
1

Make Tutorial

For : COP 3330. 
Object oriented Programming (Using C++)

http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

Compiling programs

Single source file code:
g++ -g –Wall main.cpp –lm –o main

Multiple sources [a,b]
g++ -g –c –Wall a.cpp
g++ -g –c -Wall b.cpp
g++ -g –o main a.o b.o -lm

Compiler flags

-c
Separate compilation flag. Will produce a ``.o'' file only, 
without linking. 
-g

The application will have full debug capabilities, but 
almost no optimization will be performed on the 
application, leading to lower performance.
-Wall

Enable all warnings.
-o filename

Write output to file.
For more options: “man g++”

Compilation

Multi stage process
g++  -g main.cpp –lm –o main
• g++ -g -c main.cpp –o main.o
• g++ -g main.o main

Compiling and Linking
• Compilation : Produces object code 

(main.o)
• Linking : Produces executable by linking a 

collection of object files and libraries.

A Typical Software Project

Has 10s to 100s of source files
Multiple directories
Multiple authors
Flags : Differ with compilation

Debugging flags  (-g)
Optimization flags (-O6 –malign-double)
Release Vs Test builds.

Make: A tool to automate the build process.  
Other cool build tools: CMake, 
automake/autoconf, scons.

Make

Make is not tied to any particular 
language. 
Make figures out automatically which 
files it needs to update, based on 
which source files have changed. 
Make enables the end user to build 
and install your package without 
knowing the details of how that is 
done.



2

Make and Makefiles

“make” command reads “makefile”
in the current directory for instructions 
for the build process.
If you want to give it a specific file for 

input, say Makefile-1 use
make –f Makefile-1

An example

Main.cpp Uses functions from other 
source files and is the main program.
Hello.cpp Function definition.
Sumof.cpp Function definition.
Functions.hpp Function 
declarations.

Download code from: http://www.compgeom.com/~piyush/teach/3330/examples/makex.tar.gz
Use “tar zxf makex.tar.gz” to untar files.

An Example: Makefile-0

Running Make
make -f Makefile-0

g++ main.cpp hello.cpp
sumof.cpp -o hello
make
<reads default: Makefile>

An Example: Makefile-0

The basic makefile is composed of “rules”:     

target: prerequisites 
<tab> system command

Makefile-0

all: 
<tab> g++ main.cpp hello.cpp sunof.cpp -o hello

Default target for makefiles
“make –f Makefile-0” and “make –f Makefile-0 all” are equivalent.

Other targets
Or source files

Targets, Prereqs and 
commands

Target: is usually the name of a file that is 
generated by a program; examples of targets 
are executable or object files. A target can also 
be the name of an action to carry out, such as 
`clean' 
A prerequisite is a file that is used as input to 
create the target. A target often depends on 
several files. 
A command is an action that make carries out.

Put a tab before the command

Another Example: Makefile-1

Makefile-1

all: hello

hello: main.o sumof.o hello.o
g++ main.o sumof.o hello.o -o hello

main.o: main.cpp
g++ -c main.cpp

sumof.o: sumof.cpp
g++ -c sumof.cpp

hello.o: hello.cpp
g++ -c hello.cpp

clean:
rm -rf *o hello *.exe

Dependencies

“make –f Makefile-1 clean” cleans up your directory except source code.

Prerequisites /
Dependencies.

Command

Wildcards.



3

Make

Only makes out of date prerequisites.
hello: main.o sumof.o hello.o

g++ main.o sumof.o hello.o -o hello

How to decide whether “hello” is out 
of date? 

It is out of date if it does not exist, 
or 

if either main.o , sumof.o or hello.o are more recent than it. 

If “hello” is out of date, make executes the command ‘g++ main.o …’

Another Example: Makefile-2

Makefile-2

# The variable CC will be the compiler to use.
CC=g++

# CFLAGS will be the options I'll pass to the compiler.
CFLAGS=-c -Wall -g

all: hello

hello: main.o sumof.o hello.o
$(CC) main.o sumof.o hello.o -o hello

main.o: main.cpp
$(CC) $(CFLAGS) main.cpp

sumof.o: sumof.cpp
$(CC) $(CFLAGS) sumof.cpp

hello.o: hello.cpp
$(CC) $(CFLAGS) hello.cpp

clean:
rm -rf *o hello *.exe

Comments in makefile.

Variables

Using
Variables

Makefile targets

Expected targets in makefiles
make all

• Compile everything.
make install

• Install your software.
make clean

• Clean intermediate files and executables. 

Make: How does it work?

make reads the makefile in the current 
directory and begins by processing 
the first rule. (in our case: all)
but before make can fully process this 
rule, it must process the rules for the 
files that ‘all’ depends on, which in this 
case are the object files. 
Each of these files is processed 
according to its own rule. 

Make: How does it work?

For any rule, the recompilation must 
be done if the prerequisites are more 
recent than the target, or if the 
target/object file does not exist. 

Make: Wrap up

make –j2
Uses 2 processors for the build process.

More info:
http://www.gnu.org/software/make/manual/ht
ml_node/index.html
man make
Example : 
http://www.compgeom.com/~piyush/teach/33
30/examples/makex.tar.gz


