
10/3/2018

1

Graphs

An Introduction

Ouline

• What are Graphs?

• Applications

• Terminology and Problems

• Representation (Adj. Mat and Linked Lists)

• Searching

– Depth First Search (DFS)

– Breadth First Search (BFS)

Graphs

• A graph G = (V,E) is composed of:

– V: set of vertices

– E  V  V: set of edges connecting the vertices

• An edge e = (u,v) is a __ pair of vertices

– Directed graphs (ordered pairs)

– Undirected graphs (unordered pairs)

10/3/2018

2

Directed graph

Directed Graph

Undirected GRAPH

10/3/2018

3

Undirected Graph

Applications

• Air Flights, Road Maps, Transportation.

• Graphics / Compilers

• Electrical Circuits

• Networks

• Modeling any kind of relationships
(between people/web pages/cities/…)

Some More Graph
Applications

transportation

Graph

street intersections

Nodes Edges

highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires

10/3/2018

4

World Wide Web
• Web graph.

– Node: web page.

– Edge: hyperlink from one page to another.

cnn.com

cnnsi.comnovell.comnetscape.com timewarner.com

hbo.com

sorpranos.com

9-11 Terrorist Network

• Social network graph.

– Node: people.

– Edge: relationship between
two people.

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

Ecological Food Web

• Food web graph.

– Node = species.

– Edge = from prey to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

10/3/2018

5

Terminology

• a is adjacent to b iff (a,b)  E.

• degree(a) = number of adjacent vertices
(Self loop counted twice)

• Self Loop: (a,a)

• Parallel edges: E = { ...(a,b), (a,b)...}

a

a b

Terminology

• A Simple Graph is a graph with no self loops
or parallel edges.

• Incidence: v is incident to e if v is an end
vertex of e.

v
e

More…

10/3/2018

6

Question

• Max Degree node? Min Degree Node?
Isolated Nodes? Total sum of degrees over
all vertices? Number of edges?

Question

• Max Degree = 4. Isolated vertices = 1.

• |V| = 8 , |E| = 8

• Sum of degrees = 16 = ?

– (Formula in terms of |V|, |E| ?)

Question

• Max Degree = 4. Isolated vertices = 1.

• |V| = 8 , |E| = 8

• Sum of degrees = 2|E| = vV degree(v)

– Handshaking Theorem. Why?

10/3/2018

7

QUESTION

• How many edges are there in a graph with
100 vertices each of degree 4?

QUESTION

• How many edges are there in a graph with
100 vertices each of degree 4?

– Total degree sum = 400 = 2 |E|

– 200 edges by the handshaking theorem.

Handshaking:Corollary
The number of vertices with odd degree is always

even.

Proof: Let V1 and V2 be the set of vertices of even and
odd degrees, respectively

(Hence V1  V2 = , and V1  V2 = V).

• Now we know that

2|E| = vV degree(v)

= vV1 degree(v) + vV2 degree(v)

• Since degree(v) is odd for all v V2, | V2 | must be
even.

10/3/2018

8

Terminology

Path and Cycle

• An alternating sequence of vertices and edges
beginning and ending with vertices

– each edge is incident with the vertices preceding and
following it.

– No edge appears more than once.

– A path is simple if all nodes are distinct.

• Cycle

– A path is a cycle if and only if v0= vk

• The beginning and end are the same vertex.

Path example

10/3/2018

9

Connected graph

• Undirected Graphs: If there is at least one
path between every pair of vertices.
(otherwise disconnected)

• Directed Graphs:

– Strongly connected

– Weakly connected

hamiltonian cycle

• A cycle that transverses every vertex exactly
once.

In general, the problem of finding a Hamiltonian circuit

is NP-Complete.

complete graph

• Every pair of graph vertices is connected by
an edge.

n(n-1)/2 edges

10/3/2018

10

Directed Acyclic Graphs
• A DAG is a directed graph with no cycles

• Often used to indicate precedences among
events, i.e., event a must happen before b

Tree

A connected
graph with n
nodes and n-1
edges

A Forest is a
collection of
trees.

Trees

• An undirected graph is a tree if it is connected
and does not contain a cycle.

• Theorem. Let G be an undirected graph on n
nodes. Any two of the following statements imply
the third.
– G is connected.

– G does not contain a cycle.

– G has n-1 edges.

