
1

Analysis of Algorithms

Piyush Kumar
(Lecture 5: Compression)

Welcome to 4531 Source: Guy E. Blelloch,
Emad, Tseng …

Compression Programs
• File Compression: Gzip, Bzip

• Archivers :Arc, Pkzip, Winrar, …

• File Systems: NTFS

Multimedia
• HDTV (Mpeg 4)

• Sound (Mp3)

• Images (Jpeg)

Compression Outline
Introduction: Lossy vs. Lossless

Information Theory: Entropy, etc.

Probability Coding: Huffman +
Arithmetic Coding

Encoding/Decoding

Encoder Decoder

Will use “message” in generic sense to
mean the data to be compressed

Input

Message

Output

Message
Compressed

Message

The encoder and decoder need to understand

common compressed format.

CODEC

Lossless vs. Lossy
Lossless: Input message = Output message

Lossy: Input message  Output message

Lossy does not necessarily mean loss of quality. In fact the
output could be “better” than the input.

– Drop random noise in images (dust on lens)

– Drop background in music

– Fix spelling errors in text. Put into better form.

Writing is the art of lossy text compression.

2

Lossless Compression Techniques

• LZW (Lempel-Ziv-Welch) compression

– Build dictionary

– Replace patterns with index of dict.

• Burrows-Wheeler transform

– Block sort data to improve compression

• Run length encoding

– Find & compress repetitive sequences

• Huffman code

– Use variable length codes based on
frequency

How much can we
compress?

For lossless compression, assuming all
input messages are valid, if even one
string is compressed, some other
must expand.

Model vs. Coder

To compress we need a bias on the probability of
messages. The model determines this bias

Example models:

– Simple: Character counts, repeated strings

– Complex: Models of a human face

Model Coder
Probs. BitsMessages

Encoder

Quality of Compression

Runtime vs. Compression vs. Generality

Several standard corpuses to compare algorithms

Calgary Corpus

• 2 books, 5 papers, 1 bibliography,
1 collection of news articles, 3 programs,
1 terminal session, 2 object files,
1 geophysical data, 1 bitmap bw image

The Archive Comparison Test maintains a
comparison of just about all algorithms publicly
available

Comparison of
Algorithms

Program Algorithm Time BPC Score

BOA PPM Var. 94+97 1.91 407

PPMD PPM 11+20 2.07 265

IMP BW 10+3 2.14 254

BZIP BW 20+6 2.19 273

GZIP LZ77 Var. 19+5 2.59 318

LZ77 LZ77 ? 3.94 ?

Information Theory
An interface between modeling and

coding

• Entropy
– A measure of information content

• Entropy of the English Language
– How much information does each

character in “typical” English text
contain?

3

Entropy (Shannon 1948)
For a set of messages S with probability p(s),

s S, the self information of s is:

Measured in bits if the log is base 2.

The lower the probability, the higher the
information

Entropy is the weighted average of self
information.

H S p s
p ss S

() () log
()





1

i s
p s

p s() log
()

log ()  
1

Entropy Example

p S() {. ,. ,. ,. ,. } 25 25 25 125 125

H S() . log . log .    3 25 4 2 125 8 2 25

p S() {. ,. ,. ,. ,. } 5 125 125 125 125

p S() {. ,. ,. ,. ,. } 75 0625 0625 0625 0625

H S() . log . log   5 2 4 125 8 2

H S() . log() . log .   75 4 3 4 0625 16 13

Entropy of the English Language

How can we measure the information per
character?

ASCII code = 7

Entropy = 4.5 (based on character
probabilities)

Huffman codes (average) = 4.7

Unix Compress = 3.5

Gzip = 2.5

BOA = 1.9 (current close to best text
compressor)

Must be less than 1.9.

Shannon’s experiment
Asked humans to predict the next character

given the whole previous text. He used
these as conditional probabilities to
estimate the entropy of the English
Language.

The number of guesses required for right
answer:

From the experiment he predicted
H(English) = .6-1.3

of guesses 1 2 3 3 5 > 5

Probability .79 .08 .03 .02 .02 .05

Data compression model

Reduce Data Redundancy

Reduction of Entropy

Entropy Encoding

Input data

Compressed Data

Coding
How do we use the probabilities to

code messages?

• Prefix codes and relationship to
Entropy

• Huffman codes

• Arithmetic codes

• Implicit probability codes…

4

Assumptions

Communication (or file) broken up into pieces called
messages.

