Greed is good. Greed is right. Greed works.
Greed clarifies, cuts through, and captures the
§ essence of the evolutionary spirit.
- Gordon Gecko (Michael Douglas)

A

Analysis of Algorithms

Piyush Kumar

Welcome to

Source: K. Wayne, ...

Greedy Algorithms

Optimization problem: Min/Max an objective.
- Minimize the total length of a spanning tree.
- Minimize the size of a file using compression
- .. (The mother of all problems)
Greedy Algorithm
- Attempt to do best at each step without consideration of
future consideration
« For some problems, Locally optimal choice leads to global opt.
« Follows "Greed is good” philosophy
« Requires "Optimal Substructure”
What examples have we already seen?

Greedy Algorithms

For some problems, "6reed is good" works.

For some, it finds a good solution which is not global opt
- Heuristics

- Approximation Algorithms

For some, it can do very bad.

Problem of Change

Vending machine has quarters, nickels, pennies and dimes.
Needs to return N cents change.

Wanted: An algorithm fo return the N cents in minimum
number of coins.

What do we do?

A

.1 Interval Scheduling

&£

Interval Scheduling

Interval scheduling.

- Job j starts at s and finishes at f;.

- Two jobs compatible if they don't overlap.

- Goal: find maximum subset of mutually compatible jobs.
a

Time

Interval Scheduling:
Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's
compatible with the ones already taken.

- [Earliest start time] Consider jobs in ascending order of start time s;.

- [Earliest finish time] Consider jobs in ascending order of finish time
i
- [Shortest interval] Consider jobs in ascending order of interval length

fi-s;

- [Fewest conflicts] For each job, count the number of conflicting jobs
¢;. Schedule in ascending order of conflicts c;.

Interval Scheduling: Greedy
Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's
compatible with the ones already taken.

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

T3

Interval Scheduling:
Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take
each job provided it's compatible with the ones already taken.

Sort jobs by finish times so that f, < f, < ... < f_
obs selected
Aes =1
for j =1ton {
if (Job j compatible with A)
« Avu {j}
return A

Implementation. O(n log n).
- Remember job j* that was added last to A.

s/ - Job jis compatible with A if s; > f;«.
y'/ A)

‘
;
oresty: o] [] [[
;
!
‘
‘

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
Assume greedy is not optimal, and let's see what happens.
- Letiy, iy, ... idenote set of jobs selected by greedy.

- Letj, m denote set of jobs in the optimal solution with
it = j1.i2= j2, ..., in = j. for the largest possible value of r.

job i, finishes before j,.,

I .
I

why not replace job j,.,
with job i,,;?

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
Assume greedy is not optital, and let's see what happens.
- Letiy, ip, ... idenote set of jobs selected by greedy.

- Let jy, jz. ... jm denote set of jobs in the optimal solution with
iy = j1,i2= jz, o, ip = j. for the largest possible value of r.

job i, finishes before j,.,

Co 10 % T T [0 e | .

solution still feasible and optimal,
but contradicts maximality of r.

D

N
4.1 Interval
Partitioning

Interval Partitioning

Interval partitioning.
- Lecture j starts at s; and finishes af f.

- Goal: find minimum number of classrooms to schedule all
lectures so that no two occur at the same time in the same
room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

9 930 10 10:30 1 1130 12 1230 1 130 2 230 3 330 4 430

Interval Partitioning: Lower Bound
on Optimal Solution

+ Def. The depth of a set of open intervals is the maximum number
that contain any given time.

+ Key observation. Number of classrooms needed > depth.

+ Ex: Depth of schedule below = 3 ? schedule below is optimal.
a, b, c all contain 9:30

* Q. Does there always exist a schedule equal to depth of intervals?

9 930 10 10:30 1 1130 12 1230 1 130 2 230 3 330 4 430

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible lectures in
the same classroom.

Theorem. Greedy algorithm is optimal.
Pf.

- Let d = number of classrooms that the greedy algorithm allocates.
Classroom d is opened because we needed to schedule a job, say j, that is
incompatible with all d-1 other classrooms.

Since we sorted by start time, all these incompatibilities are caused by
lectures that start no later than's;.

Thus, we have d lectures overlapping at time s; + &.

- Key observation = all schedules use > d classrooms. «

'

'

Interval Partitioning

Interval partitioning.
- Lecture j starts af s; and finishes at f;.

- Goal: find minimum number of classrooms to schedule all
lectures so that no two occur at the same fime in the same
room.

Ex: This schedule uses only 3.

9 930 10 1030 11 1130 12 1230 1 130 2 230 3 330 4 430

Interval Partitioning:
Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:
assign lecture to any compatible classroom.

Sort intervals by starting time so that s; <'s;, <
d < 0 “— number of allocated classrooms
for j =1ton {
if (lecture j is compatible with some classroom k)
schedule lecture j in classroom k
else
allocate a new classroom d + 1
schedule lecture j in classroom d + 1
ded+ 1
X

Implementation. O(n log n).

