
5 do for j2 ← 1 to s /t
6 do for k2 ← 1 to s /t
7 do for i3 ← 1 to t /u
8 do for j3 ← 1 to t /u
9 do for k3 ← 1 to t /u

10 do ORD-MULT (Aik,Bkj,Cij,u)

BLOCK-MULT (A,B,C,n)
1 for i1 ← 1 to n/s
2 do for j1 ← 1 to n/s
3 do for k1 ← 1 to n/s
4 do for i2 ← 1 to s /t
5 do for j2 ← 1 to s /t
6 do for k2 ← 1 to s /t
7 do for i3 ← 1 to t /u
8 do for j3 ← 1 to t /u
9 do for k3 ← 1 to t /u

10 do ORD-MULT (Aik,Bkj,Cij,u)

One voodoo parameter per caching level!One voodoo parameter per caching level!

© Harald Prokop 18 Oct 99 11

TwoTwo--Level CacheLevel Cache
n

n

s

s
t

ThreeThree--Level CacheLevel Cache

BLOCK-MULT (A,B,C,n)
1 for i1 ← 1 to n/s
2 do for j1 ← 1 to n/s
3 do for k1 ← 1 to n/s
4 do ORD-MULT (Aik,Bkj,Cij,s)

BLOCK-MULT (A,B,C,n)
1 for i1 ← 1 to n/s
2 do for j1 ← 1 to n/s
3 do for k1 ← 1 to n/s
4 do ORD-MULT (Aik,Bkj,Cij,s)

BLOCK-MULT (A,B,C,n)
1 for i1 ← 1 to n/s
2 do for j1 ← 1 to n/s
3 do for k1 ← 1 to n/s
4 do for i2 ← 1 to s /t
5 do for j2 ← 1 to s /t
6 do for k2 ← 1 to s /t
7 do ORD-MULT (Aik,Bkj,Cij,t)

BLOCK-MULT (A,B,C,n)
1 for i1 ← 1 to n/s
2 do for j1 ← 1 to n/s
3 do for k1 ← 1 to n/s
4 do for i2 ← 1 to s /t
5 do for j2 ← 1 to s /t
6 do for k2 ← 1 to s /t
7 do ORD-MULT (Aik,Bkj,Cij,t)

BLOCK-MULT (A,B,C,n)
1 for i1 ← 1 to n/s
2 do for j1 ← 1 to n/s
3 do for k1 ← 1 to n/s
4 do for i2 ← 1 to s /t
5 do for j2 ← 1 to s /t
6 do for k2 ← 1 to s /t
7 do for i3 ← 1 to t /u
8 do for j3 ← 1 to t /u
9 do for k3 ← 1 to t /u

10 do ORD-MULT (Aik,Bkj,Cij,u)

BLOCK-MULT (A,B,C,n)
1 for i1 ← 1 to n/s
2 do for j1 ← 1 to n/s
3 do for k1 ← 1 to n/s
4 do for i2 ← 1 to s /t
5 do for j2 ← 1 to s /t
6 do for k2 ← 1 to s /t
7 do for i3 ← 1 to t /u
8 do for j3 ← 1 to t /u
9 do for k3 ← 1 to t /u

10 do ORD-MULT (Aik,Bkj,Cij,u)

One voodoo parameter per caching level!One voodoo parameter per caching level!

© Harald Prokop 18 Oct 99 12

8 multiplications of (n/2) × (n/2) matrices.
1 addition of n × n matrices.

Divide and conquer on n × n matrices.

=

=

×

+

Recursive Matrix MultiplicationRecursive Matrix Multiplication

C11 C12

C21 C22

A11 A12

A21 A22

A11B11 A11B12

A21B11 A21B12

B11 B12

B21 B22

A12B21 A12B22

A22B21 A22B22

© Harald Prokop 18 Oct 99 12

8 multiplications of (n/2) × (n/2) matrices.
1 addition of n × n matrices.

Divide and conquer on n × n matrices.

