
3/6/2017

1

Classes: Methods, Constructors,

Destructors and Assignment

For : COP 3330.

Object oriented Programming (Using C++)

http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

Next week’s homework

 Read Chapter 7

 Your next quiz will be on Chapter 7 of

the textbook

Classes: Member functions

Member functions

// classes example
#include <iostream>

class Square {
int x;

public:
int area () {return (x*x);};
void set_values(int a);
int get_sidelen(void) const;

};

// Typically in a .cpp file
void Square::set_values(int a){x = a;}
int Square::get_sidelen(void) const { return x;}

int main () {
Square s;
s.set_values(3);
std::cout << "area: "

<< s.area();
return 0;

}

// Output: “area: 9”

Member functions: Methods

 Private members of a class are accessible

only from within other members of the same

class or from their friends.

 Protected members are accessible from

members of their same class and from their

friends, but also from members of their

derived classes.

 Finally, public members are accessible from

anywhere where the object is visible.

Objects : Reminder

 An object is an instance of a class.

 Memory is allocated for each object

instantiated (and not for the class).

 Example:

• Square S; // S is an object of Square class. (on stack)

• Square *pS = new Square; // on heap.

 An object of a class can be defined in

the same way as an internal type.

Objects : Reminder

 Multiple objects of a class can be

created (as many as you want).

 All the objects share the same copy of

member functions.

 But, they maintain a separate copy of

data members.

 Square s1,s2; // each has separate copy of x

3/6/2017

2

Objects: Reminder

 The data members and member

functions of an object have the same

properties as the data members and

member functions of its class.

Further study:

https://www.programiz.com/cpp-programming/object-class

Assignment operator

 Square s3 = s2;

 By default, copying a class object is

equivalent to copying all its elements

including pointers.

Variable assignment

 Values are assigned to variables and

not to their data types.

 Hence, you assign values to members

of an object and not a class.

 Must create a unique object of a class

because you cannot assign values to

a class.

 Square = 5 is meaningless…

Back to member functions

 The member functions in the public

section of a class can be accessed

using the “.” operator for instantiated

objects. (For pointers its ->)

 Square s1, *s2;

 s1.set_values(5);

 s2 = new Square; s2->set_values(10);

 delete s2;

 Only the public members of an object

can be directly accessed.

Special Member functions

 Constructors: Are invoked to initialize

the data members of a class.

 Can not return any value (not even void).

 Can accept any parameters as

needed.

 What would happen if we called the

member function area() before having

called function set_values()?

Constructors vs. Destructors

 Constructors initialize the objects in

your class.

 Destructors clean up and free memory

you may have allocated when the

object was created.

3/6/2017

3

Constructors

 Differs from other member functions.

 Initializes a newly created object.

 Other member functions are invoked

by existing objects.

 A Constructor is invoked automatically

when an object is created.

Constructors

 Have the same name as the class.

#include <iostream>

class Square {

int x;

public:

Square(int w){ x = w; };

int area () {return (x*x);};

void set_values(int a);

int get_sidelen(void) const;

};

void Square::set_values(int a){ x = a; }

int Square::get_sidelen(void) const { return x;}

int main () {

Square s(3);

std::cout << "area: " << s.area();

return 0;

}

// Output: area: 9

Constructors

 Have the same name as the class.

int main () {

Square s;

cout << "area: " << s.area();

return 0;

}

// Output: area: 0

Default constructor is defined for you: Square(){};

#include <iostream>

class Square {

int x;

public:

Square(int w){ x = w; };

int area () {return (x*x);};

void set_values(int a);

int get_sidelen(void) const;

};

void Square::set_values(int a){ x = a; }

int Square::get_sidelen(void) const { return x;}

Constructors: Overloading

 You can have several constructors for

a class by overloading them.

class Square {

int x;

public:

Square(int w){ x = w; };

Square() { x = 0; };

int area () {return (x*x);};

void set_values(int a);

int get_sidelen(void) const;

};

Constructors : Initialization

 Prefer member initializer list to assignment

 Square(int w):x(w){};

 Array(int lowbound, int
highbound):size(highbound-lowbound+1), lb (
lowbound), hb (highbound), data_vector(size) {};

 Problematic? Why?

 List members in an initialization list in the order
they were declared in the class

Constructors: Warning

 If you implement no constructor, the

compiler automatically generates a

default constructor for you

 But if you write any constructors at all,

the compiler does not supply a default

constructor.

3/6/2017

4

Copy Constructors

 Gets called in a number of situations.

 If you do not write one, the compiler

automatically generates one for you.

Copy constructors: When is it called?

 When the return value of a function has
class type.

 Fraction process_fraction (int i, int j);

 When an argument has class type. A copy
of the argument is made and passed to the
function

 int numerator_process (Fraction f);

 When you use one object to initialize
another object.

 Fraction a(1,3); Fraction b(a);

 Fraction b = a;

Copy constructors

 Not used when a pointer to an object

is passed.

 It’s only called when a new copy of an

existing object needs to be created.

Copy constructors

 The syntax:
 class_name(class_name const &source)

 Const: Making a copy should not alter

source.

 &: The function should not need to call

another copy constructor!

Copy Constructors:

Example.

class Point {

int x,y;

public:

int xx(void) const { return x;};

int yy(void) const { return y;};

Point(Point const &p){

this->x = p.xx();

this->y = p.yy();

};

};

Destructors

 You can have many constructors but only
one destructor.

