
2/18/2017

1

Pointers and Arrays

For : COP 3330.

Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

Introduction To Pointers

 A pointer in C++ holds the value of a memory address

 A pointer's type is said to be a pointer to whatever type should be in the memory address it is
pointing to

 Just saying that a variable is a pointer is not enough information!

 Generic syntax for declaring a pointer:
dataType *pointerVarName;

 Specific examples
int *iPtr; //Declares a pointer called "iPtr" that will

//point to a memory location holding an

//integer value

float *fPtr; //Declares a pointer called "fPtr" that will

//contain an address, which is an address of

//a memory location containing a float value

The Operator &

 There is an operator, &

 When this symbol is used as a unary operator on a variable it has a different
meaning than as a binary operator or type specifier

 It is unrelated to the "logical and", which is && or “bitwise and”, &

 It is unrelated to the use of & in regards to reference parameters

 The operator & is usually called the "address of" operator

 It returns the memory address that the variable it operates on is stored at in memory

 Since the result is an address, it can be assigned to a pointer

Using The "Address Of"
Operator

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1000

i

iPtr

6
int i = 6; //Declares an int, stored

//in memory somewhere
//In this example, it is
//stored at address 1000

int *iPtr; //Declares a pointer. The
//contents of this variable
//will point to an integer
//value. The pointer itself
//must be stored in memory, and
//in this example, is stored at
//memory location 1004

iPtr = &i; //Sets the iPtr variable to
//contain the address of the
//variable i in memory

The Operator *

 Like the &, the * operator has another meaning as well
 The * operator is usually referred to as the "dereference operator"
 The * operator operates on a pointer value

 The meaning is "Use the value that this pointer points to, rather than the
value contained in the pointer itself"

 If a pointer is of type "int *" and the dereference operator operated on the
pointer, the result is a value of type "int"

 Dereferenced pointers can be used as L-values or R-values
 When used as an L-value (on the left side of an assignment), the pointer

is unaffected, but the memory that it points to is changed
 When a pointer that is pointing to memory you are not allowed to access is

dereferenced, the result is a program crash via a "segmentation fault"

Using The Dereference
Operator

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1000

i

iPtr

6

int i = 6; //Declares integer called i
int *iPtr; //Declares a pointer to an int

iPtr = &i; //Sets the iPtr variable to
//contain the "address of" the
//variable i in memory

cout << "i: " << i << endl;
cout << "i: " << *iPtr << endl;

*iPtr = 4; //Changes the memory being
//pointed to by iPtr to contain
//the value 4

cout << "i: " << i << endl;
cout << "i: " << *iPtr << endl;

4

i: 6
i: 6
i: 4
i: 4

2/18/2017

2

Arrays And Pointers
 The name of an array variable in C++, without the use of the [] operator, represents

the starting address of the array
 This address can be stored in a pointer variable

 Since array values are guaranteed to be in contiguous memory, you can access
array values using this one pointer

 Examples of this will come later, after discussing "pointer arithmetic"
const int NUM = 3;
int iAry[NUM] = { 2, 4, 6 };
int *iPtr;

iPtr = iAry; //Assigns iPtr to point
//to the first integer
//in the iAry array

//This cout prints the value of the
//value stored in the location iPtr
//points to (the first int in the
//iAry, in this case)
cout << "val: " << *iPtr << endl;

1000 NUM 1012 iAry[2]

1001 1013

1002 1014

1003 1015

1004 iAry[0] 1016 iPtr

1005 1017

1006 1018

1007 1019

1008 iAry[1] 1020

1009 1021

1010 1022

1011 1023

3

2

4

6

1004

val: 2

Pointer Arithmetic,
Motivation

 Incrementing the contents of an "int
*" variable by one doesn't make
sense

 Integers require 4 bytes of
storage

 Incrementing iPtr by 1, results in
the pointer pointing to location
1005

 However, location 1005 is not
an address that is the starting
address of an integer

 Dereferencing a pointer that
contains an invalid memory location,
such as 1005 may result in a Bus
Error

 When your program results in a
bus error, the program crashes
immediately (Segmentation
fault).

