
2/18/2017

1

Pointers and Arrays

For : COP 3330.

Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

Introduction To Pointers

 A pointer in C++ holds the value of a memory address

 A pointer's type is said to be a pointer to whatever type should be in the memory address it is
pointing to

 Just saying that a variable is a pointer is not enough information!

 Generic syntax for declaring a pointer:
dataType *pointerVarName;

 Specific examples
int *iPtr; //Declares a pointer called "iPtr" that will

//point to a memory location holding an

//integer value

float *fPtr; //Declares a pointer called "fPtr" that will

//contain an address, which is an address of

//a memory location containing a float value

The Operator &

 There is an operator, &

 When this symbol is used as a unary operator on a variable it has a different
meaning than as a binary operator or type specifier

 It is unrelated to the "logical and", which is && or “bitwise and”, &

 It is unrelated to the use of & in regards to reference parameters

 The operator & is usually called the "address of" operator

 It returns the memory address that the variable it operates on is stored at in memory

 Since the result is an address, it can be assigned to a pointer

Using The "Address Of"
Operator

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1000

i

iPtr

6
int i = 6; //Declares an int, stored

//in memory somewhere
//In this example, it is
//stored at address 1000

int *iPtr; //Declares a pointer. The
//contents of this variable
//will point to an integer
//value. The pointer itself
//must be stored in memory, and
//in this example, is stored at
//memory location 1004

iPtr = &i; //Sets the iPtr variable to
//contain the address of the
//variable i in memory

The Operator *

 Like the &, the * operator has another meaning as well
 The * operator is usually referred to as the "dereference operator"
 The * operator operates on a pointer value

 The meaning is "Use the value that this pointer points to, rather than the
value contained in the pointer itself"

 If a pointer is of type "int *" and the dereference operator operated on the
pointer, the result is a value of type "int"

 Dereferenced pointers can be used as L-values or R-values
 When used as an L-value (on the left side of an assignment), the pointer

is unaffected, but the memory that it points to is changed
 When a pointer that is pointing to memory you are not allowed to access is

dereferenced, the result is a program crash via a "segmentation fault"

Using The Dereference
Operator

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1000

i

iPtr

6

int i = 6; //Declares integer called i
int *iPtr; //Declares a pointer to an int

iPtr = &i; //Sets the iPtr variable to
//contain the "address of" the
//variable i in memory

cout << "i: " << i << endl;
cout << "i: " << *iPtr << endl;

*iPtr = 4; //Changes the memory being
//pointed to by iPtr to contain
//the value 4

cout << "i: " << i << endl;
cout << "i: " << *iPtr << endl;

4

i: 6
i: 6
i: 4
i: 4

2/18/2017

2

Arrays And Pointers
 The name of an array variable in C++, without the use of the [] operator, represents

the starting address of the array
 This address can be stored in a pointer variable

 Since array values are guaranteed to be in contiguous memory, you can access
array values using this one pointer

 Examples of this will come later, after discussing "pointer arithmetic"
const int NUM = 3;
int iAry[NUM] = { 2, 4, 6 };
int *iPtr;

iPtr = iAry; //Assigns iPtr to point
//to the first integer
//in the iAry array

//This cout prints the value of the
//value stored in the location iPtr
//points to (the first int in the
//iAry, in this case)
cout << "val: " << *iPtr << endl;

1000 NUM 1012 iAry[2]

1001 1013

1002 1014

1003 1015

1004 iAry[0] 1016 iPtr

1005 1017

1006 1018

1007 1019

1008 iAry[1] 1020

1009 1021

1010 1022

1011 1023

3

2

4

6

1004

val: 2

Pointer Arithmetic,
Motivation

 Incrementing the contents of an "int
*" variable by one doesn't make
sense

 Integers require 4 bytes of
storage

 Incrementing iPtr by 1, results in
the pointer pointing to location
1005

 However, location 1005 is not
an address that is the starting
address of an integer

 Dereferencing a pointer that
contains an invalid memory location,
such as 1005 may result in a Bus
Error

 When your program results in a
bus error, the program crashes
immediately (Segmentation
fault).

