
2/9/2017

1

Introduction to the
C++ Standard Library.

For : COP 3330.

Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

The C++ Standard Library

 Provides the ability to use:
 String Types

 Data Structures (linked list, dynamic
arrays, priority queues, binary trees etc)

 Algorithms (Sorting and Searching…)

 IO

 Classes for internationalization support.

The C++ Standard Library

 Not very homogeneous:
 String classes are safe and convenient to

use (almost self explanatory).

 The Standard Template Library (STL)
optimizes for performance and is not
required to check for errors. To use it well,
you need to understand the concepts and
apply them carefully.

C++ Standard Library

 Containers
 Objects that hold/contain other objects.

 Examples: vector, string

 Algorithms
 Work on the containers

 Examples: sort, search

 Iterators
 Provide pointer like interface to containers.

Other components

 Allocators: Provide memory
management for containers. Can be
customized.

 Adaptors: A mechanism to make one
thing act like another. Example: Stack.

 Function objects: A function object or
a functor, is a construct allowing an
object to be invoked or called as if it
were an ordinary function.

Containers

 Of course: Contain objects/built in
types.
 More powerful than arrays.

 Grow (and shrink?) dynamically

 Manage their own memory

 Keep track of their size

 Allow optimal algorithmic operations
like scan, sorts etc.

2/9/2017

2

Containers

 Standard STL sequence Containers:
 vector, string, deque and list

• bitset, queue

• valarray, priority_queue

Containers

 Prefer sequential containers to arrays.

 Use vector by default

 Use list when there are a lot of
insertions/deletions in the middle of
the sequence.

 Use deque when there is a lot of
insertion at the beginning or the end
of the sequence.

What is a vector?

 A contiguous array of elements
 The first “size” elements are constructed (initialized)
 The last “capacity - size” elements are uninitialized
 Four data members

 data pointer
 size
 capacity
 allocator

data size

capacity

allocator

or equivalent

data

size

capacity

allocator

Sample data layout: Internals.

Vector Interface
template <class T, class Allocator = allocator<T> >
class vector {
public:

...
explicit vector(const Allocator& = Allocator());
explicit vector(size_type n, const T& value = T(),

const Allocator& = Allocator());
...
void reserve(size_type n);
...
void resize(size_type sz, const T& c = T());
...
void push_back(const T& x);
void pop_back();
...
iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
...
iterator erase(iterator position);
iterator erase(iterator first, iterator last);
...
void clear();

};

Vectors

 template <class T, class Allocator =
allocator<T> > class vector { …}

 A default allocator is provided.

 T is the type of the object stored in the
vector.

 Constructors for vector:
 vector<int> ivec1;

 vector<int> ivec2(3,9);

 vector<int> ivec3(ivec2);

#include <vector> Containers : is empty?

 Always use:
 if(icontainer.empty()) …

 Instead of if(icontainer.size() == 0)

 For some containers, calculating size
takes linear time.

2/9/2017

3

An example usage

pk@linprog4:~>./a.out
vec[0]=3
vec[1]=6
vec[2]=7
vec[3]=5
vec[4]=3
vec[5]=5
vec[6]=6
vec[7]=2
vec[8]=9
vec[9]=1

#include <vector>
#include <iostream>

using namespace std;

int main() {
vector<int> vec(10); // Creates a vector

// Initializes the vector
for(int i=0; i < vec.size(); i++) {
vec[i] = rand() % 10;
cout << " vec[" << i << "]="

<< vec[i] << endl;
};
return 0;

}

An example usage

pk@linprog4:~>./a.out
Segmentation fault (core dumped)

Make this your friend…

#include <vector>
#include <iostream>

using namespace std;

int main() {

vector<int> ivec;
cout << ivec[0]; //error
vector<int> ivec2(10);
// subscripts available: 0..9
cout << ivec[10]; // error

return 0;
}

Iterators

 Browsers for containers.

 Allows restricted access to objects
stored in a container.

 Can be a class, data structure or an
Abstract Data Type.

Iterators

 A replacement for subscripting, for
example in case of vectors: v[i]

 Subscripts are not available for all
containers but iterators are.

 You can think of an iterator as pointing
to an item that is part of a larger
container of items.

Iterators

 Container.begin() : All containers
support a function called begin, which
will return an iterator pointing to the
beginning of the container (the first
element)

 Container.end() : returns an iterator
corresponding to having reached the end
of the container. (Not the last element)

Iterators
 Support the following operations:

 Operator * : Element at the current position
(example: (*it)). You can use “->” to access
object members directly from the iterator.
(Like a pointer)

 Operator++ : Moves the iterator to the next
element. Most iterators will also allow you to
use “ - - ” for stepping back one element.

