
Trees

Binary Trees
• A binary tree is composed of zero or more nodes in which no
 node can have more than two children.

• Each node contains:
 A value (some sort of data item).
 A reference or pointer to a left child (may be null), and
 A reference or pointer to a right child (may be null)

• A binary tree may be empty (contain no nodes).

• If not empty, a binary tree has a root node.
 Every node in the binary tree is reachable from the root
node by a unique path.

• A node with neither a left child nor a right child is called a leaf.

TreeNode Class

"""Tree Node Class"""

class TreeNode:
 """Initializes data members""“
 left, right, data = None, None, 0

 def __init__(self, data):
 self.left = None
 self.right = None
 self.data = data

• Every node has a value, a pointer to the left subtree and
 a pointer to the right subtree.
• When a node is first created, the left and right pointers are
 set to None.

Tree Class

"""Tree Class"""

class Tree:
 """initializes the root member"""
 def __init__(self):
 self.root = None

• This class represents the entire tree.
• Contains methods to create and manipulate the nodes,
 their data and links between them.

Binary Search Trees

• Stores keys in the nodes in a way so that searching, insertion
and deletion can be done efficiently.

• Binary search tree property
For every node X, all the keys in its left subtree are smaller

than the key value in X, and all the keys in its right subtree are
larger than the key value in X

Binary Search Trees

A binary search tree Not a binary search tree

Binary Search Trees

• Where is the smallest element in a binary search tree??

Ans: leftmost element

• Where is the largest element in a binary search tree??

Ans: rightmost element

BST: Insert item
• Insert the following items

to the binary search tree.
50
20
75
98
80
31
150
39
23
11
77

50

20 75

80

98 11

39

31

150 23

77

• What is the size of the problem?
Ans. Number of nodes in the tree we are
examining

• What is the base case(s)?
Ans. The tree is empty

• What is the general case?
Ans. Choose the left or right subtree

BST: Insert item

BST: Lookup

40

20 60

10 30 50

5

70

55

• Search for the element 55 in the below binary search tree.

BST: Lookup

40

20 60

10 30 50

5

70

55

• Search for the element 55 in the below binary search tree.

BST: Lookup

40

20 60

10 30 50

5

70

55

• Search for the element 55 in the below binary search tree.

BST: Lookup

40

20 60

10 30 50

5

70

55

• Search for the element 55 in the below binary search tree.

BST: Lookup

40

20 60

10 30 50

5

70

55

• Search for the element 55 in the below binary search tree.

BST: Lookup

40

20 60

10 30 50

5

70

55

• Search for the element 55 in the below binary search tree.

BST: Lookup

40

20 60

10 30 50

5

70

55

• Search for the element 55 in the below binary search tree.

BST: Lookup

40

20 60

10 30 50

5

70

55

• Search for the element 55 in the below binary search tree.

• What is the size of the problem?
Ans. Number of nodes in the tree we are examining

• What is the base case(s)?
Ans. 1. When the key is found.
 2. The tree is empty (key was not found).

• What is the general case?
Ans. Search in the left or right subtrees.

BST: Lookup

Traversals
• traversal: An examination of the elements of a

tree.
– A pattern used in many tree algorithms and

methods

• Common orderings for traversals:
– pre-order: process root node, then its

left/right subtrees
– in-order: process left subtree, then root

node, then right
– post-order: process left/right subtrees,

then root node 40 81

9 41

17

6 29

Root

Traversal example

• pre-order: 17 41 29 6 9 81 40
• in-order: 29 41 6 17 81 9 40
• post-order: 29 6 41 81 40 9 17

40 81

9 41

17

6 29

Root

Traversal trick
• To quickly generate a traversal:

– Trace a path around the tree.
– As you pass a node on the

proper side, process it.
• pre-order: left side
• in-order: bottom
• post-order: right side

• pre-order: 17 41 29 6 81 40
• in-order: 29 41 6 17 81 9 40
• post-order: 29 6 41 81 40 9 17

40 81

9 41

17

6 29

Root

• Give pre-, in-, and post-order traversals for the
following tree:

– pre: 42 15 27 48 9 86 12 5 3 39
– in: 15 48 27 42 86 5 12 9 3 39
– post: 48 27 15 5 12 86 39 3 42

