
Hg Tutorial

For : COP 3330.

Object oriented Programming (Using C++)

http://www.compgeom.com/~piyush/teach/3330

Biswas Parajuli

Need for Version Control

http://hginit.com/01.html

Repository

 Working directory:

 has a copy of the project files in a certain version

 Store:

 holds complete history of the project

https://www.mercurial-scm.org/wiki/UnderstandingMercurial

Example Project

 Say you have a directory proj_0 with:
 Makefile

 hello.cpp

 README.rst

Creating local hg repo

1. $ cd proj_0

2. $ ls –a
 lists project files + hidden dirs ‘.’ and ‘..’

3. $ hg init
 create a new repository in the current directory

4. $ ls –a
 New hidden directory ‘.hg’

 ‘.hg’ will hold the history of the working dir

5. $ ls .hg
 shows files ‘00changelog.i’, ‘requires’ and directory ‘store’

Note:

‘$’ is not a part of the command.

Hg commands

$ hg

Mercurial Distributed SCM

basic commands:

 add add the specified files on the next commit

 annotate show changeset information by line for each file

 clone make a copy of an existing repository

 commit commit the specified files or all outstanding changes

 diff diff repository (or selected files)

 export dump the header and diffs for one or more changesets

 forget forget the specified files on the next commit

 init create a new repository in the given directory

 log show revision history of entire repository or files

 merge merge another revision into working directory

 pull pull changes from the specified source

 push push changes to the specified destination

 remove remove the specified files on the next commit

 serve start stand-alone webserver

 status show changed files in the working directory

 summary summarize working directory state

 update update working directory (or switch revisions)

(use "hg help" for the full list of commands or "hg -v" for details)

Per-repo config file

 Create a new file .hg/hgrc inside proj_0

 Configuration file with sections

 Each section led by [section] header followed by name = value

entries

 “ui” section

 User Interface controls

 username => who made the changes?

 “paths” section

 Alias for location of the repo

 Can be a remote URL or a local directory

add to repo

 README.rst will now be version controlled

 It will be added to the repo in the next check in or commit

$ echo “Print Hello” > README.rst

$ hg add README.rst

hg add

 Do not add compiled binaries, .so or other files

which are produced based on the source files

 Avoid adding files with sensitive info

 Add only the source files

check status

 • Status before committing

• $ hg status

 shows status of all files in the working dir

• $ hg st README.rst

 shows status of the given file

• $ hg status –mar

 Show only those files which were modified (m), added (a) or

removed (r)

 For other status codes, run “hg help status”

 ? = not tracked

$ hg status

A README.rst

? Makefile

? hello.cpp

hg commit

• Commit the change you made to the source

files to the repo

• “-m” for commit => commit message

• Informative commit. Searchable commits.

• A new commit == A revision

$ hg commit –m “Added title to README”

add remaining and commit

 How many revisions so far?

$ echo “int main(){return 0;}” > hello.cpp

$ hg add hello.cpp

$ hg ci –m “Initialized hello.cpp”

$ echo “# Makefile to build hello.cpp” > Makefile

$ hg add Makefile

$ hg ci –m “Checking in Makefile”

History

$ hg log

changeset: 2:350b60c55f99

tag: tip

user: bparaj

date: Sun Jan 15 19:32:15 2017 -0500

summary: checking in Makefile

changeset: 1:a9204d84057c

user: bparaj

date: Sun Jan 15 19:31:36 2017 -0500

summary: Initialized hello.cpp

changeset: 0:e3475d50b16a

user: bparaj

date: Sun Jan 15 19:29:16 2017 -0500

summary: Added title to README

History

$ hg tip

changeset: 2:350b60c55f99

tag: tip

user: bparaj

date: Sun Jan 15 19:32:15 2017 -0500

summary: checking in Makefile

$ hg log -r 1:2

changeset: 1:a9204d84057c

user: bparaj

date: Sun Jan 15 19:31:36 2017 -0500

summary: Initialized hello.cpp

changeset: 2:350b60c55f99

tag: tip

user: bparaj

date: Sun Jan 15 19:32:15 2017 -0500

summary: checking in Makefile

Navigate Revisions

 Update working dir with a specific version

 Like a time travel

 Where are we?

 $ hg identify

 Lets go to revision 0

 $ hg update –r 0

 Check your working dir. Makefile and hello.cpp are

gone!

 Can we go to the latest version?

 $ hg update

 Phew!

Tag Revisions

 $ hg tag -r 1 cpp_added

 Give user defined symbolic name “cpp_added” to

revision 1

$ hg log -r 1

changeset: 1:a9204d84057c

tag: cpp_added

user: bparaj

date: Sun Jan 15 19:31:36 2017 -0500

summary: Initialized hello.cpp

Mistakes

 Mistaken modification to a file but you have not

committed the change yet

 Undo change to the file with “hg revert”.

 proj_0$ echo "unwanted edit" >> hello.cpp

proj_0$ cat hello.cpp

int main(){return 0;}

unwanted edit

proj_0$ hg stat -mard

M hello.cpp

proj_0$ hg revert hello.cpp

proj_0$ hg stat -mard

proj_0$ cat hello.cpp

int main(){return 0;}

Mistakes

 Accidentally added “a.out” but you have not

committed yet

 Untrack it with “hg forget”

proj_0$ hg add a.out

proj_0$ hg stat -mard

A a.out

proj_0$ hg forget a.out

proj_0$ hg stat -mard

proj_0$

Mistakes

 You made an incomplete or a wrong commit.

 To fix it:

1. Make correct changes

2. Use “hg commit --amend” to overwrite/alter the

previous commit

$ echo "Wrote wrong code" >> hello.cpp

$ hg commit -m "accidental commit"

$ vim hello.cpp # make correct changes to hello.cpp

$ hg commit --amend

Distributed Version Control

 Collaborative software development

 Each dev copies the whole repo in her local machine

https://homes.cs.washington.edu/~mernst/advice/version-control.html

https://en.wikipedia.org/wiki/Mercurial

hg clone

 Obtain copy of a remote master repo

 $ hg clone URL

Push changes

 With “hg commit”, the updates are committed only on the

local repo

 Other devs (developers) should have access to the

changes you made

 Where to push? To the master repo specified in the

default entry in [paths] section in “.hg/hgrc” file.

$ hg push

Pull and Update

 Retrieve changes from the master repo to your local repo

 Basically, the two repos are synced … but not the actual

source (working) files

$ hg pull

$ hg update

 Update the local source (working) files with the

changesets pulled from master repo

hg merge

 Combine two changesets for multiple files or even the

same files but on non-overlapping sections

 Graphically: join two branches at their current heads

Version Control: Graph

https://en.wikipedia.org/wiki/Version_control

Merge Conflict

 Two independent changesets on overlapping sections of

the same files

 Dev should visually verify and select the correct

changeset for the overlapping parts

Rule of Thumb:

Pull and update before you commit and push.

References

 Hg Init: a Mercurial tutorial (http://hginit.com)

 https://www.mercurial-scm.org/wiki/

 Mercurial: The Definitive Guide

 http://hgbook.red-bean.com/read

 hg on command line

http://hginit.com/
https://www.mercurial-scm.org/wiki/
https://www.mercurial-scm.org/wiki/
https://www.mercurial-scm.org/wiki/
https://www.mercurial-scm.org/wiki/