=

=

×

+

Recursive Matrix MultiplicationRecursive Matrix Multiplication

C11 C12

C21 C22

A11 A12

A21 A22

A11B11 A11B12

A21B11 A21B12

B11 B12

B21 B22

A12B21 A12B22

A22B21 A22B22

Cache Oblivious

© Harald Prokop 18 Oct 99 16

Recursive TransposeRecursive Transpose

A B

C D

AT BT

CT DT

1. Partition matrix in 4
submatrices A, B, C, and D

2. Recursively transpose A.

3. Recursively transpose and
swap B and C.

4. Recursively transpose D.

1. Partition matrix in 4
submatrices A, B, C, and D

2. Recursively transpose A.

3. Recursively transpose and
swap B and C.

4. Recursively transpose D.

Θ(n2 / L) cache misses, which is optimal. Used as a
subroutine in our optimal cache-oblivious FFT [HK81].
Θ(n2 / L) cache misses, which is optimal. Used as a
subroutine in our optimal cache-oblivious FFT [HK81].

© Harald Prokop 18 Oct 99 16

Recursive TransposeRecursive Transpose

A B

C D

AT BT

CT DT

1. Partition matrix in 4
submatrices A, B, C, and D

2. Recursively transpose A.

3. Recursively transpose and
swap B and C.

4. Recursively transpose D.

1. Partition matrix in 4
submatrices A, B, C, and D

2. Recursively transpose A.

3. Recursively transpose and
swap B and C.

4. Recursively transpose D.

Θ(n2 / L) cache misses, which is optimal. Used as a
subroutine in our optimal cache-oblivious FFT [HK81].
Θ(n2 / L) cache misses, which is optimal. Used as a
subroutine in our optimal cache-oblivious FFT [HK81].

Algorithms for
External Memory
Algorithms for Algorithms for

External MemoryExternal Memory

9

P

M

Computer

Secondary
Storage
(Hard Disks)

......

C

P = Processor
C = Cache
M = Main Memory

Storage Capacity

10-9 10-6 10-3 1 103

access time (sec)

1015

1013

1011

109

107

105

103

cache

electronic
main

electronic
secondary

magnetic
optical
disks

online
tape

nearline
tape &
optical
disks

offline
tape

ty
pi

ca
l c

ap
ac

ity
 (

by
te

s)

from Gray & Reuter
(2002)

Storage Cost

10-9 10-6 10-3 1 103

access time (sec)

104

102

100

10-2

10-4

cache

electronic
main

electronic
secondary magnetic

optical
disks

online
tape

nearline
tape &
optical
disks

offline
tape

do
lla

rs
/M

B

from Gray & Reuter
(2002) Disk Access Time

• Block X Request Æ Block in Memory
• Time = Seek Time +

Rotational Delay +
Transfer Time +
Other

Typical Numbers (for random block access)
Seek Time = 10ms
Rot Delay = 4ms (7200rpm)
transfer rate = 50MB/sec
Other = CPU time to access delays+

Contention for controllers
Contention for Bus
Multiple copies of the same data

Rules for EM Algorithms

• Sequential IO is cheap compared to
Random IO

• 1kb block
– Seq : 1ms
– Random : 20ms

• The difference becomes smaller and
smaller as the block size becomes larger.

The DAM Model
• Count the number of IOs.
• Explicitly control which Blocks are in

memory.
• Two level memory model.
• Notation:

• M = Size of memory.
• B = size of disk block.
• N = size of data.

Question: How many block transfers for
one scan of the data set?

10

Problem
• Mergesort

– How many Block IOs does it need to
sort N numbers (when the size of the
data is extremely large compared to M)

• Can we do better?

External Memory Sorting
• Penny Sort Competition

40GB , 433 million records,
1541 seconds on a 614$ Linux/AMD system

EM Sorting
• Two pass external memory merge

sort.

ru
n

0

input:

O(M)

chunk 0chunk 1 chunk 2 chunk 3chunk 4

ru
n

1
ru

n
2

ru
n

n

chunk 5 chunk 6 …

Bbuffers B B B

k=O(M/B)

k-merger

chunk 7chunk 8

ru
n

01
23

B

……

…

The CO Memory Model
• Cache-oblivious memory model

– Reason about two-level, but prove
results for unknown multilevel memory
models

– Parameters B and M are unknown, thus
optimized for all levels of memory
hierarchy

• B = L , M = Z?

Matrix Transpose:
DAM n CO

• What is the number of blocks you
need to move in a transpose of a
large matrix?
– In DAM
– In CO

Static Searches
• Only for balanced binary trees
• Assume there are no insertions and

deletions
• Only searches
• Can we speed up such seaches?

