
2/9/2017

1

Introduction to the
C++ Standard Library.

For : COP 3330.

Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

The C++ Standard Library

 Provides the ability to use:
 String Types

 Data Structures (linked list, dynamic
arrays, priority queues, binary trees etc)

 Algorithms (Sorting and Searching…)

 IO

 Classes for internationalization support.

The C++ Standard Library

 Not very homogeneous:
 String classes are safe and convenient to

use (almost self explanatory).

 The Standard Template Library (STL)
optimizes for performance and is not
required to check for errors. To use it well,
you need to understand the concepts and
apply them carefully.

C++ Standard Library

 Containers
 Objects that hold/contain other objects.

 Examples: vector, string

 Algorithms
 Work on the containers

 Examples: sort, search

 Iterators
 Provide pointer like interface to containers.

Other components

 Allocators: Provide memory
management for containers. Can be
customized.

 Adaptors: A mechanism to make one
thing act like another. Example: Stack.

 Function objects: A function object or
a functor, is a construct allowing an
object to be invoked or called as if it
were an ordinary function.

Containers

 Of course: Contain objects/built in
types.
 More powerful than arrays.

 Grow (and shrink?) dynamically

 Manage their own memory

 Keep track of their size

 Allow optimal algorithmic operations
like scan, sorts etc.

2/9/2017

2

Containers

 Standard STL sequence Containers:
 vector, string, deque and list

• bitset, queue

• valarray, priority_queue

Containers

 Prefer sequential containers to arrays.

 Use vector by default

 Use list when there are a lot of
insertions/deletions in the middle of
the sequence.

 Use deque when there is a lot of
insertion at the beginning or the end
of the sequence.

What is a vector?

 A contiguous array of elements
 The first “size” elements are constructed (initialized)
 The last “capacity - size” elements are uninitialized
 Four data members

 data pointer
 size
 capacity
 allocator

data size

capacity

allocator

or equivalent

data

size

capacity

allocator

Sample data layout: Internals.

Vector Interface
template <class T, class Allocator = allocator<T> >
class vector {
public:

...
explicit vector(const Allocator& = Allocator());
explicit vector(size_type n, const T& value = T(),

const Allocator& = Allocator());
...
void reserve(size_type n);
...
void resize(size_type sz, const T& c = T());
...
void push_back(const T& x);
void pop_back();
...
iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
...
iterator erase(iterator position);
iterator erase(iterator first, iterator last);
...
void clear();

};

Vectors

 template <class T, class Allocator =
allocator<T> > class vector { …}

 A default allocator is provided.

 T is the type of the object stored in the
vector.

 Constructors for vector:
 vector<int> ivec1;

 vector<int> ivec2(3,9);

 vector<int> ivec3(ivec2);

#include <vector> Containers : is empty?

 Always use:
 if(icontainer.empty()) …

 Instead of if(icontainer.size() == 0)

 For some containers, calculating size
takes linear time.

2/9/2017

3

An example usage

pk@linprog4:~>./a.out
vec[0]=3
vec[1]=6
vec[2]=7
vec[3]=5
vec[4]=3
vec[5]=5
vec[6]=6
vec[7]=2
vec[8]=9
vec[9]=1

#include <vector>
#include <iostream>

using namespace std;

int main() {
vector<int> vec(10); // Creates a vector

// Initializes the vector
for(int i=0; i < vec.size(); i++) {
vec[i] = rand() % 10;
cout << " vec[" << i << "]="

<< vec[i] << endl;
};
return 0;

}

An example usage

pk@linprog4:~>./a.out
Segmentation fault (core dumped)

Make this your friend…

#include <vector>
#include <iostream>

using namespace std;

int main() {

vector<int> ivec;
cout << ivec[0]; //error
vector<int> ivec2(10);
// subscripts available: 0..9
cout << ivec[10]; // error

return 0;
}

Iterators

 Browsers for containers.

 Allows restricted access to objects
stored in a container.

 Can be a class, data structure or an
Abstract Data Type.