 Operator == and != : Compare two iterators
for whether they represent the same position
(not the same element).

 Operator = : Assigns an iterator.

2/9/2017

4

Iterators

 Vector iterator picture.

 Reason for half-open range:
 Easy looping

 Empty containers  begin() == end()

data

v.begin() v.end()

Iterators

 Defining an iterator:
std::class_name<template_parameters>::iterator name;

 Example:

std::vector<int>::iterator vit = myvec.begin();

cout << (*vit) << endl;

 Printing all elements of a container.

std::container_type<template_parameter>::iterator pos;

for (pos = container.begin();

pos != container.end(); ++pos)

cout << (*pos) << endl;

Iterators : Examples

The non-STL way, using subscripts to access data:

using namespace std;

vector<int> myIntVector;

// Add some elements to myIntVector
myIntVector.push_back(1); //adds an element to end of vector.
myIntVector.push_back(4);
myIntVector.push_back(8);

for(int y=0; y<myIntVector.size(); y++) {
cout<<myIntVector[y]<<" "; //Should output 1 4 8

}

Iterators: Examples
#include <vector>
#include <iostream>

int main() {
using namespace std;
vector<int> myIntVector;
// vector<int>::iterator myIntVectorIterator; (use auto instead)

// Add some elements to myIntVector
myIntVector.push_back(1);
myIntVector.push_back(4);
myIntVector.push_back(8);

for (auto myIntVectorIterator = myIntVector.begin();
myIntVectorIterator != myIntVector.end();
myIntVectorIterator++) {

cout << *myIntVectorIterator << " ";
// Should output 1 4 8

}
}

Iterator Types

 Input Iterator : read only, forward moves.

 Output Iterator : write only, forward moves.

 Forward Iterator: Both read/write with (++)
support

 Backward: Both read/write with (--) support

 Bi-Directional :Read write and Both ++ or –
support.

 Random: Read/Write/Random access.
(Almost act like pointers)

Most
Common

Iterators

Type of iterator Example

Input Iterator istream_iterator

Output Iterator ostream_iterator, inserter,
front_inserter, back inserter

Bi-directional iterator list, set, multiset, map,
multimap

Random access iterator Vector, deque

2/9/2017

5

Random Access Iterators

 Allow arithmetic
 it+n

 The result will be the element corresponding
to the nth item after the item pointed to be
the current iterator.

 it – n also allowed

 (it1 – it2) allowed
• Example: Type of this operation for vectors is

defined by vector<T>::difference_type.

Back to vectors
 Iterator type: Random-access

 Operator [] overloaded

v.size() Number of elements in vector

v.clear() Removes all elements

v.pop_back() Removes last element

v.push_back(elem) Adds elem at end of vector

v.insert(pos,elem) Inserts elem at position pos and
returns the position of the new
element.

v.erase(pos)

Another form:

v.erase(bpos,epos)

Removes the element at the
iterator position pos and returns
the position of the next element.

Back to vectors
v.max_size() Maximum number of elements

possible (in entire memory!).

v.capacity() Returns maximum number of
elements without reallocation

v.reserve(new_size) Increases capacity to new_size.

v.at(idx) Returns the element with index
idx. Throws range error
exception if idx is out of range.

v.front() , v.back() Returns first , last element.

v.resize(new_size) Changes the size to new_size.

Important facts

 For vectors, the C++ standard states:
 &v[i] = &v[0] + i

vector < char > vv;
vv.push_back ('P');
vv.push_back ('Q');
vv.push_back ('R');
vv.push_back ('\0');
printf("%s\n",&vv[0]);

Output : PQR

The swap trick.

 To trim capacity, you can use the
following trick:
 std::vector<T>(v).swap(v);

 Makes capacity = size.
• Example: vector<int>(ivec2).swap(ivec2);

Important Facts

 When deleting containers of
newed/malloced elements, remember
to delete/free them before deleting the
container.

 Thread safety of STL containers:
 Multiple readers are ok

 Multiple writers to different containers
are ok.

2/9/2017

6

What can a container
contain?

 Minimal constraint on elements of a
container.
 Operator=

• a = b; should be valid

 A copy constructor
• YourType b(a); should be valid

 Question :
 Is vector<int&> allowed?

 Is vector<const int> allowed?

Suggestions

 Prefer vector and string to dynamically
allocated arrays.