10/3/2018

11

Rooted Trees

• Rooted tree. Given a tree T, choose a root
node r and orient each edge away from r.

• Importance. Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

Phylogeny Trees

• Phylogeny trees. Describe evolutionary
history of species.

GUI Containment
Hierarchy

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

• GUI containment hierarchy. Describe organization of GUI widgets.

10/3/2018

12

Spanning tree

Connected subset of
a graph G with n-1
edges which
contains all of V

independent set

• An independent set of G is a subset of the
vertices such that no two vertices in the
subset are adjacent.

cliques

• a.k.a. complete subgraphs.

10/3/2018

13

tough Problem

• Find the maximum cardinality independent
set of a graph G.

– NP-Complete

– Unknown if a poly time algorithm exists unless
P = NP.

IS

© MPI Saarbruecken, Germany.

tough problem

• Given a weighted graph G, the nodes of
which represent cities and weights on the
edges, distances; find the shortest tour
that takes you from your home city to all
cities in the graph and back.
– Can be solved in O(n!) by enumerating all

cycles of length n.

– Dynamic programming can be used to reduce it
in O(n22n).

TSP

representation

• Two ways

– Adjacency List

• (as a linked list for each node in the graph to
represent the edges)

– Adjacency Matrix

• (as a boolean matrix)

10/3/2018

14

Representing Graphs
1

2

3

4

1

2

3

4

1, 42

1, 43

1, 2, 34

2, 3, 41

Adjacent
Vertices

•Vertex

12

3

1, 2, 34

31

Terminal
Vertices

Initial
Vertex

adjacency list

adjacency matrix

10/3/2018

15

Another example

AL Vs AM

• AL: Takes O(|V| + |E|) space

• AM: Takes O(|V|*|V|) space

• Question: How much time does it take to
find out if (vi,vj) belongs to E?

– AM ?

– AL ?

AL Vs AM

• AL: Takes O(|V| + |E|) space

• AM: Takes O(|V|*|V|) space

• Question: How much time does it take to
find out if (vi,vj) belongs to E?

– AM : O(1)

– AL : O(|V|) in the worst case.

10/3/2018

16

AL Vs AM

• AL : Total space = 8|V| + 16|E| bytes (For
undirected graphs its 8|V| + 32|E| bytes)

• AM : |V| * |V| / 8

• Question: What is better for very sparse
graphs? (Few number of edges)

Graph Traversal

Connectivity

• s-t connectivity problem. Given two node s and t, is there a path between s and t?

• s-t shortest path problem. Given two node s and t, what is the length of the shortest
path between s and t?

• Applications.

– Maze traversal.

– Kevin Bacon number / Erdos number

– Fewest number of hops in a communication network.

– Friendster.

10/3/2018

17

BFS/DFS

© Steve Skiena

BFS : Breadth First Search

DFS : Depth First Search

BFS/DFS

• Breadth-first search (BFS) and depth-first
search (DFS) are two distinct orders in
which to visit the vertices and edges of a
graph.

• BFS: radiates out from a root to visit
vertices in order of their distance from the
root. Thus closer nodes get visited first.

Breadth first search

• Question: Given G in AM form, how do we
say if there is a path between nodes a and
b?

• Note: Using AM or AL its easy to answer if
there is an edge (a,b) in the graph, but not
path questions. This is one of the reasons
to learn BFS/DFS.

10/3/2018

18

BFS

• A Breadth-First Search (BFS) traverses a
connected component of a graph, and in
doing so defines a spanning tree.

Source: Lecture notes by Sheung-Hung POON

BFS

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

F

F

F

F

F

F

F

F

Q = { }

Initialize visited

table (all empty F)

Initialize Q to be empty

10/3/2018

19

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

T

F

F

F

F

F

F

F

Q = { 2 }

Flag that 2 has

been visited.

Place source 2 on the queue.

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

T

T

F

T

F

F

F

T

F

Q = {2} → { 8, 1, 4 }

Mark neighbors

as visited.

Dequeue 2.

Place all unvisited neighbors of 2 on the queue

Neighbors

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

F

T

F

F

F

T

T

Q = { 8, 1, 4 } → { 1, 4, 0, 9 }

Mark new visited

Neighbors.

Dequeue 8.

-- Place all unvisited neighbors of 8 on the queue.

-- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors

10/3/2018

20

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 }

Mark new visited

Neighbors.

Dequeue 1.