Iterators

 A replacement for subscripting, for
example in case of vectors: v[i]

 Subscripts are not available for all
containers but iterators are.

 You can think of an iterator as pointing
to an item that is part of a larger
container of items.

Iterators

 Container.begin() : All containers
support a function called begin, which
will return an iterator pointing to the
beginning of the container (the first
element)

 Container.end() : returns an iterator
corresponding to having reached the end
of the container. (Not the last element)

Iterators
 Support the following operations:

 Operator * : Element at the current position
(example: (*it)). You can use “->” to access
object members directly from the iterator.
(Like a pointer)

 Operator++ : Moves the iterator to the next
element. Most iterators will also allow you to
use “ - - ” for stepping back one element.

 Operator == and != : Compare two iterators
for whether they represent the same position
(not the same element).

 Operator = : Assigns an iterator.

2/9/2017

4

Iterators

 Vector iterator picture.

 Reason for half-open range:
 Easy looping

 Empty containers begin() == end()

data

v.begin() v.end()

Iterators

 Defining an iterator:
std::class_name<template_parameters>::iterator name;

 Example:

std::vector<int>::iterator vit = myvec.begin();

cout << (*vit) << endl;

 Printing all elements of a container.

std::container_type<template_parameter>::iterator pos;

for (pos = container.begin();

pos != container.end(); ++pos)

cout << (*pos) << endl;

Iterators : Examples

The non-STL way, using subscripts to access data:

using namespace std;

vector<int> myIntVector;

// Add some elements to myIntVector
myIntVector.push_back(1); //adds an element to end of vector.
myIntVector.push_back(4);
myIntVector.push_back(8);

for(int y=0; y<myIntVector.size(); y++) {
cout<<myIntVector[y]<<" "; //Should output 1 4 8

}

Iterators: Examples
#include <vector>
#include <iostream>

int main() {
using namespace std;
vector<int> myIntVector;
// vector<int>::iterator myIntVectorIterator; (use auto instead)

// Add some elements to myIntVector
myIntVector.push_back(1);
myIntVector.push_back(4);
myIntVector.push_back(8);

for (auto myIntVectorIterator = myIntVector.begin();
myIntVectorIterator != myIntVector.end();
myIntVectorIterator++) {

cout << *myIntVectorIterator << " ";
// Should output 1 4 8

}
}

Iterator Types

 Input Iterator : read only, forward moves.

 Output Iterator : write only, forward moves.

 Forward Iterator: Both read/write with (++)
support

 Backward: Both read/write with (--) support

 Bi-Directional :Read write and Both ++ or –
support.

 Random: Read/Write/Random access.
(Almost act like pointers)

Most
Common

Iterators

Type of iterator Example

Input Iterator istream_iterator

Output Iterator ostream_iterator, inserter,
front_inserter, back inserter

Bi-directional iterator list, set, multiset, map,
multimap

Random access iterator Vector, deque

2/9/2017

5

Random Access Iterators

 Allow arithmetic
 it+n

 The result will be the element corresponding
to the nth item after the item pointed to be
the current iterator.

 it – n also allowed

 (it1 – it2) allowed
• Example: Type of this operation for vectors is

defined by vector<T>::difference_type.

Back to vectors
 Iterator type: Random-access

 Operator [] overloaded

v.size() Number of elements in vector

v.clear() Removes all elements

v.pop_back() Removes last element

v.push_back(elem) Adds elem at end of vector

v.insert(pos,elem) Inserts elem at position pos and
returns the position of the new
element.

v.erase(pos)

Another form:

v.erase(bpos,epos)

Removes the element at the
iterator position pos and returns
the position of the next element.

Back to vectors
v.max_size() Maximum number of elements

possible (in entire memory!).

v.capacity() Returns maximum number of
elements without reallocation

v.reserve(new_size) Increases capacity to new_size.

v.at(idx) Returns the element with index
idx. Throws range error
exception if idx is out of range.

v.front() , v.back() Returns first , last element.

v.resize(new_size) Changes the size to new_size.