1000 NUM 1012 iAry[2]

1001 1013

1002 1014

1003 1015

1004 iAry[0] 1016 iPtr

1005 1017

1006 1018

1007 1019

1008 iAry[1] 1020

1009 1021

1010 1022

1011 1023

3

2

4

6

1004

Pointer Arithmetic,
Description

 Recall that a pointer type specifies the type of value it is pointing to

 C++ can determine the size of the value being pointed to

 When arithmetic is performed on a pointer, it is done using this knowledge to
ensure the pointer doesn't point to intermediate memory locations

 If an int requires 4 bytes, and iPtr is a variable of type "int *", then the statement
"iPtr++;" actually increments the pointer value by 4

 Similarly, "iPtr2 = iPtr + 5;" stores the address "five integers worth" past iPtr in
iPtr2

• If iPtr was 1000, then iPtr2 would contain the address 1020

• 1020 = 1000 + 5 * 4

 Pointer arithmetic is performed automatically when arithmetic is done on pointers

 No special syntax is required to get this behavior!

Using Pointer Arithmetic

const int NUM = 3;
int iAry[NUM] = { 2, 4, 6 };
int *iPtr;
int *iPtr2;
int *iPtr3;
int i;

iPtr = iAry; //Assigns iPtr to point
//to the first integer
//in the iAry array

iPtr3 = iAry;
for (i = 0; i < NUM; i++)
{

iPtr2 = iPtr + i;
cout << i << " " <<

iAry[i] << " " <<
*iPtr2 << " " <<
*iPtr3 << " " <<
*(iPtr + i) << endl;

iPtr3++;
}

0 2 2 2 2
1 4 4 4 4
2 6 6 6 6

1000 NUM 1012 iAry[2]

1001 1013

1002 1014

1003 1015

1004 iAry[0] 1016 iPtr

1005 1017

1006 1018

1007 1019

1008 iAry[1] 1020

1009 1021

1010 1022

1011 1023

3

2

4

6

1004

Other
Variables

Static Allocation Of Arrays
 All arrays discussed or used thus far in the course have been "statically allocated"

 The array size was specified using a constant or literal in the code

 When the array comes into scope, the entire size of the array can be allocated,
because it was specified

 You won't always know the array sizes when writing source code

 Consider a program that modifies an image

 As the developer, you won't know what image size the user will use

 One solution: Declare the image array to be 5000 rows by 5000 columns

• Problem #1: This likely wastes a lot of memory – if the user uses an image
that is 250x250, then there are 24,937,500 unused pixels. If each pixel
requires 4 bytes, this is almost 100 MB (megabytes!) of wasted space

• Problem #2: What if the user needs to edit an image that is 6000x6000?
Your program will fail, and likely result in a crash

Dynamic Allocation Of
Arrays
 If an array is "dynamically allocated", then space is not reserved

for the array until the size is determined

 This may not be until the middle of a function body, using a
value that is not constant or literal

 The size may be input by the user, read from a file,
computed from other variables, etc.

 As memory is "claimed" using dynamic allocation, the starting
address is provided, allowing it to be stored in a pointer variable

 Since pointers can be used to access array elements, arrays
can be dynamically allocated in this way

 Dynamically allocated memory is claimed from the heap, as
opposed to the stack

2/18/2017

3

The "new" Operator
 A new operator is used to perform dynamic allocation

 The operator is the "new" operator

 The new operator:

 Attempts to find the amount of space requested from the heap

 "Claims" the memory when an appropriately sized available chunk of the heap is
found

 Returns the address of the chunk that was claimed

 "new" can be used to allocated individual variables:
iPtr = new int; //allocates an int variable

 "new" can also be used to allocated arrays of variables:
iPtr = new int[5]; //allocates an array of 5 integers

 Array elements can be accessed using pointer arithmetic and dereferencing, or via
the well-know [] operator, indexing an array