Adjacent messages might be of a different types
and come from a different probability
distributions

We will consider two types of coding:

• Discrete: each message is a fixed set of bits

– Huffman coding, Shannon-Fano coding

• Blended: bits can be “shared” among messages

– Arithmetic coding

Uniquely Decodable Codes

A variable length code assigns a bit string
(codeword) of variable length to every
message value

e.g. a = 1, b = 01, c = 101, d = 011

What if you get the sequence of bits
1011 ?

Is it aba, ca, or, ad?

A uniquely decodable code is a variable length
code in which bit strings can always be
uniquely decomposed into its codewords.

Prefix Codes
A prefix code is a variable length code

in which no codeword is a prefix of
another word

e.g a = 0, b = 110, c = 111, d = 10

Can be viewed as a binary tree with
message values at the leaves and 0 or
1s on the edges.

a

b c

d

0

0

0 1

1

1

Some Prefix Codes for Integers

n Binary Unary Split

1 ..001 0 1|

2 ..010 10 10|0

3 ..011 110 10|1

4 ..100 1110 110|00

5 ..101 11110 110|01

6 ..110 111110 110|10

Many other fixed prefix codes:

Golomb, phased-binary, subexponential, ...

Average Bit Length
For a code C with associated

probabilities p(c) the average length
is defined as

We say that a prefix code C is optimal
if for all prefix codes C’,

ABL(C)  ABL(C’)





Cc

clcpCABL)()()(

Relationship to Entropy
Theorem (lower bound): For any

probability distribution p(S) with
associated uniquely decodable code C,

Theorem (upper bound): For any
probability distribution p(S) with
associated optimal prefix code C,

)()(CABLSH 

1)()( SHCABL

5

Kraft McMillan Inequality

Theorem (Kraft-McMillan): For any uniquely
decodable code C,

Also, for any set of lengths L such that

there is a prefix code C such that

2 1



 l c

c C

()

2 1



 l

l L

l c l i Li i() (,...,| |) 1

Proof of the Upper Bound (Part 1)

Assign to each message a length

We then have

So by the Kraft-McMillan ineq. there is a
prefix code with lengths l(s).

  l s p s() log () 1

  

 

2 2

2

1

1

1















 













l s

s S

p s

s S

p s

s S

s S

p s

() log / ()

log / ()

()

Proof of the Upper
Bound (Part 2)

  

)(1

))(/1log()(1

)))(/1log(1()(

)(/1log)(

)()()(

SH

spsp

spsp

spsp

slspSABL

Ss

Ss

Ss

Ss



























Now we can calculate the average length given l(s)

And we are done.

Another property of optimal codes

Theorem: If C is an optimal prefix code for
the probabilities {p1, …, pn} then pi > pj

implies l(ci)  l(cj)
Proof: (by contradiction)

Assume l(ci) > l(cj). Consider switching
codes ci and cj. If la is the average length
of the original code, the length of the new
code is

This is a contradiction since la was
supposed to be optimal

l l p l c l c p l c l c

l p p l c l c

l

a a j i j i j i

a j i i j

a

' (() ()) (() ())

()(() ())

    

   



Corollary
• The pi is smallest over the code, then l(ci)

is the largest.

Huffman Coding

Binary trees for compression

6

Huffman Code
• Approach

– Variable length encoding of symbols

– Exploit statistical frequency of symbols

– Efficient when symbol probabilities vary widely

• Principle

– Use fewer bits to represent frequent symbols

– Use more bits to represent infrequent symbols

A A B A

A AA B

Huffman Codes
Invented by Huffman as a class assignment

in 1950.
Used in many, if not most compression algorithms

• gzip, bzip, jpeg (as option), fax
compression,…

Properties:
– Generates optimal prefix codes

– Cheap to generate codes

– Cheap to encode and decode

– la=H if probabilities are powers of 2

Huffman Code Example

• Expected size
– Original  1/82 + 1/42 + 1/22 + 1/82 = 2 bits / symbol

– Huffman  1/83 + 1/42 + 1/21 + 1/83 = 1.75 bits / symbol

Symbol Dog Cat Bird Fish

Frequency 1/8 1/4 1/2 1/8

Original
Encoding

00 01 10 11

2 bits 2 bits 2 bits 2 bits

Huffman
Encoding

110 10 0 111

3 bits 2 bits 1 bit 3 bits

Huffman Codes
Huffman Algorithm

• Start with a forest of trees each
consisting of a single vertex
corresponding to a message s and
with weight p(s)

• Repeat:
– Select two trees with minimum weight

roots p1 and p2

– Join into single tree by adding root with
weight p1 + p2

Example

p(a) = .1, p(b) = .2, p(c) = .2, p(d) = .5

a(.1) b(.2) d(.5)c(.2)

a(.1) b(.2)

(.3)

a(.1) b(.2)

(.3) c(.2)

a(.1) b(.2)

(.3) c(.2)

(.5)

(.5) d(.5)

(1.0)

a=000, b=001, c=01, d=1

0

0

0

1

1

1
Step 1

Step 2

Step 3

Encoding and Decoding
Encoding: Start at leaf of Huffman tree and

follow path to the root. Reverse order of
bits and send.