11

What is a layout?
• Mapping of nodes of a tree to the Memory
• Different kinds of layouts

– In-order
– Post-order
– Pre-order
– Van Emde Boas

• Main Idea : Store Recursive subtrees in
contiguous memory

Example of Van Emde
Boas

Cut 1

Cut 2

Cut 3 Cut 4 Cut 5 Cut 6

1, 2, 3, 4, 8, 9, 5, 10, 11, 6, 12, 13, 7, 14, 15
Act ual Layout of Tr ee in memor y:

Another View Theoretical Guarantees?
• Cache Complexity Q(n) = O()
• Work Complexity W(n) = O(log n)

nLlog

From Prokop’s Thesis

In Practice??

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 9 10 11 12 13 14 15 16 17 18

Number of Nodes 2^x

Ti
m

in
gs

(s
ec

)

General Search Cache Oblivious

In Practice II
32 byte nodes

0

0.05

0.1

0.15

0.2

0.25

8 9 10 11 12 13 14 15 16 17 18

2^x nodes

Ti
m

e
in

 S
ec

General Search Cache Oblivious

12

In Practice!
• Matrix Operations by Morton

Ordering , David S.Wise
(Cache oblivious Practical Matrix
operation results)

• Bender, Duan, Wu
(Cache oblivious dictionaries)

• Rahman, Cole, Raman (CO B-Trees)

Known Optimal Results
• Matrix Multiplication
• Matrix Transpose
• n-point FFT
• LUP Decomposition
• Sorting
• Searching

Other Results Known
Priority Q

List Ranking

Tree Algos

Directed
BFS/DFS
Undirected BFS

MSF

)log1(
B
N

B
O

B
M

))((VsortO

))(log)((2 EsortV
B
EVO ++

))((VsortO

))((EsortVO +

)loglog)((22 VEsortO +

Introduction to
Streaming Algorithms

Introduction to Introduction to
Streaming AlgorithmsStreaming Algorithms

Brain Teaser
• Let P = { 1...n }. Let P’ = P \ {x}

– x in P
• Paul shows Carole elements from P’
• Carole can only use O(log n) bits

memory to answer the question in the
end.

Now what about P’’?

Streaming Algorithms
• Data that computers are being asked

to process is growing astronomically.
• Infeasible to store
• If I cant store the data I am looking

at, how do I compute a summary of
this data?

13

Another Brain Teaser
• Given a set of numbers in a large

array.
• In one pass, decide if some item is in

majority (assume you only have
constant size memory to work with).

939994679992

N = 12; item 9 is majority

Courtesy : Subhash Suri

Misra-Gries Algorithm
(‘82)

• A counter and an ID.
– If new item is same as stored ID, increment counter.
– Otherwise, decrement the counter.
– If counter 0, store new item with count = 1.

• If counter > 0, then its item is the only candidate for majority.

2 9 9 9 7 6 4 9 9 9 3 9

ID 2 2 9 9 9 9 4 4 9 9 9 9
count 1 0 1 2 1 0 1 0 1 2 1 2

Data Stream Algorithms
• Majority and Frequent are examples of data stream

algorithms.
• Data arrives as an online sequence x1, x2, …,

potentially infinite.
• Algorithm processes data in one pass (in given

order)
• Algorithm’s memory is significantly smaller than

input data
• Summarize the data: compute useful patterns

Streaming Data Sources
– Internet traffic monitoring
– New Computer Graphics hardware
– Web logs and click streams
– Financial and stock market data
– Retail and credit card transactions
– Telecom calling records
– Sensor networks, surveillance
– RFID
– Instruction profiling in microprocessors
– Data warehouses (random access too

expensive).

FFTFFTFFT

Fast Fourier Transform:
Applications

• Applications.
– Optics, acoustics, quantum physics, telecommunications, control

systems, signal processing, speech recognition, data compression, image
processing.

– DVD, JPEG, MP3, MRI, CAT scan.
– Numerical solutions to Poisson's equation.

The FFT is one of the truly great computational
developments of this [20th] century. It has changed the
face of science and engineering so much that it is not an
exaggeration to say that life as we know it would be very
different without the FFT. -Charles van Loan

14

Fast Fourier Transform:
Brief History

• Gauss (1805, 1866). Analyzed periodic motion of asteroid Ceres.

• Runge-König (1924). Laid theoretical groundwork.