- Keep the classrooms in a priority queue.

.S s

- For each classroom k, maintain the finish time of the last job added.

D

AN
4.2 Scheduling to
Minimize Lateness

Scheduling to Minimizing Lateness

Minimizing lateness problem.
- Single resource processes one job at a time.
- Job j requires t; units of processing time and is due af time dj.
- If j starts at time Sj. it finishes at time fJ =5+t
- Lateness: 0;=max {0, fj-d;}.
- Goal: schedule all jobs to minimize maximum lateness L = max ;.

Ex:

|+
w
~
IS
w
~

lateness = 2 lateness = 0 max lateness =

]] I}

46 dy= 14 d,=9 |

6 7 8 9 10 1 12 13 1# 15)

o

Minimizing Lateness:
Greedy Algorithms

Greedy template. Consider jobs in some order.
- [Shortest processing time first] Consider jobs in ascending

order of processing fime f;.

- [Earliest deadline first] Consider jobs in ascending order of
deadline d;.

- [Smallest slack] Consider jobs in ascending order of slack d; -
1.
i

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending
order of processing time t;.

counterexample

- [Smallest slack] Consider jobs in ascending order of slack d; -

counterexample

Minimizing Lateness: Greedy
Algorithm

Greedy algorithm. Earliest deadline first.

Sort n jobs by deadline so that d; < d, £ .. < d,

te<0

for j =1 ton
Assign job j to interval [t, t + t;]
st ettty
tet+ g

output intervals [s;, fjl

max lateness = 1

ey
)

Minimizing Lateness: No
Idle Time

Observation. There exists an optimal schedule with no idle time.

Minimizing Lateness: Inversions

Def. Aninversion in schedule S is a pair of jobs i and j such that:
i < j but j scheduled before i.

inversion

Observation. Greedy schedule has no inversions.

Observation. If aschedule (with no idle time) has an inversion, it
has one with a pair of inverted jobs scheduled consecutively.

Minimizing Lateness: Inversions

Def. Aninversion in schedule S is a pair of jobs i and j such that:
i< jbut jscheduled before i.

inversion

before swap|

£
Claim. Swapping two adjacent, inverted jobs reduces the number of
inversions by one and does not increase the max lateness.

Pf. Let O be the lateness before the swap, and let O ' be it afterwards.
- O'=0cforallk=i,j
- 04<0
- If job j is late:

x fi-d; (definition)
= f-d; (/ finishes at time £)
< f-d (<))
< N (definition)

Minimizing Lateness: Analysis of Greedy
Algorithm

+ Theorem. Greedy schedule S is optimal.

+ Pf. Define S* to be an optimal schedule that has
the fewest number of inversions, and let's see
what happens.

- Can assume S* has no idle time.

- If S* has no inversions, then S = S*.

- If S* has an inversion, let i-j be an adjacent
inversion.

+ swapping i and j does not increase the
maximum lateness and strictly decreases
the number of inversions

+ this contradicts definition of S*

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the
greedy algorithm, its solution is at least as good as any other
algorithm's.

Exchange argument. Gradually transform any solution to the one
found by the greedy algorithm without hurting its quality.

Structural. Discover a simple "structural' bound asserting that
every possible solution must have a certain value. Then show that
your algorithm always achieves this bound.

A

4.3 Optimal Caching

Optimal Offline Caching

Caching.
- Cache with capacity fo store k items.
- Sequence of m item requests dy, d,, ..., d,,.
- Cache hit: item already in cache when requested.
- Cache miss: item not already in cache when requested: must
I_:r‘ing;lrequestad item into cache, and evict some existing item,
if full.

Goal. Eviction schedule that minimizes number of
cache misses.

Ex: k =2, initial cache = ab,
requests: a,b,c,b,c,a,a,b.
_Optimal eviction schedule: 2 cache misses.
7

requests cache

Optimal Offline Caching:
Farthest-In-Future

Farthest-in-future. Evict item in the cache that is not requested until
farthest in the future.

‘curr‘enrcachei ‘a‘b‘c‘d‘e‘f‘

‘fu'rurequeries‘:‘gabcedabbacdeafadefgh_..
[j T

cache miss. eject this one

Theorem. [Bellady, 1960s] FF is optimal eviction schedule.
Pf. Algorithm and theorem are intuitive; proof is subtle.

Reduced Eviction Schedules

Def. A reduced schedule is a schedule that only inserts an item
into the cache in a step in which that item is requested.

Intuition. Can transform an unreduced schedule into a reduced
one with no more cache misses.

ala|b|c ala
ala c ala
cla c cla
d|a d|a
ala b ala
bla b bla
clalc|b cla
alalb|c ala
ala|b|c aa‘c‘b

[an unreduced schedule [a reduced schedule

Reduced Eviction Schedules

Claim. Given any unreduced schedule S, can transform it into a reduced
schedule S' with no more cache misses. doesn't enter cache at request
Pf. (by induction on number of unreduced items)— "™

- Suppose S brings d into the cache at time t, without a request.