 Use reserve() to avoid unnecessary
reallocations.

 Avoid using vector<bool>

Algorithms

 Methods that act on containers (may or may
not change them)
 Examples: Sorting, searching, reversing etc.

 Examples:
• sort(v.begin(), v.end())

• pos = find(v.begin(), v.end(), 3) // returns an
iterator in the container.

• reverse(v.begin(), v.end())

• unique(v.begin(), v.end()) // operates on a sorted
range to collapse duplicate elements.

#include <algorithm>
Understand Complexity
Example: Vector Insert

What happens when the vector
is large?

Linear on the number of elements
inserted (copy/move construction)
plus the number of elements after
position (moving).

O(num_inserted + num_after_pos)

Intro To The Standard string
Class
 C++ has a standard class called "string"

 Strings are simply a sequence of characters

 Note: This is not a sufficient definition for a "C-string"

 A "C-string" is an array of characters terminated by a
null byte

 Must #include <string> using the standard namespace to
get C++ standard string functionality

 Note: This is different from #include'ing <string.h>
which is the header required for "C-string"s

 string variables are used to store names, words, phrases,
etc.

 Can be input using ">>" and output using "<<" as other
types

Some string Functionality

 Declaring a string:

 string lastName;

 string firstName(“Piyush”); //Note: String literal enclosed in double quotes

 string fullName;

 Assigning a string:

 lastName = “Kumar”; //The usual assignment operator

 Appending one string on the end of another:

 fullName = firstName + lastName; //Results in “PiyushKumar"

 fullName = firstName + " " + lastName; //Results in “Piyush Kumar"

 Accessing individual characters in a string:

 myChar = firstName[4]; //Results in ‘s' (no bounds checking)

 myChar = firstName.at(4); //Results in ‘s' (does bounds checking)

 Appending a character to the end of a string:

 lastName = lastName + myChar; //Results in “Kumars"

 Determining number of characters in string:

 myInt = firstName.length(); //Results in 6

firstName[5] = ‘h’

firstName[6]
is undefined unlike
C where its ‘\0’.

2/9/2017

7

string Example #1

#include <iostream>
#include <string>
using namespace std;
int main(void)
{
string first;
string last("Morgan");

first = "Drew"; //Would be illegal for C-string
cout << "Length of " << first << " is: " << first.length() << endl;
cout << "Length of " << last << " is: " << last.length() << endl;

first += "Morgan";
cout << "Length of " << first << " is: " << first.length() << endl;
cout << "Length of " << last << " is: " << last.length() << endl;

first.assign("Drew");
first.append(" ");
first.append(last);
cout << "Length of " << first << " is: " << first.length() << endl;
cout << "Length of " << last << " is: " << last.length() << endl;
return(0);

}

Length of Drew is: 4
Length of Morgan is: 6
Length of DrewMorgan is: 10
Length of Morgan is: 6
Length of Drew Morgan is: 11
Length of Morgan is: 6

Constructors

string() // empty string

string(string s) // copy of s

string(string s, int start) // substring start, end

string(string s, int start, int len) // substring

string(char* a) // copy of C-string

string(int cnt, char c) // one or more chars

string(char* beg, char* end) // [beg, end)

“A constructor is a kind of member function that initializes an
instance of its class.”

“A constructor has the same name as the class and no return
value.”

Additional string
Functionality

 Strings can be compared with usual operators

 >, >= (greater than, greater than/equal to)

 <, <= (less than, less than/equal to)

 == (equality)

 Strings also have a member function called "compare"

 int string::compare(string rhs);

 Return value is negative if calling string is less than rhs

 Return value is positive if calling string is greater than rhs

 Return value is zero if both strings are identical

Other overloaded operators

 = is used to assign a value (char, C-string,
or string) to a string.

 += is used to append a string, character, or
C-string to a string.

 + is used to concatenate two strings or a
string with something else

 << and >> are used for input and output. On
input, leading whitespace is skipped, and
the input terminates with whitespace or end
of file.

When you need a C-string

string s = “1234”;

s.data() // returns s as a data array, no ‘\0’.

s.c_str() // returns s as a C-string with ‘\0’

int i = atoi(s.c_str()); // conversion

// i is now 1234.

char *carray = new char[80];

s.copy(carray, 79); // copies up to 79 char

String Operations

s.append(s2); // append s2 to s

s.push_back(c); // append a char

s.erase(various); // erases substrings

s.insert(various); // inserts substrings

s.clear(); // removes all contents

s.resize(cnt); // change the size of s to cnt

swap(a, b); // for general containers.

