Make Tutorial

For : COP 3330.
Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

Compiling programs

o Single source file code:
g++ -g —Wall main.cpp —Im —o main

o Multiple sources [a,b]
g++ -g —c —Wall a.cpp
g++ -g —c -Wall b.cpp
g++ -g —o main a.o b.o -Im

Compiler flags

o -C
Separate compilation flag. Will produce a *.0" file only,
without linking.
o -g
The application will have full debug capabilities, but
almost no optimization will be performed on the
application, leading to lower performance.
o -Wall
Enable all warnings.
o -o Filename
Write output to file.
For more options: “man g++"

Compilation

o Multi stage process

g++ -g main.cpp —Im —o main
g++ -g -c main.cpp -0 main.o
g++ -g main.o main

Compiling and Linking
Compilation : Produces object code
(main.o)
Linking : Produces executable by linking a
collection of object files and libraries.

A Typical Software Project

Has 10s to 100s of source files

Multiple directories

Multiple authors

Flags : Differ with compilation
Debugging flags (-g)
Optimization flags (-06 —mal ign-double)
Release Vs Test builds.

o Make: A tool to automate the build process.

Other cool build tools: CMake,
automake/autoconf, scons.

O 00O

Make

o Make is not tied to any particular
language.

o Make figures out automatically which
files it needs to update, based on
which source files have changed.

o Make enables the end user to build
and install your package without
knowing the details of how that is
done.

Make and Makefiles

o “make” command reads “makefile”
in the current directory for instructions
for the build process.

o If you want to give it a specific file for
input, say Makefile-1 USE

make —F Makefile-1

] An example

o Main.cpp = Uses functions from other
source files and is the main program.

o Hello.cpp = Function definition.
o Sumof.cpp = Function definition.

o Functions.hpp = Function
declarations.

Download code from: http:/A com 0 tar.gz
Use “tar zxf makex.tar.gz” to untar files.

An Example: Makefile-0

o Running Make
make -f Makefile-0

g++ main.cpp hello.cpp
sumof.cpp -o hello

make
<reads default: Makefile>

° An Example: Makefile-0

o The basic makefile is composed of “rules”:

target: prerequisites 0 Other targets
Or source files

<tab> system command

o Makefile-0

all:
<tab> g++ main.cpp hello.cpp sunof.cpp -o hello
L Default target for makefiles

“make —f Makefile-0" and “make —f Makefile-0 all” are equivalent.

Targets, Preregs and
commands

o Target: is usually the name of a file that is
generated by a program; examples of targets
are executable or object files. A target can also
be the name of an action to carry out, such as
“clean’

o A prerequisite is a file that is used as input to
create the target. A target often depends on
several files.

o A command is an action that make carries out.

a -

Qt a tab before the comman

° Another Example: Makefile-1

o Makefile-1 , Dependencies

all: hello —

hello:«main.o sumof.o hello.o —
Command +«—f gﬁmlo.\miheuo

main.o: main.cpp
g++ -c main.cpp Prerequisjtes /

Dependencies.
sumof.o: sumof.cpp

g++ -c sumof.cpp

hello.o: hello.cpp

g++ -c hello.cpp Wildcards.

clean: -
rm -rf *o hello *.exe ~

‘make —F Makefile-1 clean” cleans up your directory except source code.

Variables

Using
Variables

—

Another Example: Makefile-2

__— Comments in makefile.

o Makefile-2

The variable CC will be the compiler to use.
« CC=gt+

CFLAGS will be the options I"11 pass to the compiler.
CFLAGS=-c -Wall -g

all: hello

hello: main.o sumof.o hello.o
———— $(CC) main.o sumof.o hello.o -o hello

main.o: main.cpp
$(CC) S(CFLAGS) main.cpp

sumof.o: sumof.cpp
$(CC) $(CFLAGS) sumof.cpp

hello.o: hello.cpp
$(CC) $(CFLAGS) hello.cpp

clean:
rm -rf *o hello *.exe

Make: How does it work?

o make reads the makefile in the current
directory and begins by processing
the first rule. (in our case: all)

o but before make can fully process this
rule, it must process the rules for the
files that ‘all’ depends on, which in this
case are the object files.

o Each of these files is processed
according to its own rule.

J Make
o Only makes out of date prerequisites.
hello: main.o sumof.o hello.o
g++ main.o sumof.o hello.o -o hello
o How to decide whether “hello” is out
of date?
It is out of date if it does not exist,
or
if either main.o , sumof.o or hello.o are more recent than it.
If “hello” is out of date, make executes the command ‘g++ main.o ...’
° Makefile targets
o Expected targets in makefiles
make all
Compile everything.
make install
Install your software.
make clean
Clean intermediate files and executables.
° Make: How does it work?

o For any rule, the recompilation must
be done if the prerequisites are more
recent than the target, or if the
target/object file does not exist.

Make: Wrap up

o make —j2
Uses 2 processors for the build process.
o More info:

http://www.gnu.org/software/make/manual/ht
ml_node/index.html

man make

Example :
http://www.compgeom.com/~piyush/teach/33
30/examples/makex.tar.gz