Decoding: Start at root of Huffman tree and
take branch for each bit received. When
at leaf can output message and return to
root.

a(.1) b(.2)

(.3) c(.2)

(.5) d(.5)

(1.0)
0

0

0

1

1

1

There are even faster methods that

can process 8 or 32 bits at a time

7

Lemmas
• L1 : Let pi be the smallest over the code, then

l(ci) is the largest and hence a leaf of the tree. (
Let its parent be u)

• L2 : If pj is second smallest over the code, then
l(cj) is the child of u in the optimal code.

• L3 : There is an optimal prefix code with
corresponding tree T*, in which the two lowest
frequency letters are siblings.

Huffman codes are
optimal

Theorem: The Huffman algorithm
generates an optimal prefix code.

In other words: It achieves the minimum
average number of bits per letter of
any prefix code.

Proof: By induction
Base Case: Trivial (one bit optimal)
Assumption: The method is optimal for all

alphabets of size k-1.

Proof:
• Let y* and z* be the two lowest

frequency letters merged in w*. Let
T be the tree before merging and T’
after merging.

• Then : ABL(T’) = ABL(T) – p(w*)

• T’ is optimal by induction.

Proof:
• Let Z be a better tree compared to T

produced using Huffman’s alg.
• Implies ABL(Z) < ABL(T)
• By lemma L3, there is such a tree Z’ in

which the leaves representing y* and z*
are siblings (and has same ABL as Z).

• By previous page ABL(Z’) =ABL(Z) – p(w*)
• Contradiction!

Adaptive Huffman Codes
Huffman codes can be made to be

adaptive without completely
recalculating the tree on each step.

• Can account for changing
probabilities

• Small changes in probability, typically
make small changes to the Huffman
tree

Used frequently in practice

Huffman Coding
Disadvantages

• Integral number of bits in each code.

• If the entropy of a given character
is 2.2 bits,the Huffman code for that
character must be either 2 or 3 bits
, not 2.2.

8

Towards Arithmetic
coding

• An Example: Consider sending a
message of length 1000 each with
having probability .999

• Self information of each message

-log(.999)= .00144 bits

• Sum of self information = 1.4 bits.

• Huffman coding will take at least 1k
bits.

• Arithmetic coding = 3 bits!

Arithmetic Coding:
Introduction

Allows “blending” of bits in a message sequence.

Can bound total bits required based on sum of self
information:

Used in PPM, JPEG/MPEG (as option), DMM

More expensive than Huffman coding, but integer
implementation is not too bad.

l si
i

n

 


2
1

Arithmetic Coding (message intervals)

Assign each probability distribution to an interval
range from 0 (inclusive) to 1 (exclusive).

e.g.

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

f(a) = .0, f(b) = .2, f(c) = .7

f i p j
j

i

() ()





1

1

The interval for a particular message will be called

the message interval (e.g for b the interval is [.2,.7))

Arithmetic Coding (sequence intervals)

To code a message use the following:

Each message narrows the interval by a factor of pi.

Final interval size:

The interval for a message sequence will be called
the sequence interval

l f l l s f

s p s s p
i i i i

i i i

1 1 1 1

1 1 1

  

 
 



s pn i
i

n





1

Arithmetic Coding: Encoding Example

Coding the message sequence: bac

The final interval is [.27,.3)

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.2

0.21

0.27

0.3

Uniquely defining an interval

Important property:The sequence intervals for
distinct message sequences of length n will never
overlap

Therefore: specifying any number in the final
interval uniquely determines the sequence.

Decoding is similar to encoding, but on each step
need to determine what the message value is and
then reduce interval

9

Arithmetic Coding: Decoding Example

Decoding the number .49, knowing the message is of
length 3:

The message is bbc.

a = .2

c = .3

b = .5

0.0

0.2

0.7

1.0

a = .2

c = .3

b = .5

0.2

0.3

0.55

0.7

a = .2

c = .3

b = .5

0.3

0.35

0.475

0.55

0.49
0.49

0.49

RealArith Encoding and
Decoding

RealArithEncode:

• Determine l and s using original recurrences

• Code using l + s/2 truncated to 1+-log s bits

RealArithDecode:

• Read bits as needed so code interval falls within a
message interval, and then narrow sequence
interval.