• Danielson-Lanczos (1942). Efficient algorithm.

• Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and tracking
submarines. Rediscovered and popularized FFT.

• Importance not fully realized until advent of digital computers.

Polynomials: Coefficient Representation

• Polynomial. [coefficient representation]

• Add: O(n) arithmetic operations.

• Evaluate: O(n) using Horner's method.

• Multiply (convolve): O(n2) using brute force.

 A(x) = a0 + a1x + a2x2 +/ + an−1xn−1

 B(x) = b0 + b1x + b2x2 +/ + bn−1x
n−1

 A(x)+ B(x) = (a0 +b0)+ (a1 +b1)x +/ + (an−1 +bn−1)xn−1

 A(x) = a0 + (x (a1 + x (a2 +/ + x (an−2 + x (an−1))/))

A(x)× B(x) = ci xi

i =0

2n−2
∑ , where ci = a j bi− j

j =0

i
∑

Polynomials: Point-Value Representation

• Fundamental theorem of algebra. [Gauss, PhD thesis] A
degree n polynomial with complex coefficients has n
complex roots.

• Corollary. A degree n-1 polynomial A(x) is uniquely specified
by its evaluation at n distinct values of x.

x

y

xj

yj = A(xj)

Polynomials: Point-Value Representation

• Polynomial. [point-value representation]

• Add: O(n) arithmetic operations.

• Multiply: O(n), but need 2n-1 points.

• Evaluate: O(n2) using Lagrange's formula.

A(x) : (x0, y0), . , (xn-1, yn−1)
B(x) : (x0, z0), . , (xn-1, zn−1)

0 0 0 n-1 1 1() () : (x ,), , (x ,)n nA x B x y z y z− −+ + +…

A(x) = yk

(x − x j)
j≠k
∏

(xk − x j)
j≠k
∏k=0

n−1
∑

 A(x) × B(x) : (x0, y0 × z0),. , (x2n-1, y2n−1 × z2n−1)

Converting Between Two Polynomial
Representations

•Tradeoff. Fast evaluation or fast multiplication. We want both!

•Goal. Make all ops fast by efficiently converting between two
representations.

Coefficient

Representation

O(n2)

Multiply

O(n)

Evaluate

Point-value O(n) O(n2)

0 1 n-1a , a , , a… 0 0 1 1(,), , (,)n nx y x y− −…

coefficient
representation

point-value
representation

Converting Between Two Polynomial
Representations: Brute Force

•Coefficient to point-value. Given a polynomial a0 + a1 x + ... + an-1 xn-1,
evaluate it at n distinct points x0, ... , xn-1.

•Point-value to coefficient. Given n distinct points x0, ..., xn-1 and
values y0, ..., yn-1, find unique polynomial a0 + a1 x + ... + an-1 xn-1 that has
given values at given points.

2 1
0 00 0 0

2 1
1 11 1 1

2 1
2 22 2 2

2 1
1 11 1 1

1
1

 1

 1

n

n

n

n
n nn n n

y ax x x
y ax x x
y ax x x

y ax x x

−

−

−

−
− −− − −

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

"
"
"

%
"

Vandermonde matrix is invertible iff xi distinct

O(n3) for Gaussian elimination

O(n2) for matrix-vector multiply

15

Coefficient to Point-Value Representation:
Intuition

• Coefficient to point-value. Given a polynomial a0 + a1 x + ... + an-1 xn-

1, evaluate it at n distinct points x0, ... , xn-1.

• Divide. Break polynomial up into even and odd powers.
– A(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7.
– Aeven(x) = a0 + a2x + a4x2 + a6x3.
– Aodd (x) = a1 + a3x + a5x2 + a7x3.
– A(-x) = Aeven(x2) + x Aodd(x2).
– A(-x) = Aeven(x2) - x Aodd(x2).

• Intuition. Choose two points to be ±1.
– A(-1) = Aeven(1) + 1 Aodd(1).
– A(-1) = Aeven(1) - 1 Aodd(1).

Can evaluate polynomial of degree ≤ n
at 2 points by evaluating two polynomials
of degree ≤ ½n at 1 point.

Coefficient to Point-Value Representation:
Intuition

• Coefficient to point-value. Given a polynomial a0 + a1 x + ... + an-1 xn-

1, evaluate it at n distinct points x0, ... , xn-1.