Important facts

 For vectors, the C++ standard states:
 &v[i] = &v[0] + i

vector < char > vv;
vv.push_back ('P');
vv.push_back ('Q');
vv.push_back ('R');
vv.push_back ('\0');
printf("%s\n",&vv[0]);

Output : PQR

The swap trick.

 To trim capacity, you can use the
following trick:
 std::vector<T>(v).swap(v);

 Makes capacity = size.
• Example: vector<int>(ivec2).swap(ivec2);

Important Facts

 When deleting containers of
newed/malloced elements, remember
to delete/free them before deleting the
container.

 Thread safety of STL containers:
 Multiple readers are ok

 Multiple writers to different containers
are ok.

2/9/2017

6

What can a container
contain?

 Minimal constraint on elements of a
container.
 Operator=

• a = b; should be valid

 A copy constructor
• YourType b(a); should be valid

 Question :
 Is vector<int&> allowed?

 Is vector<const int> allowed?

Suggestions

 Prefer vector and string to dynamically
allocated arrays.

 Use reserve() to avoid unnecessary
reallocations.

 Avoid using vector<bool>

Algorithms

 Methods that act on containers (may or may
not change them)
 Examples: Sorting, searching, reversing etc.

 Examples:
• sort(v.begin(), v.end())

• pos = find(v.begin(), v.end(), 3) // returns an
iterator in the container.

• reverse(v.begin(), v.end())

• unique(v.begin(), v.end()) // operates on a sorted
range to collapse duplicate elements.

#include <algorithm>
Understand Complexity
Example: Vector Insert

What happens when the vector
is large?

Linear on the number of elements
inserted (copy/move construction)
plus the number of elements after
position (moving).

O(num_inserted + num_after_pos)

Intro To The Standard string
Class
 C++ has a standard class called "string"

 Strings are simply a sequence of characters

 Note: This is not a sufficient definition for a "C-string"

 A "C-string" is an array of characters terminated by a
null byte

 Must #include <string> using the standard namespace to
get C++ standard string functionality

 Note: This is different from #include'ing <string.h>
which is the header required for "C-string"s

 string variables are used to store names, words, phrases,
etc.

 Can be input using ">>" and output using "<<" as other
types

Some string Functionality

 Declaring a string:

 string lastName;

 string firstName(“Piyush”); //Note: String literal enclosed in double quotes

 string fullName;

 Assigning a string:

 lastName = “Kumar”; //The usual assignment operator

 Appending one string on the end of another:

 fullName = firstName + lastName; //Results in “PiyushKumar"

 fullName = firstName + " " + lastName; //Results in “Piyush Kumar"

 Accessing individual characters in a string:

 myChar = firstName[4]; //Results in ‘s' (no bounds checking)

 myChar = firstName.at(4); //Results in ‘s' (does bounds checking)

 Appending a character to the end of a string:

 lastName = lastName + myChar; //Results in “Kumars"

 Determining number of characters in string:

 myInt = firstName.length(); //Results in 6

firstName[5] = ‘h’

firstName[6]
is undefined unlike
C where its ‘\0’.

2/9/2017

7

string Example #1

#include <iostream>
#include <string>
using namespace std;
int main(void)
{
string first;
string last("Morgan");

first = "Drew"; //Would be illegal for C-string
cout << "Length of " << first << " is: " << first.length() << endl;
cout << "Length of " << last << " is: " << last.length() << endl;

first += "Morgan";
cout << "Length of " << first << " is: " << first.length() << endl;
cout << "Length of " << last << " is: " << last.length() << endl;

first.assign("Drew");
first.append(" ");
first.append(last);
cout << "Length of " << first << " is: " << first.length() << endl;
cout << "Length of " << last << " is: " << last.length() << endl;
return(0);

}

Length of Drew is: 4
Length of Morgan is: 6
Length of DrewMorgan is: 10
Length of Morgan is: 6
Length of Drew Morgan is: 11
Length of Morgan is: 6

Constructors

string() // empty string

string(string s) // copy of s

string(string s, int start) // substring start, end

string(string s, int start, int len) // substring

string(char* a) // copy of C-string

string(int cnt, char c) // one or more chars

string(char* beg, char* end) // [beg, end)

“A constructor is a kind of member function that initializes an
instance of its class.”