1000 NUM 1012 iAry[2]

1001 1013

1002 1014

1003 1015

1004 iAry[0] 1016 iPtr

1005 1017

1006 1018

1007 1019

1008 iAry[1] 1020

1009 1021

1010 1022

1011 1023

3

2

4

6

1004

Pointer Arithmetic,
Description

 Recall that a pointer type specifies the type of value it is pointing to

 C++ can determine the size of the value being pointed to

 When arithmetic is performed on a pointer, it is done using this knowledge to
ensure the pointer doesn't point to intermediate memory locations

 If an int requires 4 bytes, and iPtr is a variable of type "int *", then the statement
"iPtr++;" actually increments the pointer value by 4

 Similarly, "iPtr2 = iPtr + 5;" stores the address "five integers worth" past iPtr in
iPtr2

• If iPtr was 1000, then iPtr2 would contain the address 1020

• 1020 = 1000 + 5 * 4

 Pointer arithmetic is performed automatically when arithmetic is done on pointers

 No special syntax is required to get this behavior!

Using Pointer Arithmetic

const int NUM = 3;
int iAry[NUM] = { 2, 4, 6 };
int *iPtr;
int *iPtr2;
int *iPtr3;
int i;

iPtr = iAry; //Assigns iPtr to point
//to the first integer
//in the iAry array

iPtr3 = iAry;
for (i = 0; i < NUM; i++)
{

iPtr2 = iPtr + i;
cout << i << " " <<

iAry[i] << " " <<
*iPtr2 << " " <<
*iPtr3 << " " <<
*(iPtr + i) << endl;

iPtr3++;
}

0 2 2 2 2
1 4 4 4 4
2 6 6 6 6

1000 NUM 1012 iAry[2]

1001 1013

1002 1014

1003 1015

1004 iAry[0] 1016 iPtr

1005 1017

1006 1018

1007 1019

1008 iAry[1] 1020

1009 1021

1010 1022

1011 1023

3

2

4

6

1004

Other
Variables

Static Allocation Of Arrays
 All arrays discussed or used thus far in the course have been "statically allocated"

 The array size was specified using a constant or literal in the code

 When the array comes into scope, the entire size of the array can be allocated,
because it was specified

 You won't always know the array sizes when writing source code

 Consider a program that modifies an image

 As the developer, you won't know what image size the user will use

 One solution: Declare the image array to be 5000 rows by 5000 columns

• Problem #1: This likely wastes a lot of memory – if the user uses an image
that is 250x250, then there are 24,937,500 unused pixels. If each pixel
requires 4 bytes, this is almost 100 MB (megabytes!) of wasted space

• Problem #2: What if the user needs to edit an image that is 6000x6000?
Your program will fail, and likely result in a crash

Dynamic Allocation Of
Arrays
 If an array is "dynamically allocated", then space is not reserved

for the array until the size is determined

 This may not be until the middle of a function body, using a
value that is not constant or literal

 The size may be input by the user, read from a file,
computed from other variables, etc.

 As memory is "claimed" using dynamic allocation, the starting
address is provided, allowing it to be stored in a pointer variable

 Since pointers can be used to access array elements, arrays
can be dynamically allocated in this way

 Dynamically allocated memory is claimed from the heap, as
opposed to the stack

2/18/2017

3

The "new" Operator
 A new operator is used to perform dynamic allocation

 The operator is the "new" operator

 The new operator:

 Attempts to find the amount of space requested from the heap

 "Claims" the memory when an appropriately sized available chunk of the heap is
found

 Returns the address of the chunk that was claimed

 "new" can be used to allocated individual variables:
iPtr = new int; //allocates an int variable

 "new" can also be used to allocated arrays of variables:
iPtr = new int[5]; //allocates an array of 5 integers

 Array elements can be accessed using pointer arithmetic and dereferencing, or via
the well-know [] operator, indexing an array