 The destructor must have the same name
as the class, but preceded with a tilde sign
(~) and it must also return no value.

 The use of destructors is especially suitable
when an object assigns dynamic memory
during its lifetime and at the moment of
being destroyed we want to release the
memory that the object was allocated.

3/6/2017

5

// source: cplusplus.com

#include <iostream>

class CRectangle {

int *width, *height;

public:

CRectangle (int,int);

~CRectangle ();

int area () {return (*width * (*height));}

};

CRectangle::CRectangle (int a, int b) {

width = new int;

height = new int;

*width = a; *height = b;

}

CRectangle::~CRectangle () { delete width; delete height; }

int main () {

CRectangle rect (3,4), rectb (5,6);

std::cout << "rect area: " << rect.area() << std::endl;

std::cout << "rectb area: " << rectb.area() << std::endl;

return 0;

}

Output:

“rect area: 12

rectb area: 30”

this pointer

 Useful when a member function

manipulates two or more objects.

 It holds the address of the object for

which the member function is invoked.

 It is always passed to a non-static

member function. This ensures the

right object is updated using member

functions.

Back to destructor example

 What will happen if we do:

 CRectangle r1(10,20),r2(30,40);

 r1 = r2;

 The default assignment operator

generated by the compiler is called.

What is wrong with that in this

example?

Assignment operators

 int x;

 x = 4;

 4 = x; // non-lvalue in assignment

 x = y = z = 8;

 z is assigned 8 first

 y is then assigned the value returned by (z =

8) which is 8.

 x is now assigned the value returned by (y =

8) which is 8

Assignment operators

 Complex x, y, z;

 x = (y = z);

 Writing this in equivalent functional

form:

 x.operator=(y.operator=(z));

Assignment operators

 Square s1 = s2;

 The default behavior : Performs

simple member by member copy.

(This is the one generated by the compiler)

Is the assignment operator the same thing as

copy constructor?

3/6/2017

6

Assignment Operator

 Copy constructor initializes an object.

 Assignment operator copies values to

an existing object.

 Hence, in some cases: Copy

constructor has to do more work than

assignment operator.

Assignment Operator

 Syntax:
 class_name& operator=(const class_name &source)

 const: Making an assignment should not alter

source.

 &: The function should not need to call a copy

constructor.

#include <iostream>

#include <cstring>

class Buf{

public:

Buf(char const* szBuffer, std::size_t sizeOfBuffer);

Buf& operator=(const Buf &);

void Display() { std::cout << buffer << std::endl; }

private:

char* buffer;

std::size_t SizeOfBuffer;

};

An Example

Buf::Buf(char const* szBuffer, std::size_t sizeOfBuffer)

{

sizeOfBuffer++; // account for a NULL terminator

buffer = new char[sizeOfBuffer];

if (buffer)

{
memcpy(buffer, szBuffer, sizeOfBuffer);

SizeOfBuffer = sizeOfBuffer;

}

}

Buf& Buf::operator=(const Buf &otherbuf)

{

if(&otherbuf != this)
{

if (buffer)

delete [] buffer;

SizeOfBuffer = strlen(otherbuf.buffer) + 1;

buffer = new char[SizeOfBuffer];

memcpy(buffer, otherbuf.buffer, SizeOfBuffer);
}

return *this;

}

int main()

{

Buf myBuf("my buffer", 10);

Buf yourBuf("your buffer", 12);

// Display 'my buffer'

myBuf.Display();

// assignment opperator

myBuf = yourBuf;

// Display 'your buffer'

myBuf.Display();

return 0;

}

Output:

“my buffer

your buffer”

Guidelines

 Place the common code used by the assignment
operator and the copy constructor in a separate
function and have each one call the function. This will
make your code more compact and avoid duplication.

 A String class must copy a character string during the
copy constructor and during an assignment. If we
place this common code into a private member
function

 void CopyString(const char* ptr); then both the copy
constructor and assignment operator may call this
routine to perform the copy rather than duplicate this
code in each.

From: http://www.acm.org/crossroads/xrds1-4/ovp.html

3/6/2017

7

Guidelines

 If your class has pointer data, you must provide an
assignment operator. If writing an assignment
operator, you must also write a copy constructor (and
destructor?).

 The generated assignment operator performs
member-wise assignment on any data members of
your class. For pointer variables, we almost always do
not want this because the data members of the copy
will point to the same data as the copied object!
Worse, if one of the objects is destroyed, the data is
destroyed with it. A run-time error will occur the next
time the remaining object tries to access the now non-
existent data.

Guidelines

 When dealing with pointers, Always

implement the assignment operator for your

class; do not let the compiler generate the

default assignment operator. (Remember

rule of 3)

 The compiler will generate a default

assignment operator for your class if you do

not provide one. In order to be in complete

control of how your class operates, always

provide an assignment operator.

Guidelines

 Check for assignment to self.

 Disaster can result if a variable is assigned to itself.
Consider:

 X x; x = x; Suppose class X contains pointer data
members that are dynamically allocated whenever an
object is created. Assignment always modifies an
existing object. The dynamic data will, therefore, be
released before assigning the new value. If we do not
check for assignment to self, the above assignment
will delete the existing pointer data, and then try to
copy the data that was previously deleted!

Guidelines

 The destructor must release any

resources obtained by an object

during its lifetime, not just those that

were obtained during construction.

 Make the constructor as compact as

possible to reduce overhead and to

minimize errors during construction.