• Divide. Break polynomial up into even and odd powers.
– A(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7.
– Aeven(x) = a0 + a2x + a4x2 + a6x3.
– Aodd (x) = a1 + a3x + a5x2 + a7x3.
– A(-x) = Aeven(x2) + x Aodd(x2).
– A(-x) = Aeven(x2) - x Aodd(x2).

• Intuition. Choose four points to be ±1, ±i.
– A(-1) = Aeven(-1) + 1 Aodd(1).
– A(-1) = Aeven(-1) - 1 Aodd(-1).
– A(-i) = Aeven(-1) + i Aodd(-1).
– A(-i) = Aeven(-1) - i Aodd(-1).

Can evaluate polynomial of degree ≤ n
at 4 points by evaluating two polynomials
of degree ≤ ½n at 2 points.

Discrete Fourier Transform

• Coefficient to point-value. Given a polynomial a0 + a1 x + ... + an-1 xn-

1, evaluate it at n distinct points x0, ... , xn-1.

• Key idea: choose xk = ωk where ω is principal nth root of unity.

Discrete Fourier transform

0 0
1 2 3 1

1 1
2 4 6 2(1)

2 2
3 6 9 3(1)

3 3

1 2(1) 3(1) (1)(1)
1 1

1 1 1 1 1
1
1

1

1

n

n

n

n n n n n
n n

y a
y a
y a
y a

y a

ω ω ω ω
ω ω ω ω
ω ω ω ω

ω ω ω ω

−

−

−

− − − − −
− −

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

"
"
"
"

%
"

Fourier matrix Fn

Roots of Unity
• Def. An nth root of unity is a complex number x such that xn = 1.

• Fact. The nth roots of unity are: ω0, ω1, …, ωn-1 where ω = e 2π i / n.
• Pf. (ωk)n = (e 2π i k / n) n = (e π i) 2k = (-1) 2k = 1.

• Fact. The ½nth roots of unity are: ν0, ν1, …, νn/2-1 where ν = e 4π i / n.
• Fact. ω2 = ν and (ω2)k = νk.

ω0 = ν0 = 1

ω1

ω2 = ν1 = i

ω3

ω4 = ν2 = -1

ω5

ω6 = ν3 = -i

ω7

n = 8

Fast Fourier Transform
• Goal. Evaluate a degree n-1 polynomial A(x) = a0 + ... + an-1 xn-1 at its

nth roots of unity: ω0, ω1, …, ωn-1.

• Divide. Break polynomial up into even and odd powers.
– Aeven(x) = a0 + a2x + a4x2 + … + an/2-2 x(n-1)/2.
– Aodd (x) = a1 + a3x + a5x2 + … + an/2-1 x(n-1)/2.
– A(x) = Aeven(x2) + x Aodd(x2).

• Conquer. Evaluate degree Aeven(x) and Aodd(x) at the ½nth roots of
unity: ν0, ν1, …, νn/2-1.

• Combine.
– A(ωk+n) = Aeven(νk) + ωk Aodd(νk), 0 ≤ k < n/2
– A(ωk+n/2) = Aeven(νk) - ωk Aodd(νk), 0 ≤ k < n/2

ωk+n/2 = -ωk νk = (ωk)2 = (ωk+n/2)2

fft(n, a0,a1,…,an-1) {
if (n == 1) return a0

(e0,e1,…,en/2-1) ← FFT(n/2, a0,a2,a4,…,an-2)
(d0,d1,…,dn/2-1) ← FFT(n/2, a1,a3,a5,…,an-1)

for k = 0 to n/2 - 1 {
ωk ← e2πik/n

yk+n/2 ← ek + ωk dk
yk+n/2 ← ek - ωk dk

}

return (y0,y1,…,yn-1)
}

FFT Algorithm

16

FFT Summary
• Theorem. FFT algorithm evaluates a degree n-1 polynomial at each

of the nth roots of unity in O(n log n) steps.

• Running time. T(2n) = 2T(n) + O(n) ⇒ T(n) = O(n log n).

assumes n is a power of 2

0 1 n-1a , a , , a… 0 1
0 1(,), , (,)n

ny yω ω −
−…

O(n log n)

coefficient
representation

point-value
representation

Point-Value to Coefficient Representation:
Inverse DFT

• Goal. Given the values y0, ... , yn-1 of a degree n-1 polynomial at the n points
ω0, ω1, …, ωn-1, find unique polynomial a0 + a1 x + ... + an-1 xn-1 that has given
values at given points.

