2/18/2017

Pointers and Arrays

For : COP 3330.
Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

° The Operator &
o There is an operator, &
When this symbol is used as a unary operator on a variable it has a different
meaning than as a binary operator or type specifier
Itis unrelated to the "logical and", which is && or “bitwise and”, &
Itis unrelated to the use of & in regards to reference parameters
o The operator & is usually called the "address of" operator
o It returns the memory address that the variable it operates on is stored at in memoryj
o Since the result is an address, it can be assigned to a pointer
° The Operator *

[e]

o

o

o

Like the &, the * operator has another meaning as well
The * operator is usually referred to as the "dereference operator"
The * operator operates on a pointer value
The meaning is "Use the value that this pointer points to, rather than the
value contained in the pointer itself*
If a pointer is of type "int *" and the dereference operator operated on the
pointer, the result is a value of type "int"
Dereferenced pointers can be used as L-values or R-values
When used as an L-value (on the left side of an assignment), the pointer
is unaffected, but the memory that it points to is changed
When a pointer that is pointing to memory you are not allowed to access is
dereferenced, the result is a program crash via a "segmentation fault"

° Introduction To Pointers
A pointer in C++ holds the value of a memory address
A pointer's type is said to be a pointer to whatever type should be in the memory address it is
pointing to
Just saying that a variable is a pointer is not enough information!
Generic syntax for declaring a pointer:
dataType *pointervarName;
Specific examples
int *iPtr; //Declares a pointer called “iPtr" that will
//point to a memory location holding an
//integer value
float *fPtr; //Declares a pointer called “fPtr" that will
//contain an address, which is an address of
//a memory location containing a float value
H " "
Using The "Address Of
1000
Operator o0 g L
1002 Y
int i = 6; //Declares an int, stored 1003 J
//in memory somewhere 1004 ‘
//1n this example, it is .
//stored at address 1000 1005 |1 NNN >|Ptr
1006
int *iPtr; //Declares a pointer. The 1007 ‘
//contents of this variable 1008
//will point to an integer
//value. The pointer itself 1009
//must be stored in memory, and 1010
//in this example, is stored at 1011
//memory location 1004
; //Sets the iPtr variable to
//contain the address of the
//variable i in memory
Using The Dereference
1000 {
Operator 001N 4L
1002 [N
1003 J
int i = 6; //Declares integer called i 1004, “‘
int *iPtr; //Declares a pointer to an int .
6511000] - iPtr
iPtr = //Sets the iPtr variable to /1006
//contain the "address of" the/ 4qo7 J
= = = /
//variable i in memory / 1008
cout << ' " << i << endl; 1009
cout << o " << *iPtr << endl; 1010
N 1011
*iPtr = 4; //Changes the memory being
//pointed to by iPtr to contajing
//the value 4 i
cout << ' " << i << endl;
cout << "i: " << *iPtr << endl;

2/18/2017

Arrays And Pointers

o The namg of an array variable in C++, without the use of the [] operator, represents
the starting address of the array
o This address can be stored in a pointer variable
Since array values are guaranteed to be in contiguous memory, you can access
array values using this one pointer
Examples of this will come later, after discussing "pointer arithmetic"
const int NUM = 3;

int ry[NUM] = { 2, 4, 6 };
int *iPtr; 1000 NOM o t02 ini2)
_ _ B _ i w001 [~ 1013
iPtr = iAry; //Assigns iPtr to point ., [1014
//to the first integer .. 1015
//in the iAry array 1004 ool 1016 P
R - 005y 1017
//This cout prints the value of the [Z 1018
//value stored in the location iPtr 1010
//points to (the first int in the 1008 Ayl 1020
//iAry, in this case) 1008 [A 1021
cout << "val: " << *iPtr << endl; e .
1011 1023

Pointer Arithmetic,
Motivation

o Incrementing the contents of an "int
*" variable by one doesn't make

sense 1000 NUM 1012 ianiz]
Integers require 4 bytes of 1001 o 1013
storage 1002 [J 1014
Incrementing iPtr by 1, results in 1003 1018
the pointer pointing to location 1004 ianlo] 1016 iPtr
1005 1005 N 1017
w0s [£ 1018

However, location 1005 is not

an address that is the starting roor 1019
address of an integer 1008 Y Ant1] 1020

. . 1009 1021

o Dereferencing a pointer that o0 [T 1022
contains an invalid memory location, Lo o

such as 1005 may result in a Bus
Error
When your program results in a
bus error, the program crashes
immediately (Segmentation
fault).