-- Place all unvisited neighbors of 1 on the queue.

-- Only nodes 3 and 7 haven’t been visited yet.

Neighbors

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 }

Dequeue 4.

-- 4 has no unvisited neighbors!

Neighbors

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 }

Dequeue 0.

-- 0 has no unvisited neighbors!

Neighbors

10/3/2018

21

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 }

Dequeue 9.

-- 9 has no unvisited neighbors!

Neighbors

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

F

T

T

T

Q = { 3, 7 } → { 7, 5 }

Dequeue 3.

-- place neighbor 5 on the queue.

Neighbors

Mark new visited

Vertex 5.

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 }

Dequeue 7.

-- place neighbor 6 on the queue.

Neighbors

Mark new visited

Vertex 6.

10/3/2018

22

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 }

Dequeue 5.

-- no unvisited neighbors of 5.

Neighbors

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 6 } → { }

Dequeue 6.

-- no unvisited neighbors of 6.

Neighbors

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { } STOP!!! Q is empty!!!

Neighbors

What did we discover?

Look at “visited” tables.

There exist a path from source

vertex 2 to all vertices in the graph!

10/3/2018

23

Time Complexity of BFS
(Using adjacency list)

• Assume adjacency list
– n = number of vertices m = number of edges

Σvertex vdeg(v) = 2m*

No more than n vertices are ever

put on the queue.

How many adjacent nodes will

we ever visit. This is related to

the number of edges. How

many edges are there?

*Note: this is not per iteration of the while loop.

This is the sum over all the while loops!

O(n + m)

Time Complexity of BFS
(Using adjacency matrix)

• Assume adjacency matrix
– n = number of vertices m = number of edges

No more than n vertices are ever

put on the queue. O(n)

Using an adjacency matrix. To find

the neighbors we have to visit all elements

In the row of v. That takes time O(n).

O(n2)
So, adjacency matrix is not good for BFS!!!

Path Recording

• BFS only tells us if a path exists from source s, to
other vertices v.
– It doesn’t tell us the path!

– We need to modify the algorithm to record the path.

• Not difficult
– Use an additional predecessor array pred[0..n-1]

– Pred[w] = v
• Means that vertex w was visited by v

10/3/2018

24

BFS + Path Finding

Set pred[v] to -1 (let -1 means

no path to any vertex)

Record who visited w

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

F

F

F

F

F

F

F

F

Q = { }

Initialize visited

table (all empty F)

Initialize Pred to -1

Initialize Q to be empty

-

-

-

-

-

-

-

-

-

-

Pred

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

T

F

F

F

F

F

F

F

Q = { 2 }

Flag that 2 has

been visited.

Place source 2 on the queue.

-

-

-

-

-

-

-

-

-

-

Pred

10/3/2018

25

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

T

T

F

T

F

F

F

T

F

Q = {2} → { 8, 1, 4 }

Mark neighbors

as visited.

Record in Pred

who was visited

by 2.
Dequeue 2.

Place all unvisited neighbors of 2 on the queue

Neighbors

-

2

-

-

2

-

-

-

2

-

Pred

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

F

T

F

F

F

T

T

Q = { 8, 1, 4 } → { 1, 4, 0, 9 }

Dequeue 8.

-- Place all unvisited neighbors of 8 on the queue.

-- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors

8

2

-

-

2

-

-

-

2

8

Pred
Mark new visited

Neighbors.

Record in Pred

who was visited

by 8.

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 }

Mark new visited

Neighbors.

Record in Pred

who was visited

by 1.
Dequeue 1.

-- Place all unvisited neighbors of 1 on the queue.

-- Only nodes 3 and 7 haven’t been visited yet.

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred

10/3/2018

26

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 }

Dequeue 4.

-- 4 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 }

Dequeue 0.

-- 0 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 }

Dequeue 9.

-- 9 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred

10/3/2018

27

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

F

T

T

T

Q = { 3, 7 } → { 7, 5 }

Dequeue 3.

-- place neighbor 5 on the queue.

Neighbors

Mark new visited

Vertex 5.

Record in Pred

who was visited

by 3.

8

2

-

1

2

3

-

1

2

8

Pred

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 }

Dequeue 7.

-- place neighbor 6 on the queue.

Neighbors

Mark new visited

Vertex 6.

Record in Pred

who was visited

by 7.