- Let c be the item S evicts when it brings d into the cache.

- Case l: devicted at time t', before next request for d.

- Case 2: drequested at time t' before d is evicted. »

\ s s
c c c c
[[[* [
d d
rrrrrrrr * PR g et L
€ 4 evicted at time ¥, G drequested at time ' d
l before next request’ l l
Case 1 Case 2

Farthest-In-Future: Analysis

Theorem. FF is optimal eviction algorithm.
Pf. (by induction on number or requests j)

Invariant: There exists an optimal reduced schedule S that makes
the same eviction schedule as Sgr through the first j+1 requests.

Let S be reduced schedule that satisfies invariant through j
requests. We produce S' that satisfies invariant after j+1
requests.

- Consider (j+1)* request d = d;,;.

- Since S and Sg¢ have agreed up until now, they have the same

cache contents before request j+1.

- Case 1: (dis already in the cache). S' = S satisfies invariant.

- Case 2: (d is not in the cache and S and Sg¢ evict the same
element).
S' = S satisfies invariant.

Farthest-In-Future: Analysis

Pf. (continued)
- Case 3: (dis not in the cache; Sg¢ evicts e; S evicts f # e).
+ begin construction of S' from S by evicting e instead of f

\ same \e\f\ same \e\f\
S s'

same ‘e‘d‘

same ‘d‘f‘
S s'

- now S' agrees with Sge on first j+1 requests; we show that having
element f in cache is no worse than having element e

Farthest-In-Future: Analysis

Let j' be the first time after j+1 that S and S' take a different action, an
let g be item requested at time j'.

must involve e or f (or both)

i ‘ same ‘ e ‘ ‘ same ‘ f ‘

- Case3a: g=-e. Can'tﬁappen with Far‘thest—In—Fuh.ﬁ'a since there
must be a request for f before e.

- Case 3b: g=f. Element f can't be in cache of S, so let e’ be the
element that S evicts.

« ife' = e, S' accesses f from cache; now S and S' have same cache

- ife' #ze, S' evicts e’ and brings e into the cache; now Sand S’
haTve the same cache

Note: S'is no longer reduced, but can be transformed into
areduced schedule that agrees with Spr through step j+1

Farthest-In-Future: Analysis

Let ' be the first time after j+1 that S and S' take a different action, an
let g be item requested at time j'. +

must involve e or f (or both)

J same. ‘ e ‘ ‘ same ‘ f ‘

s

otherwise S' would take the same action

- Case3c: g#e,f. S nkus'r evict e.
Make S' evict f; now S and S' have the same cache. =

J same ‘ g ‘ ‘ same g ‘

Caching Perspective

Online vs. offline algorithms.
- Offline: full sequence of requests is known a priori.
- Online (reality): requests are not known in advance.
- Caching is among most fundamental online problems in CS.

LIFO. Evict page brought in most recently.
LRU. Evict page whose most recent access was earliest.

FF with direction of time reversed!
Theorem. FF is optimal offline eviction algorithm.
- Provides basis for understanding and analyzing online algorithms.
- LRU is k-competitive. [Section 13.8]
7 - LIFO is arbitrarily bad.
5 \

	Analysis of Algorithms
	Greedy Algorithms
	Greedy Algorithms
	Problem of Change
	4.1 Interval Scheduling
	Interval Scheduling
	Interval Scheduling: Greedy Algorithms
	Interval Scheduling: Greedy Algorithms
	Interval Scheduling: Greedy Algorithm
	Interval Scheduling: Analysis
	Interval Scheduling: Analysis
	4.1 Interval Partitioning
	Interval Partitioning
	Interval Partitioning
	Interval Partitioning: Lower Bound on Optimal Solution
	Interval Partitioning: Greedy Algorithm
	Interval Partitioning: Greedy Analysis
	4.2 Scheduling to Minimize Lateness
	Scheduling to Minimizing Lateness
	Minimizing Lateness: Greedy Algorithms
	Minimizing Lateness: Greedy Algorithms
	Minimizing Lateness: Greedy Algorithm
	Minimizing Lateness: No Idle Time
	Minimizing Lateness: Inversions
	Minimizing Lateness: Inversions
	Minimizing Lateness: Analysis of Greedy Algorithm
	Greedy Analysis Strategies
	4.3 Optimal Caching
	Optimal Offline Caching
	Optimal Offline Caching: Farthest-In-Future
	Reduced Eviction Schedules
	Reduced Eviction Schedules
	Farthest-In-Future: Analysis
	Farthest-In-Future: Analysis
	Farthest-In-Future: Analysis
	Farthest-In-Future: Analysis
	Caching Perspective