Pointer Arithmetic,
Description

o Recall that a pointer type specifies the type of value it is pointing to
C++ can determine the size of the value being pointed to

When arithmetic is performed on a pointer, it is done using this knowledge to
ensure the pointer doesn't point to intermediate memory locations

If an int requires 4 bytes, and iPtr is a variable of type "int *", then the statement
"iPtr++;" actually increments the pointer value by 4

Similarly, "iPtr2 = iPtr + 5;" stores the address "five integers worth" past iPtr in
iPtr2

If iPtr was 1000, then iPtr2 would contain the address 1020
1020 = 1000 + 5* 4
o Pointer arithmetic is performed automatically when arithmetic is done on pointers
No special syntax is required to get this behavior!

° Using Pointer Arithmetic

1000 NOM 102 iant2]
const int NUW w0t| o [o~
int i 002 | I o [
int 1003 1015
int *i H 1004 iAny{o] 1016 iPtr
int i : 1005 1017
iPtr = iAry; //Assigns iPtr to point 1007 1019
//to the first integer 1008 ot 1020
//in the iAry array LN | 1021
1010 I 1022
iPtr3 = iAry; 1011 1023
for (i = 0; i < NUM; i++)
{
iPtr2 = i
cout << . 02222
PAry[i] << " " <<
“iPtr2 << 14444 Other
s << U s 26666 Variables|
tr + i) << endl;
iPtr3++;

° Static Allocation Of Arrays

o Allarrays discussed or used thus far in the course have been "statically allocated"
The array size was specified using a constant or literal in the code
When the array comes into scope, the entire size of the array can be allocated,
because it was specified
o You won't always know the array sizes when writing source code
Consider a program that modifies an image
As the developer, you won't know what image size the user will use
One solution: Declare the image array to be 5000 rows by 5000 columns
Problem #1: This likely wastes a lot of memory — if the user uses an image
that is 250x250, then there are 24,937,500 unused pixels. If each pixel
requires 4 bytes, this is almost 100 MB (megabytes!) of wasted space
Problem #2: What if the user needs to edit an image that is 6000x6000?
Your program will fail, and likely result in a crash

Dynamic Allocation Of
Arrays

o

If an array is "dynamically allocated", then space is not reserved
for the array until the size is determined
This may not be until the middle of a function body, using a
value that is not constant or literal
The size may be input by the user, read from a file,
computed from other variables, etc.
o As memory is "claimed" using dynamic allocation, the starting
address is provided, allowing it to be stored in a pointer variable
o Since pointers can be used to access array elements, arrays
can be dynamically allocated in this way
Dynamically allocated memory is claimed from the heap, as
opposed to the stack

o

° The "new" Operator

o Anew operator is used to perform dynamic allocation
The operator is the "new" operator
o The new operator:
Attempts to find the amount of space requested from the heap

"Claims" the memory when an appropriately sized available chunk of the heap is
found

Returns the address of the chunk that was claimed
o "new" can be used to allocated individual variables:
iPtr = new int; //allocates an int variable
o "new" can also be used to allocated arrays of variables:
iPtr = new int[5]; //allocates an array of 5 integers

o Array elements can be accessed using pointer arithmetic and dereferencing, or via
the well-know [] operator, indexing an array

2/18/2017

° Static Vs Dynamic Allocation

Stack allocation

int intArray[10];
intArray[0] = 6837;

