
1

Analysis of AlgorithmsAnalysis of Algorithms

Piyush Kumar
(Lecture 4: Greedy Algorithms)

Welcome to 4531 Source: K. Wayne, …

Greed is good. Greed is right. Greed works. 
Greed clarifies, cuts through, and captures the 
essence of the evolutionary spirit.

- Gordon Gecko (Michael Douglas)

Greedy Algorithms
• Optimization problem: Min/Max an objective.

– Minimize the total length of a spanning tree.

– Minimize the size of a file using compression

– … (The mother of all problems)

• Greedy Algorithm
– Attempt to do best at each step without consideration of 

future consideration
• For some problems, Locally optimal choice leads to global opt.

• Follows “Greed is good” philosophy

• Requires “Optimal Substructure”

• What examples have we already seen? 

Greedy Algorithms
• For some problems, “Greed is good” works.

• For some, it finds a good solution which is not global opt
– Heuristics

– Approximation Algorithms

• For some, it can do very bad.



2

Problem of Change
• Vending machine has quarters, nickels, pennies and dimes. 

Needs to return N cents change. 

• Wanted: An algorithm to return the N cents in minimum 
number of coins.

• What do we do?

5

4.1  Interval Scheduling

Interval Scheduling
• Interval scheduling.

– Job j starts at sj and finishes at fj.

– Two jobs compatible if they don't overlap.

– Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d



3

Interval Scheduling:  
Greedy Algorithms

• Greedy template.  Consider jobs in some order. Take each job provided it's 
compatible with the ones already taken.

– [Earliest start time] Consider jobs in ascending order of start time sj.

– [Earliest finish time] Consider jobs in ascending order of finish time 
fj.

– [Shortest interval] Consider jobs in ascending order of interval length  
fj - sj.

– [Fewest conflicts] For each job, count the number of conflicting jobs 
cj. Schedule in ascending order of conflicts cj.

Interval Scheduling:  Greedy 
Algorithms

• Greedy template.  Consider jobs in some order. Take each job provided it's 
compatible with the ones already taken.

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

• Greedy algorithm.  Consider jobs in increasing order of finish time. Take 
each job provided it's compatible with the ones already taken.

• Implementation.  O(n log n).

– Remember job j* that was added last to A.

– Job j is compatible with A if sj  fj*.

Sort jobs by finish times so that f1  f2  ...  fn.

A  

for j = 1 to n {

if (job j compatible with A)

A  A  {j}

}

return A  

jobs selected 

Interval Scheduling:  
Greedy Algorithm

/Users/wayne/cs423/04demo-interval-scheduling.ppt#1. Interval%20Scheduling


4

Interval Scheduling:  Analysis

• Theorem.  Greedy algorithm is optimal.

• Pf.  (by contradiction)

– Assume greedy is not optimal, and let's see what happens.

– Let i1, i2, ... ik denote set of jobs selected by greedy.

– Let j1, j2, ... jm  denote set of jobs in the optimal solution with
i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r. 

j1 j2 jr

i1 i1 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1

with job ir+1?

job ir+1 finishes before jr+1

j1 j2 jr

i1 i1 ir ir+1

Interval Scheduling:  Analysis
• Theorem.  Greedy algorithm is optimal.

• Pf.  (by contradiction)

– Assume greedy is not optimal, and let's see what happens.

– Let i1, i2, ... ik denote set of jobs selected by greedy.

– Let j1, j2, ... jm  denote set of jobs in the optimal solution with
i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Greedy:

OPT:

solution still feasible and optimal, 
but contradicts maximality of r.

ir+1

job ir+1 finishes before jr+1

12

4.1  Interval 
Partitioning



5

Interval Partitioning
• Interval partitioning.

– Lecture j starts at sj and finishes at fj.

– Goal:  find minimum number of classrooms to schedule all 
lectures so that no two occur at the same time in the same 
room.

• Ex:  This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Interval Partitioning
• Interval partitioning.

– Lecture j starts at sj and finishes at fj.

– Goal:  find minimum number of classrooms to schedule all 
lectures so that no two occur at the same time in the same 
room.

• Ex:  This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Interval Partitioning:  Lower Bound 
on Optimal Solution

• Def.  The depth of a set of open intervals is the maximum number 
that contain any given time.

• Key observation.  Number of classrooms needed   depth.

• Ex:  Depth of schedule below = 3   schedule below is optimal.

• Q.  Does there always exist a schedule equal to depth of intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30



6

Interval Partitioning:  
Greedy Algorithm

• Greedy algorithm.  Consider lectures in increasing order of start time:  
assign lecture to any compatible classroom.

