Exceptions

Exceptions are run-time anomalies, such as division by
zero, that require immediate handling when encountered
by your program. The C++ language provides built-in
support for raising and handling exceptions. With C++
exception handling, your program can communicate
unexpected events to a higher execution context that is
better able to recover from such abnormal events.

» Useful when the code that detects the problem cannot
handle it (Exception-Detection code). Control must be
transferred to the code that can handle such error.
(Exception-Handling code).

® Exceptions
For : COP 3330.
Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330
Piyush Kumar
[]

Exceptions in C++

+ Communication between exception-detection
and exception-handling parts of the program
in C++. It involves:

throw expressions
try blocks
exception classes

« The try, throw, and catch statements
implement exception handling.

Exceptions in C++

If not handled properly, exceptions can cause the program
to:

Crash
Falls into unknown state

An exception handler is a section of program code that is
designed to execute when a particular exception occurs

Resolve the exception
Lead to known state, such as exiting the program

Standard Exceptions

o Exceptions Thrown by
the Language
new
Standard Library Routines
User code, using throw statement

The throw Statement

Throw: to signal the fact that an exception has
occurred; also called raise

Syntax

throw Expression

The try-catch Statement

How one part of the program catches and processes
the exception that another part of the program throws.
TryCatchStatement
try
Block
catch (FormalParameter)

Block
catch (FormalParameter)

FormalParameter
{ DataType VariableName

) Example of a try-catch Statement

try

1/ Statements that process personnel data and may throw
1/ exceptions of type int, string, and SalaryError

}
catch (int)

1/ Statements to handle an int exception
catch (string s)

cout << s << endl; // Prints "Invalid customer age"
1/ More statements to handle an age error

catch (SalaryError)

/I Statements to handle a salary error

Execution of try-catch

Throwing an Exception to be
Caught by the Calling Code

void Func3(Q)
{

try
{ void Func4()

Func4Q);
if (error)
¥ throw ErrType(Q);
catch (ErrType) ypeO

[]
A No
statement throws statements throw
an exception an exception
Control moves \ Exception
directly to exception Handler
handler
‘ Statements to deal with exception are executed
° Practice: Dividing by ZERO

Apply what you know:

int Quotient(int numer, // The numerator

int denom) // The denominator

if (denom != 0)
return numer / denom;
else

//What to do?? do sth. to avoid program
//crash

¢ A Solution

int Quotient(int numer, // The numerator

int denom) // The denominator

if (denom == 0)
throw DivByZero();
//throw exception of class DivByZero

return numer / denom;

A Solution @ (o nuner oo denons

while (cin)
// “quatient.cpp” — Quotent program { o
#incdlude<iostream> {
#indude <string> cout << "Their quotient: "

) << Quotert (numer, denom) << endl;
using namespace std;

}

catch (DivByZero)

{

it Quodent (irt, irt);
class DivByZero // Exception dlass
{

irt main()

cout << " Denominator can't be 0"

<< endl;
{ }
irt numer; // Numerator cout << "Enter numeratar and denominatar: ;
it denom; // Denominatar dn >> numer >> denom;
}
cout << "Enter numeratar and denominatar: "; retum 0;

}

irt Quotdent(/*in */irt numer, // The numeratar
/*in %/ irt denom) // The denominatar
if (denom == 0)
throw DivByZero();

retun numer / denom;