Static Vs Dynamic Allocation

int intArray[10];
intArray[0] = 6837;

int *intArray;
intArray = new int[10];
intArray[0] = 6837;

...

delete[] intArray;

Stack allocation

Heap allocation

Code

Stack

Heap

Dynamic Allocation Of
Arrays, Example

int i; //Loop variable
int *iary; //This will be our array - an int pointer
int num; //Length of the array (input from user)

cout << "Enter length of array: ";
cin >> num;
iary = new int[num]; //Dynamically declare an ary. Get

//necessary mem, assign address to iary
for (i = 0; i < num; i++)
{

cout << "Enter int num " << i << ":";
cin >> iary[i]; //use iary as if it were an array!

}

for (i = 0; i < num; i++)
{

cout << "Index " << i << ": " << iary[i] << endl;
}

 This fragment lets the user decide how big of an array is needed

Outputs Of Dynamic
Allocation Example

Enter length of array: 7
Enter int num 0:3
Enter int num 1:1
Enter int num 2:6
Enter int num 3:8
Enter int num 4:3
Enter int num 5:2
Enter int num 6:1
Index 0: 3
Index 1: 1
Index 2: 6
Index 3: 8
Index 4: 3
Index 5: 2
Index 6: 1

Enter length of array: 3
Enter int num 0:8
Enter int num 1:4
Enter int num 2:1
Index 0: 8
Index 1: 4
Index 2: 1

Note: In the left example, the array required 28
bytes of memory (7 * 4). Exactly 28 bytes was
allocated for the array.

In the right example, the array required only 12
bytes (3 * 4). Exactly 12 bytes was allocated for
the array, and no extra memory was unused and
wasted.

Another Dynamic Allocation
Example
 What is the likely result of the

following program fragment?
int i; //Loop variable
int *iary; //This will be our array - an int pointer
int num; //Length of the array (input from user)

for (i = 0; i < 100000; i++)
{
num = 50000;

iary = new int[num];

//Call a function to randomly fill the array
//Do some sort of processing on the 50000 element ary
//Do it again and again and again, accumulating stats.

}

Example Problem
Description

 The likely result would be that the program would be a failure
 The reason is that the new operator claims the memory requested each

iteration of the loop
 There is only a finite amount of memory, though, and the amount

requested is likely beyond the amount available
 The problem is that while the memory is claimed, it is never released, or

"freed", or "deleted"
 If you don't free the memory, but you do change the pointer pointing at it to

point to a different address, then:
 The original memory is still claimed
 There is no way to access the original memory, since no pointers are

pointing to it
 The chunk of memory is wasted throughout the entire execution of the

program
 This is referred to as a "memory leak", and should be avoided

2/18/2017

4

Using The "delete" Operator
 Dynamically allocated memory can be released back into the available memory store

using the "delete" operator

 The delete operator operates on a pointer and frees the memory being pointed to

 Recall – a pointer may be pointing to a single value, or an array of values

 Due to this, the delete operator is used differently to delete single values and
arrays

 Deleting a single value being pointed to:
delete iPtr;

 Deleting an array of values being pointed to:
delete [] iPtr;

 Using the delete operator on a null pointer has no effect

 Using the delete operator on a pointer pointing to memory that is not currently
claimed by your program will cause a segmentation fault

 Initialize all pointers to 0 (zero)

 Set all pointers to 0 after using the delete operator on them

Fixing The Memory Leak

int i; //Loop variable
int *iary; //This will be our array - an int pointer
int num; //Length of the array (input from user)

for (i = 0; i < 100000; i++)
{

num = 50000;

iary = new int[num];

//Call a function to randomly fill the array
//Do some sort of processing on the 50000 element ary
//Do it again and again and again, accumulating stats.

delete [] iary; //No need to tell delete the size of
//the array. This only frees up the
//memory that iary is pointing to. It
//does NOT delete the pointer in any way

}

Dynamically Allocating
Objects
 The arrow operator is another operator needed for working with

pointers
 The arrow operator is a dash and a greater than symbol: ->

 It is used to access public member variables or functions of
an object that is being pointed to by a pointer

 It is used the same way the dot operator is used on an
actual object, but the arrow is used on a pointer variable
instead

 The arrow is used for convenience

 Alternatively, you could deference the pointer and use the
dot operator

 Since the arrow operator implies a dereference, using the arrow
operator on a pointer that doesn't point to claimed memory
results in a segmentation fault!