“A constructor has the same name as the class and no return
value.”

Additional string
Functionality

 Strings can be compared with usual operators

 >, >= (greater than, greater than/equal to)

 <, <= (less than, less than/equal to)

 == (equality)

 Strings also have a member function called "compare"

 int string::compare(string rhs);

 Return value is negative if calling string is less than rhs

 Return value is positive if calling string is greater than rhs

 Return value is zero if both strings are identical

Other overloaded operators

 = is used to assign a value (char, C-string,
or string) to a string.

 += is used to append a string, character, or
C-string to a string.

 + is used to concatenate two strings or a
string with something else

 << and >> are used for input and output. On
input, leading whitespace is skipped, and
the input terminates with whitespace or end
of file.

When you need a C-string

string s = “1234”;

s.data() // returns s as a data array, no ‘\0’.

s.c_str() // returns s as a C-string with ‘\0’

int i = atoi(s.c_str()); // conversion

// i is now 1234.

char *carray = new char[80];

s.copy(carray, 79); // copies up to 79 char

String Operations

s.append(s2); // append s2 to s

s.push_back(c); // append a char

s.erase(various); // erases substrings

s.insert(various); // inserts substrings

s.clear(); // removes all contents

s.resize(cnt); // change the size of s to cnt

swap(a, b); // for general containers.

2/9/2017

8

String Operations

s.replace(various); // replaces
characters

s.size(); or s.length(); // how many
characters?

s.max_size(); // maximum number of
char?

s.empty(); // is s empty?
s.reserve(cnt); // reserves memory

string Example #2
#include <string>
#include <iostream>

using namespace std;

int main(void)
{
string s1 = "Drew";
string s3;
int result;

s3 = "Bob";
if (s3 < s1)
cout << "oper: s3 less than s1";

if (s3 > s1)
cout << "oper: s3 greater than s1";

if (s3 == s1)
cout << "oper: s3 is equal to s1";

cout << endl;

result = s3.compare(s1);
if (result < 0)
cout << "comp: s3 less than s1";

else if (result < 0)
cout << "comp: s3 greater than s1";

else
cout << "comp: s3 is equal to s1";

cout << endl;

s3 = "Drew";
if (s3 < s1)
cout << "oper: s3 less than s1";

if (s3 > s1)
cout << "oper: s3 greater than s1";

if (s3 == s1)
cout << "oper: s3 is equal to s1";

cout << endl;

result = s3.compare(s1);
if (result < 0)
cout << "comp: s3 less than s1";

else if (result < 0)
cout << "comp: s3 greater than s1";

else
cout << "comp: s3 is equal to s1";

cout << endl;

return (0);
}

oper: s3 less than s1
comp: s3 less than s1
oper: s3 is equal to s1
comp: s3 is equal to s1

Output

Even More string Functionality

 Getting a substring of a string:
 string string::substr(int startPos, int length)

• Returns the substring starting at "startPos" with length of "length"
 Finding the location of a substring within a string:

 int string::find(string lookFor);
• Returns the index where the first instance of "lookFor" was found in the string
• Returns "string::npos" (which is usually -1) when the substring isn't found

 int string::find(string lookFor, int startFrom);
• Returns the index where the first instance of "lookFor" was found, starting the search

at the index "startFrom", or "string::npos" when the substring isn't found
 Finding specific characters in a string:

 int string::find_first_of(string charList, int startFrom);
• Returns the index of the first instance of any character in "charList", starting the search

at the index "startFrom", or "string::npos" if none of the chars are found
 int string::find_first_not_of(string charList, int startFrom);