Static Vs Dynamic Allocation

int intArray[10];
intArray[0] = 6837;

int *intArray;
intArray = new int[10];
intArray[0] = 6837;

...

delete[] intArray;

Stack allocation

Heap allocation

Code

Stack

Heap

Dynamic Allocation Of
Arrays, Example

int i; //Loop variable
int *iary; //This will be our array - an int pointer
int num; //Length of the array (input from user)

cout << "Enter length of array: ";
cin >> num;
iary = new int[num]; //Dynamically declare an ary. Get

//necessary mem, assign address to iary
for (i = 0; i < num; i++)
{

cout << "Enter int num " << i << ":";
cin >> iary[i]; //use iary as if it were an array!

}

for (i = 0; i < num; i++)
{

cout << "Index " << i << ": " << iary[i] << endl;
}

 This fragment lets the user decide how big of an array is needed

Outputs Of Dynamic
Allocation Example

Enter length of array: 7
Enter int num 0:3
Enter int num 1:1
Enter int num 2:6
Enter int num 3:8
Enter int num 4:3
Enter int num 5:2
Enter int num 6:1
Index 0: 3
Index 1: 1
Index 2: 6
Index 3: 8
Index 4: 3
Index 5: 2
Index 6: 1

Enter length of array: 3
Enter int num 0:8
Enter int num 1:4
Enter int num 2:1
Index 0: 8
Index 1: 4
Index 2: 1

Note: In the left example, the array required 28
bytes of memory (7 * 4). Exactly 28 bytes was
allocated for the array.

In the right example, the array required only 12
bytes (3 * 4). Exactly 12 bytes was allocated for
the array, and no extra memory was unused and
wasted.

Another Dynamic Allocation
Example
 What is the likely result of the

following program fragment?
int i; //Loop variable
int *iary; //This will be our array - an int pointer
int num; //Length of the array (input from user)

for (i = 0; i < 100000; i++)
{
num = 50000;

iary = new int[num];

//Call a function to randomly fill the array
//Do some sort of processing on the 50000 element ary
//Do it again and again and again, accumulating stats.

}

Example Problem
Description

 The likely result would be that the program would be a failure
 The reason is that the new operator claims the memory requested each

iteration of the loop
 There is only a finite amount of memory, though, and the amount

requested is likely beyond the amount available
 The problem is that while the memory is claimed, it is never released, or

"freed", or "deleted"
 If you don't free the memory, but you do change the pointer pointing at it to

point to a different address, then:
 The original memory is still claimed
 There is no way to access the original memory, since no pointers are

pointing to it
 The chunk of memory is wasted throughout the entire execution of the

program
 This is referred to as a "memory leak", and should be avoided

2/18/2017

4

Using The "delete" Operator
 Dynamically allocated memory can be released back into the available memory store

using the "delete" operator

 The delete operator operates on a pointer and frees the memory being pointed to

 Recall – a pointer may be pointing to a single value, or an array of values

 Due to this, the delete operator is used differently to delete single values and
arrays

 Deleting a single value being pointed to:
delete iPtr;

 Deleting an array of values being pointed to:
delete [] iPtr;

 Using the delete operator on a null pointer has no effect

 Using the delete operator on a pointer pointing to memory that is not currently
claimed by your program will cause a segmentation fault

 Initialize all pointers to 0 (zero)

 Set all pointers to 0 after using the delete operator on them

Fixing The Memory Leak

int i; //Loop variable
int *iary; //This will be our array - an int pointer
int num; //Length of the array (input from user)

for (i = 0; i < 100000; i++)
{

num = 50000;

iary = new int[num];

//Call a function to randomly fill the array
//Do some sort of processing on the 50000 element ary
//Do it again and again and again, accumulating stats.

delete [] iary; //No need to tell delete the size of
//the array. This only frees up the
//memory that iary is pointing to. It
//does NOT delete the pointer in any way

}

Dynamically Allocating
Objects
 The arrow operator is another operator needed for working with

pointers
 The arrow operator is a dash and a greater than symbol: ->

 It is used to access public member variables or functions of
an object that is being pointed to by a pointer

 It is used the same way the dot operator is used on an
actual object, but the arrow is used on a pointer variable
instead

 The arrow is used for convenience

 Alternatively, you could deference the pointer and use the
dot operator

 Since the arrow operator implies a dereference, using the arrow
operator on a pointer that doesn't point to claimed memory
results in a segmentation fault!