Using The Arrow Operator
->

class CircleClass
{

public:
float x;
float y;
float z;
float radius;

};

int main()
{

CircleClass myObj;
CircleClass *myPtr;
myPtr = &myObj;

myObj.x = 5;
myPtr->y = 9;
myObj.z = 15;
myPtr->radius = 56.4;

...

I access the same memory location using
both the actual object and a pointer to that
object.

The dot operator is used with the object

The arrow operator is used with the pointer

Dynamically Allocating
Objects

class TempClass
{

public:
int ival;
double dval;

};

int main()
{

TempClass *temp; //4 bytes (or sizeof(tempClass*)
temp = new TempClass; //Claims enough space for all

//members of a tempClass object

temp->ival = 16; //Since temp is a pointer,
temp->dval = 4.5; //the arrow operator is used

...

Note: The actual object that is
allocated (the memory location)
never gets a name! It is only pointed
to by the temp pointer!

Using Constructors With
Dynamic Allocation

 Remember – a constructor is used whenever an object is allocated, whether
statically or dynamically

class IntClass
{

public:
int val;

IntClass() //Default ctor sets val to 0
{

val = 0;
}
IntClass(int inVal) //Initializes val to value passed in
{

val = inVal;
}

};

IntClass ic; //sets ic.val to 0
IntClass *icPtr = new IntClass; //sets icPtr->val to 0

IntClass ic2(6); //sets ic2.val = 6
IntClass *icPtr2 = new IntClass(10); //sets icPtr->val to 10

Uses the
default ctor

Uses the
value ctor

2/18/2017

5

The sizeof Operator
 Often, you need to know how many bytes of memory a variable or type requires.

 Different architectures use different sizes.

 Use the sizeof operator to determine the current architecture's size of a var or type

int num; //Length of the array (input from user)
cout << "sizeof(int): " << sizeof(int) << endl;
cout << "sizeof(float): " << sizeof(float) << endl;
cout << "sizeof(double): " << sizeof(double) << endl;
cout << "sizeof(char): " << sizeof(char) << endl;
cout << "sizeof(num): " << sizeof(num) << endl;

sizeof(int): 4
sizeof(float): 4
sizeof(double): 8
sizeof(char): 1
sizeof(num): 4

Result may vary on
different machines!
(These results are common)

Dynamically Alloc Mem in C

 Operators "new" and "delete" don't exist in C, but C programmers still need dynamic
allocation.

 Three important functions for C dynamic allocation

//malloc takes one parameter, size, which is simply
//the number of bytes you are requesting.. Returns a
//void *, which is a generic pointer to any type.
void *malloc(size_t size);

//calloc initializes each ary element to 0. nelem is
//the number of elements you are requesting, and
//elsize is the number of bytes each element requires.
void *calloc(size_t nelem, size_t elsize);

//free takes one param, which is a pointer to memory
//that was previously allocated using malloc or calloc
void free(void *ptr);

Dynamically Alloc Mem in C
Example

#include <stdlib.h>
//---
int *iary; //This will be our array - an int pointer
int *iary2; //Another integer array.
int num; //Length of the array (input from user)

cout << "Enter length of ary: ";
cin >> num;

iary = (int *)malloc(num * sizeof(int)); //not init.
iary2 = (int *)calloc(num, sizeof(int)); //init to 0

//Something useful happens here..

//Free up the memory now!
free(iary);
free(iary2);

Prefer C++ to C

string *stringarray1 = static_cast<string *> (malloc(10*sizeof(sting)));
string *stringarray2 = new string[10];

…

free (stringarray1); // no destructors called
// What happened if string object reallocated stuff? Enlarged itself?
delete[] stringarray2;

Use same form of
new/delete

string *stringarray2 = new string[100];

…

delete stringarray2;
// Program behavior undefined
// At least the 99 strings are still in the memory somewhere  Memory LEAK!

new/delete in
constructors/destructors

 For a class with dynamically allocated memory,
Initialize pointers in constructors to 0.