Code

Heap allocation Stack

int *intArray; l
intArray = new int[10];
intArray[0] = 6837;

Heap

delete[] intArray;

Dynamic Allocation Of
Arrays, Example

o This fragment lets the user decide how big of an array is needed

int i; //Loop variable
int *iary; //This will be our array - an int pointer
int num; //Length of the array (input from user)

cout << "Enter length of array: ";

cin >> num;

iary = new int[num]; //Dynamically declare an ary. Get
//necessary mem, assign address to iary

for (i = 0; i < num; i++)

cout << “Enter int num " << i << ":i;
cin >> iary[i]; //use iary as if it were an array!
for (i = 0; i < num; i++)

cout << "Index " << i << ": " << iary[i] << endl;

B

Outputs Of Dynamic
Allocation Example

Enter length of array: 3
Enter int num 0:8
Enter int num 1:4
Enter int num 2:1

Enter length of array: 7
Enter int num 0:3
Enter int num 1:1
Enter int num 2:6

Enter int num 3:8 Index 0: 8
Enter int num 4:3 Index 1: 4
Index 2: 1

Enter int num 5:2
Enter int num 6:1

Note: In the left example, the array required 28

Index 0: 3 bytes of memory (7 * 4). Exactly 28 bytes was
Index 1: 1 allocated for the array.

Index 2: 6

Index 3: 8 In the right example, the array required only 12
Index 4: 3 bytes (3 * 4). Exactly 12 bytes was allocated for
Index 5: 2 the array, and no extra memory was unused and
Index 6: 1 wasted.

Another Dynamic Allocation
Example

o What is the likely result of the
following program fragment?

int i; //Loop variable
int *iary; //This wi be our array - an int pointer
int num; //Length of the array (input from user)

for (i = 0; i < 100000; i++)
num = 50000;
iary = new int[num];
//Call a function to randomly fill the array

//Do some sort of processing on the 50000 element ary
//Do it again and again and again, accumulating stats.

Example Problem
Description

o The likely result would be that the program would be a failure
The reason is that the new operator claims the memory requested each
iteration of the loop
There is only a finite amount of memory, though, and the amount
requested is likely beyond the amount available
o The problem is that while the memory is claimed, it is never released, or
"freed", or "deleted"
o If you don't free the memory, but you do change the pointer pointing at it to
point to a different address, then:
The original memory is still claimed
There is no way to access the original memory, since no pointers are
pointing to it
The chunk of memory is wasted throughout the entire execution of the
program
This is referred to as a "memory leak", and should be avoided

° Using The "delete" Operator

o Dynamically allocated memory can be released back into the available memory store

using the "delete" operator
o The delete operator operates on a pointer and frees the memory being pointed to
Recall — a pointer may be pointing to a single value, or an array of values

Due to this, the delete operator is used differently to delete single values and
arrays

o Deleting a single value being pointed to:
delete iPtr;
o Deleting an array of values being pointed to:
delete [] iPtr;
Using the delete operator on a null pointer has no effect

Using the delete operator on a pointer pointing to memory that is not currently
claimed by your program will cause a segmentation fault

Initialize all pointers to 0 (zero)
Set all pointers to 0 after using the delete operator on them

o o

2/18/2017

° Fixing The Memory Leak

int i; //Loop variable
int *iary; //This will be our array - an int pointer
int num; //Length of the array (input from user)

for (i = 0; i < 100000; i++)
{

num = 50000;

iary = new int[num];

//Call a function to randomly fill the array
//Do some sort of processing on the 50000 element ary
//Do it again and again and again, accumulating stats.

delete [] iary; //No need to tell delete the size of
//the array. This only frees up the
//memory that iary is pointing to. It
//does NOT delete the pointer in any way

Dynamically Allocating
Objects

o The arrow operator is another operator needed for working with
pointers
The arrow operator is a dash and a greater than symbol: ->
It is used to access public member variables or functions of
an object that is being pointed to by a pointer
Itis used the same way the dot operator is used on an
actual object, but the arrow is used on a pointer variable
instead
o The arrow is used for convenience
Alternatively, you could deference the pointer and use the
dot operator
o Since the arrow operator implies a dereference, using the arrow
operator on a pointer that doesn't point to claimed memory
results in a segmentation fault!