Using The Arrow Operator
->

class CircleClass
{

public:
float x;
float y;
float z;
float radius;

};

int main()
{

CircleClass myObj;
CircleClass *myPtr;
myPtr = &myObj;

myObj.x = 5;
myPtr->y = 9;
myObj.z = 15;
myPtr->radius = 56.4;

...

I access the same memory location using
both the actual object and a pointer to that
object.

The dot operator is used with the object

The arrow operator is used with the pointer

Dynamically Allocating
Objects

class TempClass
{

public:
int ival;
double dval;

};

int main()
{

TempClass *temp; //4 bytes (or sizeof(tempClass*)
temp = new TempClass; //Claims enough space for all

//members of a tempClass object

temp->ival = 16; //Since temp is a pointer,
temp->dval = 4.5; //the arrow operator is used

...

Note: The actual object that is
allocated (the memory location)
never gets a name! It is only pointed
to by the temp pointer!

Using Constructors With
Dynamic Allocation

 Remember – a constructor is used whenever an object is allocated, whether
statically or dynamically

class IntClass
{

public:
int val;

IntClass() //Default ctor sets val to 0
{

val = 0;
}
IntClass(int inVal) //Initializes val to value passed in
{

val = inVal;
}

};

IntClass ic; //sets ic.val to 0
IntClass *icPtr = new IntClass; //sets icPtr->val to 0

IntClass ic2(6); //sets ic2.val = 6
IntClass *icPtr2 = new IntClass(10); //sets icPtr->val to 10

Uses the
default ctor

Uses the
value ctor

2/18/2017

5

The sizeof Operator
 Often, you need to know how many bytes of memory a variable or type requires.

 Different architectures use different sizes.

 Use the sizeof operator to determine the current architecture's size of a var or type

int num; //Length of the array (input from user)
cout << "sizeof(int): " << sizeof(int) << endl;
cout << "sizeof(float): " << sizeof(float) << endl;
cout << "sizeof(double): " << sizeof(double) << endl;
cout << "sizeof(char): " << sizeof(char) << endl;
cout << "sizeof(num): " << sizeof(num) << endl;

sizeof(int): 4
sizeof(float): 4
sizeof(double): 8
sizeof(char): 1
sizeof(num): 4

Result may vary on
different machines!
(These results are common)

Dynamically Alloc Mem in C

 Operators "new" and "delete" don't exist in C, but C programmers still need dynamic
allocation.

 Three important functions for C dynamic allocation

//malloc takes one parameter, size, which is simply
//the number of bytes you are requesting.. Returns a
//void *, which is a generic pointer to any type.
void *malloc(size_t size);

//calloc initializes each ary element to 0. nelem is
//the number of elements you are requesting, and
//elsize is the number of bytes each element requires.
void *calloc(size_t nelem, size_t elsize);

//free takes one param, which is a pointer to memory
//that was previously allocated using malloc or calloc
void free(void *ptr);

Dynamically Alloc Mem in C
Example

#include <stdlib.h>
//---
int *iary; //This will be our array - an int pointer
int *iary2; //Another integer array.
int num; //Length of the array (input from user)

cout << "Enter length of ary: ";
cin >> num;

iary = (int *)malloc(num * sizeof(int)); //not init.
iary2 = (int *)calloc(num, sizeof(int)); //init to 0

//Something useful happens here..

//Free up the memory now!
free(iary);
free(iary2);

Prefer C++ to C

string *stringarray1 = static_cast<string *> (malloc(10*sizeof(sting)));
string *stringarray2 = new string[10];

…

free (stringarray1); // no destructors called
// What happened if string object reallocated stuff? Enlarged itself?
delete[] stringarray2;

Use same form of
new/delete

string *stringarray2 = new string[100];

…

delete stringarray2;
// Program behavior undefined
// At least the 99 strings are still in the memory somewhere Memory LEAK!

new/delete in
constructors/destructors

 For a class with dynamically allocated memory,
Initialize pointers in constructors to 0.