• Repeat until n messages have been decoded .

Bound on Length

Theorem: For n messages with self information
{s1,…,sn} RealArithEncode will generate at most

bits.

 1 1

1

1

2

1

1

1

1

    




















  










 










 

















log log

log

s p

p

s

s

i
i

n

i
i

n

i
i

n

i
i

n

2
1




 si
i

n

Applications of
Probability Coding

How do we generate the probabilities?

Using character frequencies directly does not work
very well (e.g. 4.5 bits/char for text).

Technique 1: transforming the data

• Run length coding (ITU Fax standard)

• Move-to-front coding (Used in Burrows-Wheeler)

• Residual coding (JPEG LS)

Technique 2: using conditional probabilities

• Fixed context (JBIG…almost)

• Partial matching (PPM)

Run Length Coding
Code by specifying message value

followed by number of repeated
values:

e.g. abbbaacccca =>
(a,1),(b,3),(a,2),(c,4),(a,1)

The characters and counts can be
coded based on frequency.

This allows for small number of bits
overhead for low counts such as 1.

Facsimile ITU T4 (Group 3)

Standard used by all home Fax Machines

ITU = International Telecommunications Standard

Run length encodes sequences of black+white pixels

Fixed Huffman Code for all documents. e.g.

Since alternate black and white, no need for values.

Run length White Black

1 000111 010

2 0111 11

10 00111 0000100

10

Move to Front Coding
Transforms message sequence into sequence of

integers, that can then be probability coded

Start with values in a total order:
e.g.: [a,b,c,d,e,….]

For each message output position in the order and
then move to the front of the order.
e.g.: c => output: 3, new order: [c,a,b,d,e,…]

a => output: 2, new order: [a,c,b,d,e,…]

Codes well if there are concentrations of message
values in the message sequence.

Residual Coding
Used for message values with

meaningfull order
e.g. integers or floats.

Basic Idea: guess next value based on
current context. Output difference
between guess and actual value. Use
probability code on the output.

JPEG-LS
JPEG Lossless (not to be confused with lossless JPEG)

Just completed standardization process.

Codes in Raster Order. Uses 4 pixels as context:

Tries to guess value of * based on W, NW, N and NE.

Works in two stages

NW

W

N NE

*

JPEG LS: Stage 1

Uses the following equation:

Averages neighbors and captures edges. e.g.

















otherwise

),min(if),max(

),max(if),min(

NWWN

WNNWWN

WNNWWN

P

40

40

3 *

3

30

20

40 *

30

3

40

3 *

40

JPEG LS: Stage 2
Uses 3 gradients: W-NW, NW-N, N-NE

• Classifies each into one of 9 categories.

• This gives 93=729 contexts, of which only 365 are
needed because of symmetry.

• Each context has a bias term that is used to
adjust the previous prediction

After correction, the residual between guessed and
actual value is found and coded using a Golomblike
code.

Using Conditional
Probabilities: PPM

Use previous k characters as the context.

Base probabilities on counts:
e.g. if seen th 12 times followed by e 7 times, then the
conditional probability p(e|th)=7/12.

Need to keep k small so that dictionary does not get too large.

11

Ideas in Lossless
compression

• That we did not talk about
specifically
– Lempel-Ziv (gzip)

• Tries to guess next window from previous
data

– Burrows-Wheeler (bzip)
• Context sensitive sorting
• Block sorting transform

LZ77: Sliding Window Lempel-Ziv

Dictionary and buffer “windows” are fixed length
and slide with the cursor

On each step:

• Output (p,l,c)
p = relative position of the longest match in the
dictionary
l = length of longest match
c = next char in buffer beyond longest match

• Advance window by l + 1

a a c a a c a b c a b a b a c

Dictionary

(previously coded)
Lookahead

Buffer

Cursor

Lossy compression Scalar Quatization
• Given a camera image with 12bit

color, make it 4-bit grey scale.

• Uniform Vs Non-Uniform
Quantization
– The eye is more sensitive to low values

of red compared to high values.

Vector Quantization
• How do we compress a color image

(r,g,b)?
– Find k – representative points for all

colors
– For every pixel, output the nearest

representative
– If the points are clustered around the

representatives, the residuals are small
and hence probability coding will work
well.

Transform coding
• Transform input into another space.

• One form of transform is to choose a set of basis
functions.

• JPEG/MPEG both

use this idea.

12

Other Transform codes
• Wavelets

• Fractal base compression
– Based on the idea of fixed points of

functions.