2/9/2017

8

String Operations

s.replace(various); // replaces
characters

s.size(); or s.length(); // how many
characters?

s.max_size(); // maximum number of
char?

s.empty(); // is s empty?
s.reserve(cnt); // reserves memory

string Example #2
#include <string>
#include <iostream>

using namespace std;

int main(void)
{
string s1 = "Drew";
string s3;
int result;

s3 = "Bob";
if (s3 < s1)
cout << "oper: s3 less than s1";

if (s3 > s1)
cout << "oper: s3 greater than s1";

if (s3 == s1)
cout << "oper: s3 is equal to s1";

cout << endl;

result = s3.compare(s1);
if (result < 0)
cout << "comp: s3 less than s1";

else if (result < 0)
cout << "comp: s3 greater than s1";

else
cout << "comp: s3 is equal to s1";

cout << endl;

s3 = "Drew";
if (s3 < s1)
cout << "oper: s3 less than s1";

if (s3 > s1)
cout << "oper: s3 greater than s1";

if (s3 == s1)
cout << "oper: s3 is equal to s1";

cout << endl;

result = s3.compare(s1);
if (result < 0)
cout << "comp: s3 less than s1";

else if (result < 0)
cout << "comp: s3 greater than s1";

else
cout << "comp: s3 is equal to s1";

cout << endl;

return (0);
}

oper: s3 less than s1
comp: s3 less than s1
oper: s3 is equal to s1
comp: s3 is equal to s1

Output

Even More string Functionality

 Getting a substring of a string:
 string string::substr(int startPos, int length)

• Returns the substring starting at "startPos" with length of "length"
 Finding the location of a substring within a string:

 int string::find(string lookFor);
• Returns the index where the first instance of "lookFor" was found in the string
• Returns "string::npos" (which is usually -1) when the substring isn't found

 int string::find(string lookFor, int startFrom);
• Returns the index where the first instance of "lookFor" was found, starting the search

at the index "startFrom", or "string::npos" when the substring isn't found
 Finding specific characters in a string:

 int string::find_first_of(string charList, int startFrom);
• Returns the index of the first instance of any character in "charList", starting the search

at the index "startFrom", or "string::npos" if none of the chars are found
 int string::find_first_not_of(string charList, int startFrom);

• Returns the index of the first instance of any character NOT in "charList", starting the
search at the index "startFrom", or "string::npos" if none of the chars are found

string Example #3

#include <string>
#include <iostream>

using namespace std;

int main()
{
int startPos;
int len;
int commaLoc;
int howLoc;
int loc;
int spaceLoc;
string myStr;
string myStr2;

myStr = "Hello, how are you?";
startPos = 7;
len = 3;
myStr2 = myStr.substr(startPos, len);
cout << "Substr: " << myStr2 << endl;
commaLoc = myStr.find(",");
howLoc = myStr.find(myStr2);
cout << "Comma: " << commaLoc;
cout << " how: " << howLoc << endl;

cout << "Spaces:";
spaceLoc = myStr.find(" ");
while (spaceLoc != string::npos)
{
cout << " " << spaceLoc;
spaceLoc = myStr.find(" ", spaceLoc + 1);

}
cout << endl;

cout << "Punct and spaces:";
loc = myStr.find_first_of(" ,?", 0);
while (loc != string::npos)
{
cout << " " << loc;
loc = myStr.find_first_of(" ,?", loc + 1);

}
cout << endl;

return (0);
}

Substr: how
Comma: 5 how: 7
Spaces: 6 10 14
Punct and spaces: 5 6 10 14 18

Output

string Class Implementation

 The string class uses dynamic memory allocation to be sure segmentation faults
don't occur

 When a string is updated such that it requires more characters than currently
allocated, a new, larger array is allocated and the prior contents are copied over
as necessary

 Since dynamic allocation is relatively slow, it is not desirable to be re-allocating
strings often

 C++ allows some memory to be "wasted" by often allocating more space than is
really needed

 However, as strings are appended to the end, it is likely that a re-allocation won't
be needed every time

 Occasionally, re-allocation is necessary and is performed, again allocating more
memory than necessary

 Note: this is all done automatically by the string class (Similar to vectors?)