 If unknown size, make them null.

 Deleting a null pointer is always safe.

 Make sure you delete them all in the destructor.

 Useful when you need to implement a class that
manages a resource. (Never manage multiple
resources in a single class, this will only lead to
pain.)

2/18/2017

6

Big Law of three

 if a class defines one (or more) of the
following it should probably explicitly
define all three
 Destructor

 Copy constructor
• Point2d second(first);

 Assignment operator
• first = second;

Example

class person
{

char* name;
int age;

public:

// the constructor acquires a resource:
// in this case, dynamic memory obtained via new[]
person(const char* the_name, int the_age)
{

name = new char[strlen(the_name) + 1];
strcpy(name, the_name);
age = the_age;

}

// the destructor must release this resource via delete[]
~person()
{

delete[] name;
}

};

Rule of three: Missing Copy Constructor/Assignment operator

Example

// 1. copy constructor
person(const person& that)
{

name = new char[strlen(that.name) + 1];
strcpy(name, that.name);
age = that.age;

}

// 2. copy assignment operator
person& operator=(const person& that)
{

if (this != &that)
{

delete[] name;
// This is a dangerous point in the flow of execution!
// We have temporarily invalidated the class invariants,
// and the next statement might throw an exception,
// leaving the object in an invalid state :(
name = new char[strlen(that.name) + 1];
strcpy(name, that.name);
age = that.age;

}
return *this;

}

Advice

 Most of the time, you do not need to
manage a resource yourself because
an existing class can do that for you.

class person
{

std::string name;
int age;

public:

person(const std::string& name, int age) : name(name), age(age)
{
}

};

Out of memory errors
#include <iostream>

using namespace std;

void OutOfMemory(){
cerr << "No more memory\n";

abort();
}

int main() {
set_new_handler(OutOfMemory);
double *pbigarray = new double[200000000];
cout << "I am here\n";
pbigarray[9999999] = 123;
cout << pbigarray[999999] << endl;

return 0;
}

Multidimensional Arrays

 Definition
Type MDarray[size_1][size_2] ... [size_k]

 What it means
 k - dimensional array
 MDarray: array identifier
 size_i: a positive constant expression
 Type: standard type or a previously defined user

type and is the base type of the array elements

 Semantics
 MDarray is an object whose elements are indexed by

a sequence of k subscripts
 the i-th subscript is in the range 0 ... size_i-1

2/18/2017

7

Multi-dimensional Arrays

 Multidimensional arrays are laid out in
row-major order

 Consider
int M[2][4];

 M is two-dimensional array that
consists of 2 subarrays each with 4
elements.
 2 rows of 4 elements

 The array is assigned to a contiguous
section of memory
 The first row occupies the first portion
 The second row occupies the second

portion

Multi-dimensional Arrays

© Art of Assemby website.

Multi-dimensional arrays

 Example:

int myImage[NROWS][NCOLS];

Can be used as parameter in a
function prototype. Example:

void process_matrix(int in[][4], int out[][4], int nrows)

void process_matrix(int in[4][4], int out[4][4], int nrows)

//Invalid

void process_matrix(int in[][], int out[][], int nrows)

Multi-dimensional arrays

 Really an array of
arrays.

int main() {
int x [3][4];
int (*ip)[4]; // pointer to an array of 4 integers
int *oip = &(x[0][0]);

ip = x;
for (int i = 0 ; i < 3; ++i)
for (int j = 0; j < 4; ++j)

x[i][j] = i*10 + j;

cout << (*ip)[0] << "\t" << (* (++ip))[0] << endl;
cout << * (++oip) << endl;
return 0;

}

00 01 02 03

10 11 12 13

20 21 22 23

Recommended exercises: 5.9, 5.30, 5.14, 5.23

Multi-dimensional Arrays

 int (*matrix)[10];
 Pointer to an array of 10 integers

 int *matrix[10];
 Array of 10 integer pointers.
 Example:

• int main(int argc , char *argv[])
• argv[0] = “prgram name”
• argv[1] = “../data/filename”
• argv[2] = “2”

Buffer Overflow problems

A A A A A A A A B B

0 0 0 0 0 0 0 0 0 3

Let A be a string and B be an integer.
Changing A could change B!