Using The Arrow Operator
->

class CircleClass

public:

float x;

float y;

float z; .

float radius: I access the same memory location using
}; both the actual object and a pointer to that

object.

int mainQ)

CircleClass myobj; The dot operator is used with the object

CircleClass *myPtr;
myPtr = &myObj;

The arrow operator is used with the pointer

myObj.x = 53
myPtr->y = 9;
myObj.z = 15;

myPtr->radius = 56.4]

Dynamically Allocating
Objects

class TempClass Note: The actual object that is
allocated (the memory location)
public: never gets a name! It is only pointed

int ival; to by the temp pointer!
double dval;

int mainQ)

TempClass *temp; //4 bytes (or sizeof(tempClass*)
temp = new TempClass; //Claims enough space for all
//members of a tempClass object

temp->ival = 16; //Since temp is a pointer,
temp->dval = 4.5; //the arrow operator is used

Using Constructors With
Dynamic Allocation

o Remember — a constructor is used whenever an object is allocated, whether
statically or dynamically

class IntClass

pub
int val;

IntClass() //Default ctor sets val to 0
val = 0;

IntClass(int inval) //Initializes val to value passed in

val = inval;

i

IntClass ic: i | Uses the
IntClass *icPtr = new IntClass; //sets icPtr->val to 0 | defaultctor
IntClass ic2(6): //sets ic2.val = 6 1 usesthe

IntClass *icPtr2 = new IntClass(10); //sets icPtr->val to 10| yalue ctor

int num;

cout
cout
cout
cout
cout

The sizeof Operator

o Often, you need to know how many bytes of memory a variable or type requires.
o Different architectures use different sizes.
o Use the sizeof operator to determine the current architecture's size of a var or type

<<
<<
<<
<<
<<

//Length of the array (input from user)

"sizeof(int): " << sizeof(int) << endl;
“sizeof(float): " << sizeof(float) << endl;
"sizeof(double): " << sizeof(double) << endl;
“sizeof(char): " << sizeof(char) << endl;
"sizeof(num): " << sizeof(num) << endl;

sizeof{(int): 4
sizeof(float): 4
sizeof(double): 8
sizeof(char): 1
sizeof(num): 4

Result may vary on
different machines!
(These results are common)

2/18/2017

° Dynamically Alloc Mem in C

o Operators "new" and "delete” don't exist in C, but C programmers still need dynamic
allocation.
o Three important functions for C dynamic allocation

//malloc takes one parameter, size, which is simply
//the number of bytes you are requesting.. Returns a
//void *, which is a generic pointer to any type.
void *malloc(size_t size);

//calloc initializes each ary element to 0. nelem is
//the number of elements you are requesting, and
//elsize is the number of bytes each element requires.
void *calloc(size_t nelem, size_t elsize);

//free takes one param, which is a pointer to memory
//that was previously allocated using malloc or calloc
void free(void *ptr);

#include <stdlib.h>

/

int *iary;

Dynamically Alloc Mem in C
Example

//This will be our array - an int pointer

int *iary2; //Another integer array.

int num;

//Length of the array (input from user)

cout << "Enter length of ary: ";
cin >> num;

iary =
iary2 =

int *)malloc(num * sizeof(int)); //not init.
nt *)calloc(num, sizeof(int)); //init to 0

//Something useful happens here..