8

2

-

1

2

3

7

1

2

8

Pred

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 }

Dequeue 5.

-- no unvisited neighbors of 5.

Neighbors

8

2

-

1

2

3

7

1

2

8

Pred

10/3/2018

28

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 6 } → { }

Dequeue 6.

-- no unvisited neighbors of 6.

Neighbors

8

2

-

1

2

3

7

1

2

8

Pred

Example

2

4

3

5

1

7

6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { } STOP!!! Q is empty!!!

Neighbors

Pred now stores the path!

8

2

-

1

2

3

7

1

2

8

Pred

Pred array represents
paths

8

2

-

1

2

3

7

1

2

8

0

1

2

3

4

5

6

7

8

9

nodes visited by

Try some examples.

Path(0) ->

Path(6) ->

Path(1) ->

10/3/2018

29

BFS tree

• We often draw the BFS paths as a m-ary tree,

where s is the root.

Question: What would a “level” order traversal tell you?

Connected Component

• Connected component. Find all nodes
reachable from s.

Flood Fill
• Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring

lime pixels to blue.

– Node: pixel.

– Edge: two neighboring lime pixels.

– Blob: connected component of lime pixels.
recolor lime green blob to blue

10/3/2018

30

Flood Fill

• Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring
lime pixels to blue.

– Node: pixel.

– Edge: two neighboring lime pixels.

– Blob: connected component of lime pixels.
recolor lime green blob to blue

Connected Component

• Connected component. Find all nodes
reachable from s.

s

u v

R

it's safe to add v

More on
Paths and trees

in graphs

10/3/2018

31

BFS

• Another way to think of the BFS tree is the
physical analogy of the BFS Tree.

• Sphere-String Analogy : Think of the nodes
as spheres and edges as unit length strings.
Lift the sphere for vertex s.

Sphere-String Analogy

bfs : Properties

• At some point in the running of BFS, Q only
contains vertices/nodes at layer d.

• If u is removed before v in BFS then

– dist(u) dist(v)

• At the end of BFS, for each vertex v
reachable from s, the dist(v) equals the
shortest path length from s to v.

10/3/2018

32

BFS

BFS:advancing wavefront

old wine in new bottle
forall v ε V:

dist(v) = ∞; prev(v) = null;

dist(s) = 0

Queue q; q.push(s);

while (!Q.empty())
v = Q.dequeue();

for all e=(v,w) in E
if dist(w) = ∞:

– dist(w) = dist(v)+1

– Q.enque(w)

– prev(w)= v

10/3/2018

33

dijkstra’s sssP alg
BFS With positive int weights

• for every edge e=(a,b) ε E, let we be the
weight associated with it. Insert we-1
dummy nodes between a and b. Call this
new graph G’.

• Run BFS on G’. dist(u) is the shortest path
length from s to node u.

• Why is this algorithm bad?

how do we speed it up?

• If we could run BFS without actually
creating G’, by somehow simulating BFS of
G’ on G directly.

• Solution: Put a system of alarms on all the
nodes. When the BFS on G’ reaches a node
of G, an alarm is sounded. Nothing
interesting can happen before an alarm
goes off.

an example

10/3/2018

34

Another Example

alarm clock alg

alarm(s) = 0

until no more alarms

– wait for an alarm to sound. Let next alarm that
goes off is at node v at time t.

• dist(s,v) = t

• for each neighbor w of v in G:
– If there is no alarm for w, alarm(w) = t+weight(v,w)

– If w’s alarm is set further in time than t+weight(v,w), reset
it to t+weight(v,w).

recall bfs
forall v ε V:

dist(v) = ∞; prev(v) = null;

dist(s) = 0

Queue q; q.push(s);

while (!Q.empty())
v = Q.dequeue();

for all e=(v,w) in E
if dist(w) = ∞:

– dist(w) = dist(w)+1

– Q.enque(w)

– prev(w)= v

10/3/2018

35

dijkstra’s sssP
forall v ε V:

dist(v) = ∞; prev(v) = null;

dist(s) = 0

Magic_DS Q; Q.insert(s,0);

while (!Q.empty())

v = Q.delete_min();

for all e=(v,w) in E
if dist(w) > dist(v)+weight(v,w) :

– dist(w) = dist(v)+weight(v,w)

– Q.insert(w, dist(w))

– prev(w)= v

the magic ds: PQ

• What functions do we need?