/* overflow.c - demonstrates a buffer overflow */
#include <stdio.h>
#include <string.h>
int main(int argc, char *argv[]) {

char buffer[10];
if (argc < 2) {

fprintf(stderr, "USAGE: %s string\n", argv[0]);
return 1;

}

strcpy(buffer, argv[1]);
return 0;

}

2/18/2017

8

Buffer Overflow problems

A A A A A A A A B B

0 0 0 0 0 0 0 0 0 3

Let A be a string and B be an integer.
Changing A could change B!

/* better.c - demonstrates one method of fixing the problem */
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[]) {
char buffer[10];
if (argc < 2) {

fprintf(stderr, "USAGE: %s string\n", argv[0]);
return 1;

}

strncpy(buffer, argv[1], sizeof(buffer));
buffer[sizeof(buffer) - 1] = '\0';
return 0;

}

Type conversions

 C-Style casts
 float average = (float) sum /
items;

 float average = (float)
(sum/items);

 C++ Style
 static_cast< type >(identifier)
 float average = static_cast< float >(sum) /

items;
 float average = sum / static_cast< float >(

items);

Type conversions

x=(float) i; cast in C++ - C notation

x=float(i); cast in C++, functional notation

x=static_cast<float>(i); ANSI C++ - recommended

i=reinterpret_cast<int>(&x) ANSI C++, not portable and system
dependent

func(const_cast<int>(c_var)) where C_var is a const variable
Used for removing “const-ness” when
invoking func. Use with care.

static_cast

 static_cast<T>(expression)
The static_cast<>() is used to cast between the
integer types.
'eg' char->long, int->short etc.

 Static cast is also used to cast pointers to
related types, for example casting void* to the
appropriate type.

BaseClass_Employee* a = new DerivedClass_Manager();
static_cast<DerivedClass_Manager>(a)->derivedClassMethod();

reinterpret_cast

float f = 2.5f;
double * pd = reinterpret_cast<double*>(&f);

cout << f << endl << *pd << endl;

Outputs (!!!):

$./a.exe
2.5
3.50861e+159

Reinterpret cast simply casts one type bitwise to another. Any pointer or integral type
can be casted to any other with reinterpret_cast, easily allowing for misuse.
static_cast will not be allowed in this case.

const_cast

 const_cast<T>(expression)
The const_cast<>() is used to
add/remove const(ness) of a variable.

class A {public: void func() {} };
void f(const A& a)
{

A& b = const_cast<A&>(a);
b.func();

}

2/18/2017

9

dynamic_cast

 Dynamic cast is used to convert pointers and references
at run-time, generally for the purpose of casting cast a
pointer or reference up or down an inheritance chain
(inheritance hierachy).

class Employee { ... };
class Manager : public Employee { ... };

void f(Employee* a) {
Manager* b = dynamic_cast<Manager*>(a);

}

Type conversions

 All Pointers can be converted to void *

 An explicit cast is required in C++
when you want to convert a void * to
another pointer type.

char *char_p;
void *generic_p;
. . .
generic_p=char_p; // OK, char* va in void*
char_p=generic_p; // OK in C, illegal in C++
char_p=static_cast<char *> (generic_p); // The C++ way.

Implicit conversions

 char, short and bool are promoted to int
 Integer types which cannot be

represented with an int are promoted to
unsigned

 In an expression with mixed type, lower
order operand are promoted to the upper
order, with the following rule:

• int < unsigned < long
< unsigned long < float < double
< long double

 bool is an integer type, true is
promoted to 1 and false to 0