Exercise

3 86

9 15

42

27

48

Root

12 39

5

Huffman Coding

Huffman Coding

• Huffman codes can be used to compress information
– Like WinZip – although WinZip doesn’t use the Huffman

algorithm
– JPEGs do use Huffman as part of their compression

process

• The basic idea is that instead of storing each character in
a file as an 8-bit ASCII value, we will instead store the
more frequently occurring characters using fewer bits and
less frequently occurring characters using more bits
– On average this should decrease the filesize (usually ½)

Huffman Coding

• As an example, lets take the string:
 “duke blue devils”

• We first to a frequency count of the characters:
• e:3, d:2, u:2, l:2, space:2, k:1, b:1, v:1, i:1, s:1

• Next we use a Greedy algorithm to build up a Huffman Tree
– We start with nodes for each character

e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1 i,1 s,1

Huffman Coding
• We then pick the nodes with the smallest frequency

and combine them together to form a new node
– The selection of these nodes is the Greedy part

• The two selected nodes are removed from the set,
but replace by the combined node

• This continues until we have only 1 node left in the

set

Huffman Coding

e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1 i,1 s,1

Huffman Coding

e,3 d,2 u,2 l,2 sp,2 k,1 b,1 v,1

i,1 s,1

2

Huffman Coding

e,3 d,2 u,2 l,2 sp,2 k,1

b,1 v,1 i,1 s,1

2 2

e,3 d,2 u,2 l,2 sp,2

k,1 i,1 s,1

2

b,1 v,1

2

3

Huffman Coding

e,3 d,2 u,2

l,2 sp,2 k,1 i,1 s,1

2

b,1 v,1

2

3 4

Huffman Coding

e,3

d,2 u,2 l,2 sp,2 k,1 i,1 s,1

2

b,1 v,1

2

3 4 4

Huffman Coding

e,3

d,2 u,2 l,2 sp,2

k,1 i,1 s,1

2

b,1 v,1

2

3

4 4 5

Huffman Coding

e,3

d,2 u,2

l,2 sp,2

k,1 i,1 s,1

2

b,1 v,1

2

3

4

4

5 7

Huffman Coding

e,3

d,2 u,2 l,2 sp,2

k,1 i,1 s,1

2

b,1 v,1

2

3

4 4 5

7 9

Huffman Coding

e,3

d,2 u,2 l,2 sp,2

k,1 i,1 s,1

2

b,1 v,1

2

3

4 4 5

7 9

16

Huffman Coding

• Now we assign codes to the tree by placing a 0 on
every left branch and a 1 on every right branch

• A traversal of the tree from root to leaf give the

Huffman code for that particular leaf character

• Note that no code is the prefix of another code

Huffman Coding

e,3

d,2 u,2 l,2 sp,2

k,1 i,1 s,1

2

b,1 v,1

2

3

4 4 5

7 9

16

e 00
d 010
u 011
l 100
sp 101
i 1100
s 1101
k 1110
b 11110
v 11111

Huffman Coding

• These codes are then used to encode the string
• Thus, “duke blue devils” turns into:
010 011 1110 00 101 11110 100 011 00 101 010 00 11111 1100 100

1101
• When grouped into 8-bit bytes:
01001111 10001011 11101000 11001010 10001111 11100100

1101xxxx
• Thus it takes 7 bytes of space compared to 16 characters * 1

byte/char = 16 bytes uncompressed

Huffman Coding

• Uncompressing works by reading in the file bit by bit
– Start at the root of the tree
– If a 0 is read, head left
– If a 1 is read, head right
– When a leaf is reached decode that character and start over

again at the root of the tree
• Thus, we need to save Huffman table information as a header

in the compressed file
– Doesn’t add a significant amount of size to the file for large

files (which are the ones you want to compress anyway)
– Or we could use a fixed universal set of codes/freqencies

Huffman Coding

to be continued...

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	BST: Lookup
	BST: Lookup
	BST: Lookup
	BST: Lookup
	BST: Lookup
	BST: Lookup
	BST: Lookup
	BST: Lookup
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Slide Number 41

