
1

Complexity & Analysis of Data
Structures & Algorithms

Complexity & Analysis of Data
Structures & Algorithms

Piyush Kumar
(Lecture 1: Introduction)

Welcome to COP4531
Based on slides from

J. Edmonds, S. Rudich, S. H. Teng,
K. Wayne and my old slides.

Today

• My Info : Timings for the class
• References
• Pre-Requisites Survey
• How you will be graded
• Syllabus
• About Advanced Algorithms

– and its applications

• Our First Problem
– Stable Matching

Instructor
Piyush Kumar

161 Love Building

Ph: 850-645-2355

Web page: http://piyush.compgeom.com

Office Hours: On course info sheet

Email:

piyush at acm dot org

http://piyush.compgeom.com/

2

Class/Exam Timings
• Timings

– See course handout/webpage

• Midterm:
– See course handout/webpage

• Final Exam
– See course handout/webpage

Other Details

• Course web site:
– http://piyush.compgeom.com/teach/4531

• Textbook.

References

• Klienberg / Tardos

– Algorithm Design

• Other References

– [CLRS] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.

Introduction to Algorithms (2nd edition).

– My slides and notes

http://piyush.compgeom.com/teach/AA05
http://theory.lcs.mit.edu/%7Eclr/

3

PreReq
• Data Structures
• Introduction to Probability (STA 4442/STA 3032)

– Any other substitute classes?

• C++ / [Python]
• Discrete Mathematics II (MAD 3105) or

– Mathematics in Computing (MAD 3107)
• Basic Math skills
• Lots of Time…
• ToDo List:

– Get a LinProg Account
– Get a copy of the text book.

PreReq

• COP 4530 or higher
(What this class does not cover)

– Linked Lists, Stacks.

– Binary Trees, Heaps.

– STL, containers/iterators.

– Mathematical Induction /
Contradiction

– Basic Probability/Expectations.

What can you expect?
• After the course expect to

– Know more about algorithms (of course)
– Think algorithmically
– Know how to solve real world algorithmic

problems
• Both in theory (algorithm) and

practice (code)
– Be better at applications that require

algorithms:
• and apply algorithms to places you

never imagined…

4

Grading*
• Homework : 10%
• Programming Project: 15 %
• Class Participation : 5%
• Surprise Quizzes: 20%
• Midterm : 20%
• Final Exam : 30%

Designing AlgorithmsDesigning Algorithms

How to do well in this class?

Nope!

• Study in Groups
• Assignments are done in pairs
• Also Learn from one another.

Doing Well in this class.

5

Do not get answers
from others.

Do not do half the
assignment and let ur

partner do the other half

Try all questions on your own.

Discuss solutions together but
write them independently.

Short solutions are better than longer ones!

<Blah><Blah>
Correct

<Blah><Blah>

Correct lines hidden in wrong lines
are not correct.

Think before you write.

A few years from now.

May I have a letter of reference?

Its awkward for me to write letters
for people that I don’t recognize.

Make yourself known to SOME
professor.

Email does not help as I am very
bad at remembering names.

6

Expectations
• Work hard and learn/understand the

material well.

• Feel free to ask questions.

• Take help from me and the TA.

• Course Load: 4-6 hours a week
(assumes you are getting help).

Thinking about
Algorithms

Thinking about
Algorithms

Be Creative
• Ask questions
• Why is this done this way and not that

way?
• Guess potential methods to solve the

problem

• Look for counterexamples.

• Start Day dreaming: Allow the essence of the
material to seep into your subconscious.

7

Boss assigns task.

– Given today’s prices of pork, grain, sawdust, …

– Given constraints on what constitutes a hotdog.

– Make the cheapest hotdog

Everyday industry asks these questions.

Your Answer:
• Tell me what to code.

With more suffocated software engineering systems,
the demand for mundane programmers will diminish.

Your Answer:
• I learnt this great algorithm that

will work.

Soon all known algorithms
will be available in libraries
Soon all known algorithms
will be available in libraries

8

Your answer:
• I can develop a new algorithm for you.

Great thinkers will always be needed.Great thinkers will always be needed.

Course Content

• A list of algorithms.
– Learn their code.

– Trace them until you are convinced that
they work.

– Implement them.

– Worry about details.

class InsertionSortAlgorithm : public SortAlgorithm

{

void sort(int a[]) {

for (int i = 1; i < a.length; i++) {

int j = i;

int B = a[i];

while ((j > 0) && (a[j-1] > B)) {

a[j] = a[j-1];

j--; }

a[j] = B;

}}

Course Content
• A survey of algorithmic design techniques.
• Abstract thinking.
• How to develop new algorithms for any problem that may arise.