• Implementation.  O(n log n).

– For each classroom k, maintain the finish time of the last job added.

– Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1  s2  ...  sn.

d  0

for j = 1 to n {

if (lecture j is compatible with some classroom k)

schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d  d + 1

}    

number of allocated classrooms

Interval Partitioning:  Greedy Analysis

• Observation.  Greedy algorithm never schedules two incompatible lectures in 
the same classroom.

• Theorem.  Greedy algorithm is optimal.

• Pf.  

– Let d = number of classrooms that the greedy algorithm allocates.

– Classroom d is opened because we needed to schedule a job, say j, that is 
incompatible with all d-1 other classrooms.

– Since we sorted by start time, all these incompatibilities are caused by 
lectures that start no later than sj.

– Thus, we have d lectures overlapping at time sj + .

– Key observation   all schedules use  d classrooms.  ▪

18

4.2  Scheduling to 
Minimize Lateness



7

Scheduling to Minimizing Lateness
• Minimizing lateness problem.

– Single resource processes one job at a time.

– Job j requires tj units of processing time and is due at time dj.

– If j starts at time sj, it finishes at time fj = sj + tj. 

– Lateness:  j = max { 0,  fj - dj }.

– Goal:  schedule all jobs to minimize maximum lateness L = max j.

• Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

Minimizing Lateness:  
Greedy Algorithms

• Greedy template.  Consider jobs in some order. 

– [Shortest processing time first] Consider jobs in ascending 
order of processing time tj.

– [Earliest deadline first] Consider jobs in ascending order of 
deadline dj.

– [Smallest slack] Consider jobs in ascending order of slack dj -
tj.

• Greedy template.  Consider jobs in some order. 

– [Shortest processing time first] Consider jobs in ascending 
order of processing time tj.

– [Smallest slack] Consider jobs in ascending order of slack dj -
tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness:  Greedy Algorithms



8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1  d2  …  dn

t  0

for j = 1 to n

Assign job j to interval [t, t + tj]

sj  t, fj  t + tj
t  t + tj

output intervals [sj, fj]

Minimizing Lateness:  Greedy 
Algorithm

• Greedy algorithm.  Earliest deadline first.

Minimizing Lateness: No 
Idle Time

• Observation.  There exists an optimal schedule with no idle time.

• Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

Minimizing Lateness: Inversions

• Def.  An inversion in schedule S is a pair of jobs i and j such that:
i < j but j scheduled before i.

• Observation.  Greedy schedule has no inversions.

• Observation.  If a schedule (with no idle time) has an inversion, it 
has one with a pair of inverted jobs scheduled consecutively.

ijbefore swap

inversion



9

Minimizing Lateness: Inversions
• Def.  An inversion in schedule S is a pair of jobs i and j such that:

i < j but j scheduled before i.

• Claim.  Swapping two adjacent, inverted jobs reduces the number of 
inversions by one and does not increase the max lateness.

• Pf.  Let  be the lateness before the swap, and let  ' be it afterwards.

– 'k = k for all k  i, j

– 'i  i

– If job j is late:

ij

i j

before swap

after swap

n)(definitio

)(

) time at finishes (

n)(definitio

i

ii

iji

jjj

jidf

fjdf

df







−

−=

−=

f'j

fi

inversion

Minimizing Lateness: Analysis of Greedy 
Algorithm

• Theorem.  Greedy schedule S is optimal.

• Pf.  Define S* to be an optimal schedule that has 
the fewest number of inversions, and let's see 
what happens.

– Can assume S* has no idle time.

– If S* has no inversions, then S = S*.

– If S* has an inversion, let i-j be an adjacent 
inversion.

• swapping i and j does not increase the 
maximum lateness and strictly decreases 
the number of inversions

• this contradicts definition of S*  ▪

Greedy Analysis Strategies

• Greedy algorithm stays ahead.  Show that after each step of the 
greedy algorithm, its solution is at least as good as any other 
algorithm's. 

• Exchange argument.  Gradually transform any solution to the one 
found by the greedy algorithm without hurting its quality.

• Structural.  Discover a simple "structural" bound asserting that 
every possible solution must have a certain value. Then show that 
your algorithm always achieves this bound.



10

28

4.3 Optimal Caching

Optimal Offline Caching
• Caching.

– Cache with capacity to store k items.

– Sequence of m item requests d1, d2, …, dm.

– Cache hit:  item already in cache when requested.

– Cache miss:  item not already in cache when requested:  must 
bring requested item into cache, and evict some existing item, 
if full.

• Goal.  Eviction schedule that minimizes number of  

cache misses.