– insert() : Insert an element and its key. If the
element is already there, change its key (only if
the key decreases).

– delete_min() : Return the element with the
smallest key and remove it from the set.

Example

0





s

u v

x y

10

1

9

2

4 6

5

2 3

7

10/3/2018

36

Example

0

5

10

s

u v

x y

10

1

9

2

4 6

5

2 3

7

Example

0

75

148

s

u v

x y

10

1

9

2

4 6

5

2 3

7

Example

0

75

138

s

u v

x y

10

1

9

2

4 6

5

2 3

7

10/3/2018

37

Example

0

75

98

s

u v

x y

10

1

9

2

4 6

5

2 3

7

Example

0

75

98

s

u v

x y

10

1

9

2

4 6

5

2 3

7

another view
region growth

1. Start from s

2. Grow a region R around s such that the
SPT from s is known inside the region.

3. Add v to R such that v is the closest node
to s outside R.

4. Keep building this region till R = V.

10/3/2018

38

how do we find v?

Example

S,V

Is this the shortest path to V

10/3/2018

39

old wine in new bottle
forall v ε V:

dist(v) = ∞; prev(v) = null;

dist(s) = 0

R = {};

while R != V

Pick v not in R with smallest distance to s

for all edges (v,z) ε E

if(dist(z) > dist(v) + weight(v,z)

dist(z) = dist(v)+weight(v,z)

prev(z) = v;

Add v to R

updates

Running time?

10/3/2018

40

Running time?

Running time?

• If we used a linked list as our magic data
structure?

Binary Heap?

10/3/2018

41

d-ary heap

Fibonacci Heap

a Spanning tree

• Recall?

• Is it unique?

• Is shortest path tree a spanning tree?

• Is there an easy way to build a spanning
tree for a given graph G?

• Is it defined for disconnected graphs?

10/3/2018

42

Spanning tree

Connected subset of a
graph G with n-1
edges which contains
all of V.

spanning tree

A connected, undirected graph

Some spanning trees of the graph

easy algorithm

To build a spanning tree:

Step 1: T = one node in V, as root.

Step 2: At each step, add to tree one edge
from a node in tree to a node that is not yet
in the tree.

10/3/2018

43

Spanning tree property

Adding an edge e=(a,b) not in the tree
creates a cycle containing only edge e and
edges in spanning tree.

Why?

Spanning tree property

• Let c be the first node common to the path
from a and b to the root of the spanning
tree.

• The concatenation of (a,b) (b,c) (c,a) gives
us the desired cycle.

lemma 1

• In any tree, T = (V,E),
|E| = |V| - 1

• Why?

10/3/2018

44

lemma 1

• In any tree, T = (V,E),
|E| = |V| - 1

• Why?

• Tree T with 1 node has zero edges.

• For all n>0, P(n) holds, where

• P(n) : A Tree with n nodes has n-1 edges.

• Apply MI. How do we prove that given P(m) true
for all 1..m, P(m+1) is true?

undirected graphs n trees

• An undirected graph G = (V,E) is a tree iff

(1) it is connected

(2) |E| = |V| – 1

Lemma 2

Let C be the cycle created in a spanning tree T
by adding the edge e = (a,b) not in the tree.
Then removing any edge from C yields
another spanning tree.

Why? How many edges and vertices does the
new graph have? Can (x,y) in G get
disconnected in this new tree?

10/3/2018

45

LEMMA 2

• Let T’ be the new graph

• T’ has n nodes and n-1 edges, so it must be a tree
if it is connected.

• Let (x,y) be not connected in T’. The only problem
in the connection can be the removed edge (a,b).
But if (a,b) was contained in the path from x to y,
we can use the cycle C to reach y (even if (a,b)
was deleted from the graph).

weighted spanning trees

Let we be the weight of an edge e in G=(V,E).

Weight of spanning tree = Sum of edge weights.

Question: How do we find the spanning tree with minimum weight.

This spanning tree is also called the Minimum Spanning Tree.

Is the MST unique?

minimum spanning trees

• Applications

– networks

– cluster analysis

• used in graphics/pattern recognition

– approximation algorithms (TSP)

– bioinformatics/CFD

10/3/2018

46

cut property

• Let X be a subset of V. Among edges
crossing between X and V \ X, let e be the
edge of minimum weight. Then e belongs
to the MST.