9

Syllabus*
• Asymptotic Analysis and Recursions
• Graph Algorithms
• Greedy Algorithms
• Divide and Conquer
• Dynamic Programming
• Network Flows
• Complexity Classes and Approximation Algorithms
• Computational Geometry
• Parallel Algorithms

* Tentative

Stable MarriageStable Marriage

Our first problem

WARNING: This lecture

contains mathematical

content that may be shocking

to some

students.

10

The problem
• There are n men and n women

• Each man has a preference list, so does
the woman.

• These lists have no ties.

• Devise a system by which each of the n men

and n women can end up getting married.

Other Similar problems
• Given a set of colleges and students pair

them. (Internship – Company assignments)
• Given airlines and pilots, pair them.
• Given two images, pair the points belonging

to the same point in 3D to extract depth
from the two images.

• Dorm room assignments.
• Hospital residency assignments**.

Stereo Matching

Fact: If one knows the distance between the cameras
And the matching, its almost trivial to recover depth..

11

A Good matching/pairing
• Maximize the number of people who

get their first match?

• Maximize the av?

• Maximize the minimum satisfaction?

• Can anything go wrong?

Example Preference Lists

Z

Y

X

Man

A

B

A

1
st

B

A

B

2
nd

C

C

C

3
rd

C

B

A

Woman

X

X

Y

1
st

Y

Y

X

2
nd

Z

Z

Z

3
rd

What goes wrong?

Unstable pairs: (X,C) and (B,Y)
They prefer each other to current pairs.

Stable Matching

Z

Y

X

Man

A

B

A

1
st

B

A

B

2
nd

C

C

C

3
rd

C

B

A

Woman

X

X

Y

1
st

Y

Y

X

2
nd

Z

Z

Z

3
rd

No Pairs creating instability.

12

Another Stable Matching

Z

Y

X

Man

A

B

A

1
st

B

A

B

2
nd

C

C

C

3
rd

C

B

A

Woman

X

X

Y

1
st

Y

Y

X

2
nd

Z

Z

Z

3
rd

Stability is Primary.
• Any reasonable list of criteria must

contain the stability criterion.

• A pairing is doomed if it contains a
shaky couple.

Main Idea

Idea: Allow the pairs to keep
breaking up and reforming until
they become stable

Can you argue that the couples will not
continue breaking up and reforming forever?

13

Men Propose

(Women dispose)

Gale-Shapley Algorithm (men propose)

Initialize each person to be free.
while (some man m is free and hasn't proposed to every woman)

w = first woman on m's list to whom m has not yet proposed
if (w is free)

assign m and w to be engaged
else if (w prefers m to her fiancé m')

assign m and w to be engaged, and m' to be free
else

w rejects m

Analysis
• Does the algorithm terminate?

• Running time?

• Space requirement?

Improvement Lemma
• Improvement Lemma: If a woman has a

committed suitor, then she will always have
someone at least as good, from that point
in time onwards (and on the termination of
the algorithm).

14

Corollary : Improvement Lemma

• Each woman will marry her
absolute favorite of the men who
proposed to her.

Demotion Lemma
• The sequence of women to whom m

proposes gets worse and worse

(in terms of his preference list)

Lemma 1
• No Man can be rejected by all the

Women.

• Proof: ??
Suppose Bob is rejected by all the women.
At that point:

Each women must have a suitor other than Bob
(By Improvement Lemma, once a woman has a
suitor she will always have at least one)
The n women have n suitors, Bob not among them.
Thus, there must be at least n+1 men !

Contradiction

15

Corollary: Lemma 1
• If m is free at some point in the

execution of the algorithm, then
there is a woman to whom he has not
yet proposed.

Corollary: Lemma 1
• The algorithm returns a matching.

(Since no man is free?)

• The algorithm returns a perfect
matching. (Since there is no free
man?)

Lemma 2
• Consider the execution of the G-S

algorithm that returns a set of pairs
S. The set S is a stable matching.

• Proof?

16

Lemma 2
Proof by contradiction

Unstable pair : Bob and Mia
– This means Bob likes Mia more than his partner, Alice.
– Thus, Bob proposed to Mia before he proposed to Alice.
– Mia must have rejected Bob for someone she preferred.
– By the Improvement lemma, she must like her parnter

Luke more than Bob.

Bob
Alice

Mia

Luke

Question!

Who is better off,

the men or the

women?

Best (Valid?) Parter
for Bob?

• Best woman for “Bob”?

• The woman at the top of Bob’s list?

A woman w is a valid partner of a man m if there is a
Stable matching that contains (m,w).
A man’s optimal match or best valid partner
is the highest ranked woman for whom there
is some stable pairing in which they are matched

She is the best woman he can conceivably
be matched in a stable world. Presumably, she might
be better than the woman he gets matched to
in the stable pairing output by GS.