 If unknown size, make them null.

 Deleting a null pointer is always safe.

 Make sure you delete them all in the destructor.

 Useful when you need to implement a class that
manages a resource. (Never manage multiple
resources in a single class, this will only lead to
pain.)

2/18/2017

6

Big Law of three

 if a class defines one (or more) of the
following it should probably explicitly
define all three
 Destructor

 Copy constructor
• Point2d second(first);

 Assignment operator
• first = second;

Example

class person
{

char* name;
int age;

public:

// the constructor acquires a resource:
// in this case, dynamic memory obtained via new[]
person(const char* the_name, int the_age)
{

name = new char[strlen(the_name) + 1];
strcpy(name, the_name);
age = the_age;

}

// the destructor must release this resource via delete[]
~person()
{

delete[] name;
}

};

Rule of three: Missing Copy Constructor/Assignment operator

Example

// 1. copy constructor
person(const person& that)
{

name = new char[strlen(that.name) + 1];
strcpy(name, that.name);
age = that.age;

}

// 2. copy assignment operator
person& operator=(const person& that)
{

if (this != &that)
{

delete[] name;
// This is a dangerous point in the flow of execution!
// We have temporarily invalidated the class invariants,
// and the next statement might throw an exception,
// leaving the object in an invalid state :(
name = new char[strlen(that.name) + 1];
strcpy(name, that.name);
age = that.age;

}
return *this;

}

Advice

 Most of the time, you do not need to
manage a resource yourself because
an existing class can do that for you.

class person
{

std::string name;
int age;

public:

person(const std::string& name, int age) : name(name), age(age)
{
}

};

Out of memory errors
#include <iostream>

using namespace std;

void OutOfMemory(){
cerr << "No more memory\n";

abort();
}

int main() {
set_new_handler(OutOfMemory);
double *pbigarray = new double[200000000];
cout << "I am here\n";
pbigarray[9999999] = 123;
cout << pbigarray[999999] << endl;

return 0;
}

Multidimensional Arrays

 Definition
Type MDarray[size_1][size_2] ... [size_k]

 What it means
 k - dimensional array
 MDarray: array identifier
 size_i: a positive constant expression
 Type: standard type or a previously defined user

type and is the base type of the array elements

 Semantics
 MDarray is an object whose elements are indexed by

a sequence of k subscripts
 the i-th subscript is in the range 0 ... size_i-1

2/18/2017

7

Multi-dimensional Arrays

 Multidimensional arrays are laid out in
row-major order

 Consider
int M[2][4];

 M is two-dimensional array that
consists of 2 subarrays each with 4
elements.
 2 rows of 4 elements

 The array is assigned to a contiguous
section of memory
 The first row occupies the first portion
 The second row occupies the second

portion

Multi-dimensional Arrays

© Art of Assemby website.

Multi-dimensional arrays

 Example:

int myImage[NROWS][NCOLS];

Can be used as parameter in a
function prototype. Example:

void process_matrix(int in[][4], int out[][4], int nrows)

void process_matrix(int in[4][4], int out[4][4], int nrows)

//Invalid

void process_matrix(int in[][], int out[][], int nrows)

Multi-dimensional arrays

 Really an array of
arrays.

int main() {
int x [3][4];
int (*ip)[4]; // pointer to an array of 4 integers
int *oip = &(x[0][0]);

ip = x;
for (int i = 0 ; i < 3; ++i)
for (int j = 0; j < 4; ++j)

x[i][j] = i*10 + j;

cout << (*ip)[0] << "\t" << (* (++ip))[0] << endl;
cout << * (++oip) << endl;
return 0;

}

00 01 02 03

10 11 12 13

20 21 22 23

Recommended exercises: 5.9, 5.30, 5.14, 5.23

Multi-dimensional Arrays

 int (*matrix)[10];
 Pointer to an array of 10 integers

 int *matrix[10];
 Array of 10 integer pointers.
 Example:

• int main(int argc , char *argv[])
• argv[0] = “prgram name”
• argv[1] = “../data/filename”
• argv[2] = “2”

Buffer Overflow problems

A A A A A A A A B B

0 0 0 0 0 0 0 0 0 3

Let A be a string and B be an integer.
Changing A could change B!