• Proof?

cycle property

• For any cycle C in a graph, the heaviest
edge in C does not appear in the MST.

• Proof?

Question

• Is the SSSP Tree and the Minimum spanning
tree the same?

• Is one the subset of the other always?

10/3/2018

47

Question

• Is the SSSP Tree and the Minimum spanning
tree the same?

• Is one the subset of the other always?

4 4

1

4 4 4

1

SSSP Tree MST

old wine in new bottle
forall v ε V:

dist(v) = ∞; prev(v) = null;

dist(s) = 0

Heap Q; Q.insert(s,0);

while (!Q.empty())

v = Q.delete_min();

for all e=(v,w) in E
if dist(w) > dist(v)+weight(v,w) :

– dist(w) = dist(v)+weight(v,w)

– Q.insert(w, dist(w))

– prev(w)= v

A slight modification
jarnik’s or PriM’s alg.

forall v ε V:

dist(v) = ∞; prev(v) = null;

dist(s) = 0

Heap Q; Q.insert(s,0);

while (!Q.empty())

v = Q.delete_min();

for all e=(v,w) in E
if dist(w) > dist(v)+ weight(v,w) :

– dist(w) = dist(v) + weight(v,w)

– Q.insert(w, dist(w))

– prev(w)= v

10/3/2018

48

our first MST alg.
forall v ε V:

dist(v) = ∞; prev(v) = null;

dist(s) = 0

Magic_DS Q; Q.insert(s,0);

while (!Q.empty())
v = Q.delete_min();

for all e=(v,w) in E
if dist(w) > weight(v,w) :

– dist(w) = weight(v,w)

– Q.insert(w, dist(w))

– prev(w)= v

how does the running time
depend on the magic_Ds?

• heap?

• insert()?

• delete_min()?

• Total time?

• What if we change the Magic_DS to
fibonacci heap?

PriM’s/jarnik’s algorithM

• best running time using fibonacci heaps

– O(E + VlogV)

• Why does it compute the MST?

10/3/2018

49

another alg: krushkal’s

• sort the edges of G in increasing order of
weights

• Let S = {}

• for each edge e in G in sorted order

– if the endpoints of e are disconnected in S

– Add e to S

have u seen this before?

• Sort edges of G in increasing order of weight

• T = {} // Collection of trees

• For all e in E
– If T union {e} has no cycles in T

• then T = T union {e}

return T

Naïve running time O((|V|+|E|)|V|) = O(|E||V|)

how to speed it up?

• To O(E + VlogV)

– Using union find data structures.

• Surprisingly the idea is very simple.

10/3/2018

50

Other Applications

3.4 Testing Bipartiteness

Bipartite Graphs
• Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored red

or blue such that every edge has one red and one blue end.

• Applications.

– Stable marriage: men = red, women = blue.

– Scheduling: machines = red, jobs = blue.

a bipartite graph

10/3/2018

51

Testing Bipartiteness

• Testing bipartiteness. Given a graph G, is it bipartite?

– Many graph problems become:

• easier if the underlying graph is bipartite (matching)

• tractable if the underlying graph is bipartite (independent set)

– Before attempting to design an algorithm, we need to understand
structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G

An Obstruction to Bipartiteness

• Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

• Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

Bipartite Graphs

• Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following
holds.

(i) No edge of G joins two nodes of the same layer, and G is
bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains
an

odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

10/3/2018

52

Bipartite Graphs
• Lemma. Let G be a connected graph, and let L0, …, Lk be the layers produced

by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

• Pf. (i)

– Suppose no edge joins two nodes in the same layer.

– By previous lemma, this implies all edges join nodes on same level.

– Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Case (i)

L1 L2 L3

Bipartite Graphs

• Lemma. Let G be a connected graph, and let L0, …, Lk be the layers produced by BFS
starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

• Pf. (ii)

– Suppose (x, y) is an edge with x, y in same level Lj.

– Let z = lca(x, y) = lowest common ancestor.

– Let Li be level containing z.

– Consider cycle that takes edge from x to y,
then path from y to z, then path from z to x.

– Its length is 1 + (j-i) + (j-i), which is odd. ▪

z = lca(x, y)

(x, y) path from
y to z

path from
z to x

Obstruction to
Bipartiteness

• Corollary. A graph G is bipartite iff it
contain no odd length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

10/3/2018

53

3.5 Connectivity in
Directed Graphs

Directed Graphs

• Directed graph. G = (V, E)

– Edge (u, v) goes from node u to node v.