• Returns the index of the first instance of any character NOT in "charList", starting the
search at the index "startFrom", or "string::npos" if none of the chars are found

string Example #3

#include <string>
#include <iostream>

using namespace std;

int main()
{
int startPos;
int len;
int commaLoc;
int howLoc;
int loc;
int spaceLoc;
string myStr;
string myStr2;

myStr = "Hello, how are you?";
startPos = 7;
len = 3;
myStr2 = myStr.substr(startPos, len);
cout << "Substr: " << myStr2 << endl;
commaLoc = myStr.find(",");
howLoc = myStr.find(myStr2);
cout << "Comma: " << commaLoc;
cout << " how: " << howLoc << endl;

cout << "Spaces:";
spaceLoc = myStr.find(" ");
while (spaceLoc != string::npos)
{
cout << " " << spaceLoc;
spaceLoc = myStr.find(" ", spaceLoc + 1);

}
cout << endl;

cout << "Punct and spaces:";
loc = myStr.find_first_of(" ,?", 0);
while (loc != string::npos)
{
cout << " " << loc;
loc = myStr.find_first_of(" ,?", loc + 1);

}
cout << endl;

return (0);
}

Substr: how
Comma: 5 how: 7
Spaces: 6 10 14
Punct and spaces: 5 6 10 14 18

Output

string Class Implementation

 The string class uses dynamic memory allocation to be sure segmentation faults
don't occur

 When a string is updated such that it requires more characters than currently
allocated, a new, larger array is allocated and the prior contents are copied over
as necessary

 Since dynamic allocation is relatively slow, it is not desirable to be re-allocating
strings often

 C++ allows some memory to be "wasted" by often allocating more space than is
really needed

 However, as strings are appended to the end, it is likely that a re-allocation won't
be needed every time

 Occasionally, re-allocation is necessary and is performed, again allocating more
memory than necessary

 Note: this is all done automatically by the string class (Similar to vectors?)

Some Final string
Functionality
 Several member functions are available to get information about

a string

 capacity: The number of characters that can be placed in a
string without the inefficiency of re-allocating

 length: The number of characters currently in the string

 You can manually change the capacity of a string

 resize: Sets the capacity of a string to be at least a user-
defined size

 This can be useful if you know a string will be at most n
characters long

• By resizing the string to capacity n only that amount of
memory is associated with the string

• This prevents wasted memory when you know the exact
size you need

• Additionally, it can help prevent numerous re-allocations
if you will be appending on to the end of the string, but
know the final size ahead of time

2/9/2017

9

Example #4

#include <string>
#include <iostream>

using namespace std;

int main(void)
{
string str;
string str2;

cout << "Str: " << str << endl;
cout << "Length: " << str.length();
cout << " Cap: " << str.capacity();
cout << endl;

str = "888";
cout << "Str: " << str << endl;
cout << "Length: " << str.length();
cout << " Cap: " << str.capacity();
cout << endl;

str += "-111-";
cout << "Str: " << str << endl;
cout << "Length: " << str.length();
cout << " Cap: " << str.capacity();
cout << endl;

str += "1723-9";
cout << "Str: " << str << endl;
cout << "Length: " << str.length();
cout << " Cap: " << str.capacity();
cout << endl;

str += "abcdefghijklmnopqrstuv";
cout << "Str: " << str << endl;
cout << "Length: " << str.length();
cout << " Cap: " << str.capacity();
cout << endl;

return (0);
}

Str:
Length: 0 Cap: 0
Str: 888
Length: 3 Cap: 31
Str: 888-111-
Length: 8 Cap: 31
Str: 888-111-1723-9
Length: 14 Cap: 31
Str: 888-111-1723-9abcdefghijklmnopqrstuv
Length: 36 Cap: 63

C Vs C++: Strings

C Library Functions C++ string operators
/member functions.

strcpy =

strcat +=

strcmp = =, !=, <, >, <=, >=

strchr, strstr

strrchr

.find() method

.rfind() method

strlen .size() or .length()
methods

Reading text into a string

getline(istream, s); // Reads from istream (e.g.,
cin or a file) into the string s. Returns a
reference to istream that can be used again.