/* overflow.c - demonstrates a buffer overflow */
#include <stdio.h>
#include <string.h>
int main(int argc, char *argv[]) {

char buffer[10];
if (argc < 2) {

fprintf(stderr, "USAGE: %s string\n", argv[0]);
return 1;

}

strcpy(buffer, argv[1]);
return 0;

}

2/18/2017

8

Buffer Overflow problems

A A A A A A A A B B

0 0 0 0 0 0 0 0 0 3

Let A be a string and B be an integer.
Changing A could change B!

/* better.c - demonstrates one method of fixing the problem */
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[]) {
char buffer[10];
if (argc < 2) {

fprintf(stderr, "USAGE: %s string\n", argv[0]);
return 1;

}

strncpy(buffer, argv[1], sizeof(buffer));
buffer[sizeof(buffer) - 1] = '\0';
return 0;

}

Type conversions

 C-Style casts
 float average = (float) sum /
items;

 float average = (float)
(sum/items);

 C++ Style
 static_cast< type >(identifier)
 float average = static_cast< float >(sum) /

items;
 float average = sum / static_cast< float >(

items);

Type conversions

x=(float) i; cast in C++ - C notation

x=float(i); cast in C++, functional notation

x=static_cast<float>(i); ANSI C++ - recommended

i=reinterpret_cast<int>(&x) ANSI C++, not portable and system
dependent

func(const_cast<int>(c_var)) where C_var is a const variable
Used for removing “const-ness” when
invoking func. Use with care.

static_cast

 static_cast<T>(expression)
The static_cast<>() is used to cast between the
integer types.
'eg' char->long, int->short etc.

 Static cast is also used to cast pointers to
related types, for example casting void* to the
appropriate type.

BaseClass_Employee* a = new DerivedClass_Manager();
static_cast<DerivedClass_Manager>(a)->derivedClassMethod();

reinterpret_cast

float f = 2.5f;
double * pd = reinterpret_cast<double*>(&f);

cout << f << endl << *pd << endl;

Outputs (!!!):

$./a.exe
2.5
3.50861e+159

Reinterpret cast simply casts one type bitwise to another. Any pointer or integral type
can be casted to any other with reinterpret_cast, easily allowing for misuse.
static_cast will not be allowed in this case.

const_cast

 const_cast<T>(expression)
The const_cast<>() is used to
add/remove const(ness) of a variable.

class A {public: void func() {} };
void f(const A& a)
{

A& b = const_cast<A&>(a);
b.func();

}

2/18/2017

9

dynamic_cast

 Dynamic cast is used to convert pointers and references
at run-time, generally for the purpose of casting cast a
pointer or reference up or down an inheritance chain
(inheritance hierachy).

class Employee { ... };
class Manager : public Employee { ... };

void f(Employee* a) {
Manager* b = dynamic_cast<Manager*>(a);

}

Type conversions

 All Pointers can be converted to void *

 An explicit cast is required in C++
when you want to convert a void * to
another pointer type.

char *char_p;
void *generic_p;
. . .
generic_p=char_p; // OK, char* va in void*
char_p=generic_p; // OK in C, illegal in C++
char_p=static_cast<char *> (generic_p); // The C++ way.

Implicit conversions

 char, short and bool are promoted to int
 Integer types which cannot be

represented with an int are promoted to
unsigned

 In an expression with mixed type, lower
order operand are promoted to the upper
order, with the following rule:

• int < unsigned < long
< unsigned long < float < double
< long double

 bool is an integer type, true is
promoted to 1 and false to 0