• Ex:  k = 2, initial cache = ab,
requests:  a, b, c, b, c, a, a, b.

• Optimal eviction schedule:  2 cache misses.

a b

a b

c b

c b

c b

a b

a

b

c

b

c

a

a ba

a bb

cacherequests

Optimal Offline Caching:  
Farthest-In-Future

• Farthest-in-future.  Evict item in the cache that is not requested until 
farthest in the future.

• Theorem.  [Bellady, 1960s] FF is optimal eviction schedule.

• Pf.  Algorithm and theorem are intuitive; proof is subtle.

a b

g a b c e d a b b a c d e a f a d e f g h ... 

current cache: c d e f

future queries:

cache miss eject this one



11

Reduced Eviction Schedules
• Def.  A reduced schedule is a schedule that only inserts an item 

into the cache in a step in which that item is requested.

• Intuition.  Can transform an unreduced schedule into a reduced 
one with no more cache misses.

a x

an unreduced schedule

c

a d c

a d b

a c b

a x b

a c b

a b c

a b c

a

c

d

a

b

c

a

a

a b

a reduced schedule

c

a b c

a d c

a d c

a d b

a c b

a c b

a c b

a

c

d

a

b

c

a

a

a b ca a b ca

Reduced Eviction Schedules

• Claim.  Given any unreduced schedule S, can transform it into a reduced 
schedule S' with no more cache misses.

• Pf.  (by induction on number of unreduced items)

– Suppose S brings d into the cache at time t, without a request.

– Let c be the item S evicts when it brings d into the cache.

– Case 1:  d evicted at time t', before next request for d.

– Case 2:  d requested at time t' before d is evicted.  ▪

t

t'

d

c

t

t'

c
S'

d

S

d requested at time t'

t

t'

d

c

t

t'

c
S'

e

S

d  evicted at time t',
before next request

e

doesn't enter cache at requested 
time

Case 1 Case 2

Farthest-In-Future:  Analysis
• Theorem.  FF is optimal eviction algorithm.

• Pf.  (by induction on number or requests j)

• Let S be reduced schedule that satisfies invariant through j 
requests. We produce S' that satisfies invariant after j+1 
requests.

– Consider (j+1)st request d = dj+1.

– Since S and SFF have agreed up until now, they have the same 
cache contents before request j+1.

– Case 1:  (d is already in the cache).  S' = S satisfies invariant.

– Case 2: (d is not in the cache and S and SFF evict the same 
element).
S' = S satisfies invariant.

Invariant:  There exists an optimal reduced schedule S that makes 
the same eviction schedule as SFF through the first j+1 requests.



12

j 

Farthest-In-Future:  Analysis
• Pf.  (continued)

– Case 3:  (d is not in the cache; SFF evicts e; S evicts f  e).

• begin construction of S' from S by evicting e instead of f

• now S' agrees with SFF on first j+1 requests; we show that having 
element f in cache is no worse than having element e

same f same fee

S S'

j same d same fde

S S'

j+1

Farthest-In-Future:  Analysis
• Let j' be the first time after j+1 that S and S' take a different action, and 

let g be item requested at time j'.

– Case 3a:  g = e.  Can't happen with Farthest-In-Future since there 
must be a request for f before e.

– Case 3b:  g = f.  Element f can't be in cache of S, so let e' be the 
element that S evicts.

• if e' = e, S' accesses f from cache; now S and S' have same cache

• if e'  e, S' evicts e' and brings e into the cache; now S and S' 
have the same cache

same e same f

S S'

j'

Note:  S' is no longer reduced, but can be transformed into
a reduced schedule that agrees with SFF through step j+1

must involve e or f (or both)

Farthest-In-Future:  Analysis
• Let j' be the first time after j+1 that S and S' take a different action, and 

let g be item requested at time j'.

– Case 3c:  g  e, f.  S must evict e.
Make S' evict f; now S and S' have the same cache.  ▪

same g same g

S S'

j'

otherwise S' would take the same action

same e same f

S S'

j'

must involve e or f (or both)



13

Caching Perspective
• Online vs. offline algorithms.

– Offline:  full sequence of requests is known a priori.

– Online (reality):  requests are not known in advance.

– Caching is among most fundamental online problems in CS.

• LIFO.  Evict page brought in most recently.

• LRU.  Evict page whose most recent access was earliest.

• Theorem.  FF is optimal offline eviction algorithm.

– Provides basis for understanding and analyzing online algorithms.

– LRU is k-competitive.  [Section 13.8]

– LIFO is arbitrarily bad.

FF with direction of time reversed!