• Ex. Web graph - hyperlink points from one web page to another.

– Directedness of graph is crucial.

– Modern web search engines exploit hyperlink structure to rank web pages by
importance.

Graph Search

• Directed reachability. Given a node s, find all nodes reachable from s.

• Directed s-t shortest path problem. Given two node s and t, what is the
length of the shortest path between s and t?

• Graph search. BFS extends naturally to directed graphs.

• Web crawler. Start from web page s. Find all web pages linked from s, either
directly or indirectly.

10/3/2018

54

Strong Connectivity
• Def. Node u and v are mutually reachable if there is a path from u to v and also a path

from v to u.

• Def. A graph is strongly connected if every pair of nodes is mutually reachable.

• Lemma. Let s be any node. G is strongly connected iff every node is reachable from s,
and s is reachable from every node.

• Pf.  Follows from definition.

• Pf.  Path from u to v: concatenate u-s path with s-v path.
Path from v to u: concatenate v-s path with s-u path. ▪

s

v

u

ok if paths overlap

Strong Connectivity:
Algorithm

• Theorem. Can determine if G is strongly connected in O(m + n) time.

• Pf.

– Pick any node s.

– Run BFS from s in G.

– Run BFS from s in Grev.

– Return true iff all nodes reached in both BFS executions.

– Correctness follows immediately from previous lemma. ▪

reverse orientation of every edge in G

strongly connected not strongly connected

3.6 DAGs and Topological
Ordering

10/3/2018

55

Directed Acyclic Graphs
• Def. An DAG is a directed graph that contains no directed cycles.

• Ex. Precedence constraints: edge (vi, vj) means vi must precede vj.

• Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as v1,
v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

Precedence Constraints

• Precedence constraints. Edge (vi, vj) means task vi must occur before vj.

• Applications.

– Course prerequisite graph: course vi must be taken before vj.

– Compilation: module vi must be compiled before vj. Pipeline of computing
jobs: output of job vi needed to determine input of job vj.

Directed Acyclic Graphs
• Lemma. If G has a topological order, then G is a DAG.

• Pf. (by contradiction)

– Suppose that G has a topological order v1, …, vn and that G also has a directed cycle
C. Let's see what happens.

– Let vi be the lowest-indexed node in C, and let vj be the node just before vi; thus
(vj, vi) is an edge.

– By our choice of i, we have i < j.

– On the other hand, since (vj, vi) is an edge and v1, …, vn is a topological order, we
must have j < i, a contradiction. ▪

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

10/3/2018

56

Directed Acyclic Graphs

• Lemma. If G has a topological order, then G
is a DAG.

• Q. Does every DAG have a topological
ordering?

• Q. If so, how do we compute one?

Directed Acyclic Graphs
• Lemma. If G is a DAG, then G has a node with no incoming edges.

• Pf. (by contradiction)

– Suppose that G is a DAG and every node has at least one incoming edge. Let's see
what happens.

– Pick any node v, and begin following edges backward from v. Since v has at least
one incoming edge (u, v) we can walk backward to u.

– Then, since u has at least one incoming edge (x, u), we can walk backward to x.

– Repeat until we visit a node, say w, twice.

– Let C denote the sequence of nodes encountered between successive visits to w.
C is a cycle. ▪

w x u v

Directed Acyclic Graphs
• Lemma. If G is a DAG, then G has a topological ordering.

• Pf. (by induction on n)

– Base case: true if n = 1.

– Given DAG on n > 1 nodes, find a node v with no incoming edges.

– G - { v } is a DAG, since deleting v cannot create cycles.

– By inductive hypothesis, G - { v } has a topological ordering.

– Place v first in topological ordering; then append nodes of G - { v }

– in topological order. This is valid since v has no incoming edges. ▪

DAG

v

10/3/2018

57

Topological Sorting
Algorithm: Running Time

• Theorem. Algorithm finds a topological order in O(m + n) time.

• Pf.

– Maintain the following information:

• count[w] = remaining number of incoming edges

• S = set of remaining nodes with no incoming edges

– Initialization: O(m + n) via single scan through graph.

– Update: to delete v

• remove v from S

• decrement count[w] for all edges from v to w, and add w to S if c
count[w] hits 0

• this is O(1) per edge ▪