 Reads all characters until a line delimiter or
end of file is encountered.

 The line delimiter is extracted but not put
into the string

 You can then parse s without worrying
about end of line or end of file characters.

Char functions in C/C++

 #include <ctype.h>
 int isalnum(int c); //non-zero iff c is alphanumeric
 int isalpha(int c); //non-zero iff c is alphabetic
 int isdigit(int c); //non-zero iff c a digit: 0 to 9
 int islower(int c); //non-zero iff c is lower case
 int ispunct(int c); //non-zero iff c is punctuation
 int isspace(int c); //non-zero iff c is a space char
 int isupper(int c); // non-zero iff c is upper case
 int isxdigit(int c); //non-zero iff c is hexadecimal
 int tolower(int c); //returns c in lower case
 int toupper(int c); //returns c in upper case

Using the transform algorithm
#include <algorithm>

 Lowercase all characters of a string:
transform(s.begin(), s.end(), // source

s.begin(), // destination
tolower); // operation

 Uppercase all characters:
transform(s.begin(), s.end(), s.begin(), toupper);

 tolower and toupper are C-string functions. Other
functions can also be used.

Using the transform algorithm
#include <algorithm>

 What does the following do?
 If (s == reverse(s.begin(),s.end()))

cout << “S is a …”;

2/9/2017

10

Project 1 Solution

…what does this code do?

#include <iostream>
#include <string>

/*! \brief function to return the max count of character in a given string.
*
* Description: Takes in a string as input and returns the count of
* the char which appears most often in said string.
*
*/

int get_max_count(const std::string & s)
{

const unsigned NUM_CHARS = 128; /* Number of lower case letters (en). */
unsigned chars[NUM_CHARS] = { 0 }; /* Array of counters; for each lapha. */
unsigned maxCount = 0; /* Count of lapha which appears most. */

Project 1 Solution (cont.)

Reading assignment: Chapter 3, 9
Including Bitset.

/* For each char of the string, uptick its associated counter. */
for (unsigned i = 0; i < s.length(); ++i)

++chars[static_cast<unsigned>(s[i])];

/* Get the count of the char which appears most often. */
for (unsigned i = 0; i < NUM_CHARS; ++i)

if (maxCount < chars[i])
maxCount = chars[i];

return maxCount;
}

#include <bitset>

 Ordered collection of bits.

 Example program:

#include <bitset>
#include <iostream>

using namespace std;

int main() {
// create a bitset that is 8 bits long
bitset<8> bs;
// display that bitset
for(int i = (int) bs.size()-1; i >= 0; i--) { cout << bs[i] << " "; }
cout << endl;

// create a bitset out of a number
bitset<8> bs2((long) 131); // display that bitset, too
for(int i = (int) bs2.size()-1; i >= 0; i--) { cout << bs2[i] << " "; }
cout << endl;

return 0;
}

0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1

Output

bitset operators

 != returns true if the two bitsets are not equal.
 == returns true if the two bitsets are equal.
 &= performs the AND operation on the two bitsets.
 ^= performs the XOR operation on the two bitsets.
 |= performs the OR operation on the two bitsets.
 ~ reverses the bitset (same as calling flip())
 <<= shifts the bitset to the left
 >>= shifts the bitset to the right
 [x] returns a reference to the xth bit in the bitset.

Example

Output?
bs2 is 10000011
now bs2 is 00110000

Recommended Exercise:
3.23, 3.21, 3.18, 3.15

#include <bitset>
#include <iostream>

using namespace std;

int main() {
// create a bitset out of a number
bitset<8> bs2((long) 131);
cout << "bs2 is " << bs2 << endl;

// shift the bitset to the left by 4 digits
bs2 <<= 4;
cout << "now bs2 is " << bs2 << endl;

return 0;
}