Inverse DFT

0 0

1 2 3 1
1 1

2 4 6 2(1)
2 2

3 6 9 3(1)
3 3

1 2(1) 3(1) (1)(1)
1 1

11 1 1 1 1
1
1

1

1

n

n

n

n n n n n
n n

a y
a y
a y
a y

a y

ω ω ω ω
ω ω ω ω
ω ω ω ω

ω ω ω ω

−

−

−

− − − − −
− −

−
⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

"
"
"
"

%
"

Fourier matrix inverse (Fn)-1

• Claim. Inverse of Fourier matrix is
given by following formula.

1 2 3 (1)

2 4 6 2(1)

3 6 9 3(1)

(1) 2(1) 3(1) (1)(1)

1 1 1 1 1
1
11
1

1

n

n

n n

n n n n n

G
n

ω ω ω ω
ω ω ω ω
ω ω ω ω

ω ω ω ω

− − − − −

− − − − −

− − − − −

− − − − − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"
"
"

%
"

Inverse FFT
Inverse FFT: Proof of Correctness

• Claim. Fn and Gn are inverses.
• Pf.

• Summation lemma. Let ω be a principal nth root of unity. Then

• Pf.
– If k is a multiple of n then ωk = 1 ⇒ sums to n.
– Each nth root of unity ωk is a root of xn - 1 = (x - 1) (1 + x + x2 + ... +

xn-1).
– if ωk ≠ 1 we have: 1 + ωk + ωk(2) + . . . + ωk(n-1) = 0 ⇒ sums to 0. ▪

ω k j

j=0

n−1
∑ =

n if k ≡ 0 mod n
0 otherwise

⎧
⎨
⎩

Fn Gn()k ′ k = 1
n

ωk j ω− j ′ k

j=0

n−1
∑ = 1

n
ω(k− ′ k) j

j=0

n−1
∑ =

 1 if k = ′ k
 0 otherwise

⎧
⎨
⎩

summation lemma

Inverse FFT: Algorithm
ifft(n, a0,a1,…,an-1) {

if (n == 1) return a0

(e0,e1,…,en/2-1) ← FFT(n/2, a0,a2,a4,…,an-2)
(d0,d1,…,dn/2-1) ← FFT(n/2, a1,a3,a5,…,an-1)

for k = 0 to n/2 - 1 {
ωk ← e-2πik/n

yk+n/2 ← (ek + ωk dk) / n
yk+n/2 ← (ek - ωk dk) / n

}

return (y0,y1,…,yn-1)
}

Inverse FFT Summary
• Theorem. Inverse FFT algorithm interpolates a degree n-1

polynomial given values at each of the nth roots of unity in O(n log
n) steps.

assumes n is a power of 2

0 1 n-1a , a , , a… 0 1
0 1(,), , (,)n

ny yω ω −
−…

O(n log n)

coefficient
representation

O(n log n) point-value
representation

17

Polynomial Multiplication
•Theorem. Can multiply two degree n-1
polynomials in O(n log n) steps.

0 1 n-1

0 1 n-1

a , a , , a
b , b , , b

…
… 0 1 2n-2c , , ,c c…

0 2n-1

0 2n-1

A(x), , ()
B(x), , ()

A x
B x

…
… 0 1 2n-1C(x), (), , ()C x C x…

O(n)

point-value multiplication

O(n log n)FFT inverse FFT O(n log n)

coefficient
representation coefficient

representation

FFT in Practice
• Fastest Fourier transform in the West. [Frigo and Johnson]

– Optimized C library.
– Features: DFT, DCT, real, complex, any size, any dimension.
– Won 1999 Wilkinson Prize for Numerical Software.
– Portable, competitive with vendor-tuned code.

• Implementation details.
– Instead of executing predetermined algorithm, it evaluates your

hardware and uses a special-purpose compiler to generate an optimized
algorithm catered to "shape" of the problem.

– Core algorithm is nonrecursive version of Cooley-Tukey radix 2 FFT.
– O(n log n), even for prime sizes.