//Free up the memory now!
free(iary);
free(iary2);

° Prefer C++to C

string *stringarray1 = static_cast<string *> (malloc(10*sizeof(sting)));
string *stringarray2 = new string[10];

free (stringarray1); / no destructors called
/I What happened if string object reallocated stuff? Enlarged itself?
delete[] stringarray2;

Use same form of
new/delete

string *stringarray2 = new string[100];

delete stringarray?2;
1/ Program behavior undefined
1/ At least the 99 strings are still in the memory somewhere - Memory LEAK!

new/delete in
constructors/destructors

o For a class with dynamically allocated memory,
Initialize pointers in constructors to 0.

o If unknown size, make them null.
Deleting a null pointer is always safe.
o Make sure you delete them all in the destructor.

o Useful when you need to implement a class that
manages a resource. (Never manage multiple
resources in a single class, this will only lead to
pain.)

Big Law of three

o if a class defines one (or more) of the
following it should probably explicitly
define all three

Destructor

Copy constructor
Point2d second(first);

Assignment operator
first = second;

Example

// 1. copy constructor
person(const person& that)

name = new char[strlen(that.name) + 1];
strcpy(name, that.name);
age = that.age;

}

/1 2. copy assignment operator
person& operator=(const persong that)

if (this 1= &that)
{

delete[] name;

/7 This is a dangerous point in the flow of execution!
/1 We have temporarily invalidated the class invariants,
/1 and the next statement might throw an exception,

/1 leaving the object in an invalid state :(

name = new char[strlen(that.name) + 1];

strcpy(name, that.nane);

age = that.age;

return *this;

}

2/18/2017

Example

class person

char* name;
int age;

public:

// the constructor acquires a resource:
/1 in this case, dynamic memory obtained via new[]
person(const char* the_name, int the_age)
{
name = new char[strlen(the_name) + 1];
strcpy(name, the_name);
age = the_age;

}

/1 the destructor must release this resource via delete[]
~person()

delete[] name;

Rule of three: Missing Copy Constructor/Assignment operator

Out of memory errors

#include <iostream>
using namespace std;

void OutOfMemory(){

cerr << "No more memory\n";
abort();

int main() {
set_new_handler(OutOfMemory) ;
double *pbigarray = new double[200000000];
cout << "I am here\n";
pbigarray[9999999] = 123;
cout << pbigarray[999999] << endl;

return 0;

° Advice
o Most of the time, you do not need to
manage a resource yourself because
an existing class can do that for you.
class person
std::string name;
int age;
public:
person(const std::string& name, int age) : name(name), age(age)
}
3
[]

Multidimensional Arrays

o Definition
Type MDarray[size_1][size_2] ... [size_k]

o What it means

k - dimensional array

MDarray: array identifier

size_i: a positive constant expression

Type: standard type or a previously defined user

type and is the base type of the array elements
o Semantics

MDarray is an object whose elements are indexed by
a sequence of k subscripts

the i-th subscriptisintherange 0 ... size_i-1

2/18/2017

Multi-dimensional Arrays

Multidimensional arrays are laid out in
row-major order
Consider

int M[2][4]:;
M is two-dimensional array that
consists of 2 subarrays each with 4
elements.

2 rows of 4 elements

The array is assigned to a contiguous
section of memory
The first row occupies the first portion
The second row occupies the second
portion

o Multi-dimensional Arrays

W =O

© Art of Assemby website

Multi-dimensional arrays

o Example:
int mylmage[NROWS][NCOLS];

Can be used as parameter in a

function prototype. Example:
void process_matrix(int in[][4], int out[][4], int nrows)
void process_matrix(int in[4][4], int out[4][4], int nrows)

/Nnvalid
void process_matrix(int in[][], int out[][], int nrows)

° Multi-dimensional arrays

o Really an array of
arrays.
int mainQ) {
int x [31[41;
int (*ip)[4]; // pointer to an array of 4 integers

int *oip = &(x[01[0D);

ip = x;

for (int i =0 ; i < 3; ++i)
for (int j = i < 4; ++j)
x[i10i] = i*10 + j;

cout << (*ip)[0] << '"\t" << (* (++ip))[0] << endl;
cout << * (++oip) << endl;
return 0;

Recommended exercises: 5.9, 5.30, 5.14, 5.23

Multi-dimensional Arrays

o int (*matrix)[10];

Pointer to an array of 10 integers
o int *matrix[10];

Array of 10 integer pointers.