17

Example
• M { w, w’ }
• M’ { w’ , w }
• W { m’ , m }
• W’ { m , m’ }

Two stable matchings:
(m,w) (m’,w’)

Or (m’,w) (m,w’)

Worst Valid Partner
Match.

• A Man’s worst valid partner is the
lowest ranked woman in his
preference list that is a valid
partner.

Dating Dilemma
• A pairing is man-optimal if every man gets

his best valid partner. This is the best of
all possible stable worlds for every man
simultaneously.

• A pairing is man-pessimal if every man gets
his worst valid partner. This is the worst
of all possible stable worlds for every man
simultaneously.

18

Dating Dilemmas
• A pairing is woman-optimal if every woman

gets her best valid partner. This is the
best of all possible stable worlds for every
woman simultaneously.

• A pairing is woman-pessimal if every
woman gets her worst valid partner. This is
the worst of all possible stable worlds for
every woman simultaneously.

Question!

Who is better off,

the men or the

women?

Mathematical FACT.

The traditional marriage algorithm
(a.k.a. G-S alg.) always produces a

man-optimal and woman-pessimal
pairing.

19

Theorem 1: GS Produces
man-optimal pairing.

Theorem 2: GS produced
pairing is woman-pessimal.

Theorem 1
Proof by contradiction

• Suppose not: That some man gets rejected by his
best valid partner during the execution of GS.

(w.l.o.g. Let Bob be the first such man)

• Bob gets rejected by his optimal match Mia who
says “maybe” to Luke (whom she prefers)

• Since Bob was the only man to be rejected by his
optimal match so far, Luke must like Mia at least
as much as his optimal match.

We are assuming that Mia is Bob’s optimal
match, Mia likes Luke more than Bob. Luke
likes Mia at least as much as his optimal
match.

• We now show that any pairing S in which
Bob marries Mia cannot be stable (for a
contradiction).

• Suppose S is stable:
– Luke likes Mia more than his partner in S

• Luke likes Mia at least as much as his best
match, but he is not matched to Mia in S

– Mia likes Luke more than her partner Bob in S

Luke Mia

20

• We’ve shown that any pairing in which Bob
marries Mia cannot be stable.
– Thus, Mia cannot be Bob’s optimal match

(since he can never marry her in a stable
world).

– So Bob never gets rejected by his optimal
match in GS, and thus GS is man-optimal.

We are assuming that Mia is Bob’s optimal
match, Mia likes Luke more than Bob. Luke
likes Mia at least as much as his optimal
match.

GS is woman-pessimal
• We know it is man-optimal. Suppose there is a GS

stable pairing S* with (Luke, Alice) such that Luke
is not the worst valid partner of Alice.

• Let Bob be Alice’s worst valid partner.
• Then there is a stable matching S with (Bob,Alice)
• Contradiction: S is not stable.

– By assumption, Alice likes Luke better than her partner
Bob in S

– Luke likes Alice better than his partner in S
• We already know that Alice is his optimal match !

Luke Alice

ConclusionsConclusions

☺

21

Marry Well!

Advice to females

• Learn to make the first move.

Lessons
• Isolate / Abstract out structures

• Create Efficient Algorithms

• History
– Why do men propose?

22

1.2 Five Representative
Problems

1.2 Five Representative
Problems

Interval Scheduling
• Input. Set of jobs with start times and finish times.

• Goal. Find maximum cardinality subset of mutually compatible jobs.

Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

Weighted Interval
Scheduling

• Input. Set of jobs with start times, finish times, and weights.

• Goal. Find maximum weight subset of mutually compatible jobs.

Time

0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

23

Bipartite Matching
• Input. Bipartite graph.

• Goal. Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

68

Independent Set
• Input. Graph.

• Goal. Find maximum cardinality independent set.

6

2

5

1

7

3

4

6

5

1

4

subset of nodes such that no two
joined by an edge

69

Competitive Facility
Location

• Input. Graph with weight on each each node.

• Game. Two competing players alternate in selecting nodes. Not allowed to
select a node if any of its neighbors have been selected.

• Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

24

70

Five Representative
Problems

• Variations on a theme: independent set.

• Interval scheduling: n log n greedy algorithm.

• Weighted interval scheduling: n log n dynamic programming
algorithm.

• Bipartite matching: nk max-flow based algorithm.

• Independent set: NP-complete.

• Competitive facility location: PSPACE-complete.

REFERENCES
•D. Gale and L. S. Shapley, College
admissions and the stability of marriage,
American Mathematical Monthly 69
(1962), 9-15

•Dan Gusfield and Robert W. Irving, The
Stable Marriage Problem: Structures and
Algorithms, MIT Press, 1989