Reference: http://www.fftw.org

More on FFT

0 2 4 6(, , ,)a a a a

0 4(,)a a

6()a

2 6(,)a a

2()a4()a0()a

1 3 5 7(, , ,)a a a a

1 5(,)a a

7()a

3 7(,)a a

3()a5()a1()a

0 1 2 3 4 5 6 7(, , , , , , ,)a a a a a a a a

0,4,2,6,1,5,3,7

FFT

[0]
ky

[0]
ky [0] [1]−ωk

k n ky y

[0] [1]+ωk
k n ky y

ωk
n

+

−

Parallel FFT

aa0 0 yy00

aa1 1 yy11

aa2 2 yy22

aa3 3 yy33

aa4 4 yy44

aa5 5 yy55

aa6 6 yy66

aa7 7 yy770
2ω

0
2ω

0
2ω

0
2ω

0
4ω

1
4ω

0
4ω
1
4ω 3

8ω

2
8ω

1
8ω

0
8ω

Integer Multiplication
• Integer multiplication. Given two n bit integers a = an-1 … a1a0 and

b = bn-1 … b1b0, compute their product c = a × b.

• Convolution algorithm.
– Form two polynomials.
– Note: a = A(2), b = B(2).
– Compute C(x) = A(x) × B(x).
– Evaluate C(2) = a × b.
– Running time: O(n log n) complex arithmetic steps.

• Theory. [Schönhage-Strassen 1971] O(n log n log log n) bit operations.

• Practice. [GNU Multiple Precision Arithmetic Library] GMP proclaims to
be "the fastest bignum library on the planet." It uses brute force,
Karatsuba, and FFT, depending on the size of n.

2 1
0 1 2 1() n

nA x a a x a x a x −
−= + + + +"

2 1
0 1 2 1() n

nB x b b x b x b x −
−= + + + +"

	Advanced Algorithms
	Divide and Conquer
	5.3 Counting Inversions
	Counting Inversions
	Counting Inversions: Divide-and-Conquer
	Counting Inversions: Divide-and-Conquer
	Counting Inversions: Divide-and-Conquer
	Counting Inversions: Divide-and-Conquer
	Counting Inversions: Combine
	Counting Inversions: Implementation
	5.4 Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points: First Attempt
	Closest Pair of Points: First Attempt
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair Algorithm
	Closest Pair of Points: Analysis
	5.5 Integer Multiplication
	Integer Arithmetic
	Divide-and-Conquer Multiplication: Warmup
	Karatsuba Multiplication
	Karatsuba: Recursion Tree
	Matrix Multiplication
	Matrix Multiplication (MM)
	Matrix Multiplication
	Matrix Multiplication: Warmup
	Matrix Multiplication: Key Idea
	Fast Matrix Multiplication
	Fast Matrix Multiplication in Practice
	Fast Matrix Multiplication in Theory
	Fast Matrix Multiplication in Theory
	Towards faster matrix multiplication…�(Blocked version)
	Algorithms for External Memory
	Disk Access Time
	Rules for EM Algorithms�
	The DAM Model
	Problem
	External Memory Sorting
	EM Sorting
	The CO Memory Model
	Matrix Transpose: �DAM n CO
	Static Searches
	What is a layout?
	Example of Van Emde Boas
	Another View
	Theoretical Guarantees?
	In Practice??
	In Practice II
	In Practice!
	Known Optimal Results
	Other Results Known
	Introduction to �Streaming Algorithms
	Brain Teaser
	Streaming Algorithms
	Another Brain Teaser
	Misra-Gries Algorithm (‘82)
	Data Stream Algorithms
	Streaming Data Sources
	FFT
	Fast Fourier Transform: Applications
	Fast Fourier Transform: Brief History
	Polynomials: Coefficient Representation
	Polynomials: Point-Value Representation
	Polynomials: Point-Value Representation
	Converting Between Two Polynomial Representations
	Converting Between Two Polynomial Representations: Brute Force
	Coefficient to Point-Value Representation: Intuition
	Coefficient to Point-Value Representation: Intuition
	Discrete Fourier Transform
	Roots of Unity
	Fast Fourier Transform
	FFT Algorithm
	FFT Summary
	Point-Value to Coefficient Representation: Inverse DFT
	Inverse FFT
	Inverse FFT: Proof of Correctness
	Inverse FFT: Algorithm
	Inverse FFT Summary
	Polynomial Multiplication
	FFT in Practice
	More on FFT
	FFT
	Parallel FFT
	Integer Multiplication