Example:
int main(int argc , char *argv(])
argv[0] = “prgram name”
argv[1] = “../data/filename”
argv[2] = “2"

° Buffer Overflow problems

Let Abe a string and B be an integer. K\ffk\fk\ffff
Changing A could change B!
CRRRRRRRRE
/* overflow.c - demonstrates a buffer overflow */
#include <stdio.h>
#include <string.h>
int main(int argc, char *argv[]) {
char buffer[10];
if (argc < 2) {
fprintf(stderr, "USAGE: %s string\n", argv[0]);
return 1;

}

strepy(buffer, argv[1]);
return 0;

2/18/2017

° Buffer Overflow problems

IéehtAbe aAS!ring‘;nngeg'n integer. fff‘fﬁfﬁfff
anging A could change B!

Rlkkikkkkkk
/* better.c - demonstrates one method of fixing the problem */

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[]) {
char buffer[10];
if (argc < 2) {
fprintf(stderr, "USAGE: %s string\n", argv[0]);
return 1;

}

strnepy(buffer, argv[1], sizeof(buffer));
buffer[sizeof(buffer) - 1] ="0";

return 0;
1
o Type conversions
x=(float) i; cast in C++ - C notation
x=float(i); cast in C++, functional notation
x=static_cast<float>(i); ANSI C++ - recommended
i=reinterpret_cast<int>(&x) ANSI C++, not portable and system
dependent
func(const_cast<int>(c_var)) where C_var is a const variable
Used for removing “const-ness” when
invoking func. Use with care.
° reinterpret_cast
float f = 2.5f;

double * pd = reinterpret_cast<double*>(&f);
cout << f << endl << *pd << endl;

Outputs (!!!):

$ Ja.exe

25
3.50861e+159

Reinterpret cast simply casts one type bitwise to another. Any pointer or integral type
can be casted to any other with reinterpret_cast, easily allowing for misuse.
static_cast will not be allowed in this case.

L Type conversions
o C-Style casts
float average = (float) sum /
items;
float average = (float)
(sum/items);
o C++ Style
static_cast< type >(identifier)
float average = static_cast< float >(sum) /
items;
float average = sum / static_cast< float >(
items);
o static_cast

o static_cast<T>(expression)

The static_cast<>() is used to cast between the
integer types.
'eg' char->long, int->short etc.

o Static cast is also used to cast pointers to
related types, for example casting void* to the
appropriate type.

BaseClass_Employee* a = new DerivedClass_Manager();
static_cast<DerivedClass_Manager>(a)->derivedClassMethod();
o const_cast

o const_cast<T>(expression)
The const_cast<>() is used to
add/remove const(ness) of a variable.

class A {public: void func() {} };

void f(const A& a)

{
A& b = const_cast<A&>(a);
b.func();

2/18/2017

° dynamic_cast

o

Dynamic cast is used to convert pointers and references
at run-time, generally for the purpose of casting cast a
pointer or reference up or down an inheritance chain
(inheritance hierachy).

class Employee{ ... };
class Manager : public Employee { ... };

void f(Employee* a) {
Manager* b = dynamic_cast<Manager*>(a);

}

Type conversions

o All Pointers can be converted to void *

o An explicit cast is required in C++
when you want to convert a void * to
another pointer type.

char *char_p;
void *generic_p;

generic_p=char_p; Il OK, char* va in void*
char_p=generic_p; I OK in C, illegal in C++
char_p=static_cast<char *> (generic_p); // The C++ way.

° Implicit conversions

o

char, short and bool are promoted to int
Integer types which cannot be
represented with an int are promoted to
unsigned
In an expression with mixed type, lower
order operand are promoted to the upper
order, with the following rule:

int < unsigned < long

< unsigned long < float < double

< long double
bool is an integer type, true is
promoted to 1 and false to O