Some Final string
Functionality
 Several member functions are available to get information about

a string

 capacity: The number of characters that can be placed in a
string without the inefficiency of re-allocating

 length: The number of characters currently in the string

 You can manually change the capacity of a string

 resize: Sets the capacity of a string to be at least a user-
defined size

 This can be useful if you know a string will be at most n
characters long

• By resizing the string to capacity n only that amount of
memory is associated with the string

• This prevents wasted memory when you know the exact
size you need

• Additionally, it can help prevent numerous re-allocations
if you will be appending on to the end of the string, but
know the final size ahead of time

2/9/2017

9

Example #4

#include <string>
#include <iostream>

using namespace std;

int main(void)
{
string str;
string str2;

cout << "Str: " << str << endl;
cout << "Length: " << str.length();
cout << " Cap: " << str.capacity();
cout << endl;

str = "888";
cout << "Str: " << str << endl;
cout << "Length: " << str.length();
cout << " Cap: " << str.capacity();
cout << endl;

str += "-111-";
cout << "Str: " << str << endl;
cout << "Length: " << str.length();
cout << " Cap: " << str.capacity();
cout << endl;

str += "1723-9";
cout << "Str: " << str << endl;
cout << "Length: " << str.length();
cout << " Cap: " << str.capacity();
cout << endl;

str += "abcdefghijklmnopqrstuv";
cout << "Str: " << str << endl;
cout << "Length: " << str.length();
cout << " Cap: " << str.capacity();
cout << endl;

return (0);
}

Str:
Length: 0 Cap: 0
Str: 888
Length: 3 Cap: 31
Str: 888-111-
Length: 8 Cap: 31
Str: 888-111-1723-9
Length: 14 Cap: 31
Str: 888-111-1723-9abcdefghijklmnopqrstuv
Length: 36 Cap: 63

C Vs C++: Strings

C Library Functions C++ string operators
/member functions.

strcpy =

strcat +=

strcmp = =, !=, <, >, <=, >=

strchr, strstr

strrchr

.find() method

.rfind() method

strlen .size() or .length()
methods

Reading text into a string

getline(istream, s); // Reads from istream (e.g.,
cin or a file) into the string s. Returns a
reference to istream that can be used again.

 Reads all characters until a line delimiter or
end of file is encountered.

 The line delimiter is extracted but not put
into the string

 You can then parse s without worrying
about end of line or end of file characters.

Char functions in C/C++

 #include <ctype.h>
 int isalnum(int c); //non-zero iff c is alphanumeric
 int isalpha(int c); //non-zero iff c is alphabetic
 int isdigit(int c); //non-zero iff c a digit: 0 to 9
 int islower(int c); //non-zero iff c is lower case
 int ispunct(int c); //non-zero iff c is punctuation
 int isspace(int c); //non-zero iff c is a space char
 int isupper(int c); // non-zero iff c is upper case
 int isxdigit(int c); //non-zero iff c is hexadecimal
 int tolower(int c); //returns c in lower case
 int toupper(int c); //returns c in upper case

Using the transform algorithm
#include <algorithm>

 Lowercase all characters of a string:
transform(s.begin(), s.end(), // source

s.begin(), // destination
tolower); // operation

 Uppercase all characters:
transform(s.begin(), s.end(), s.begin(), toupper);

 tolower and toupper are C-string functions. Other
functions can also be used.

Using the transform algorithm
#include <algorithm>

 What does the following do?
 If (s == reverse(s.begin(),s.end()))

cout << “S is a …”;

2/9/2017

10

Project 1 Solution

…what does this code do?

#include <iostream>
#include <string>

/*! \brief function to return the max count of character in a given string.
*
* Description: Takes in a string as input and returns the count of
* the char which appears most often in said string.
*
*/

int get_max_count(const std::string & s)
{

const unsigned NUM_CHARS = 128; /* Number of lower case letters (en). */
unsigned chars[NUM_CHARS] = { 0 }; /* Array of counters; for each lapha. */
unsigned maxCount = 0; /* Count of lapha which appears most. */

Project 1 Solution (cont.)

Reading assignment: Chapter 3, 9
Including Bitset.

/* For each char of the string, uptick its associated counter. */
for (unsigned i = 0; i < s.length(); ++i)

++chars[static_cast<unsigned>(s[i])];

/* Get the count of the char which appears most often. */
for (unsigned i = 0; i < NUM_CHARS; ++i)

if (maxCount < chars[i])
maxCount = chars[i];

return maxCount;
}

#include <bitset>

 Ordered collection of bits.

 Example program:

#include <bitset>
#include <iostream>

using namespace std;

int main() {
// create a bitset that is 8 bits long
bitset<8> bs;
// display that bitset
for(int i = (int) bs.size()-1; i >= 0; i--) { cout << bs[i] << " "; }
cout << endl;

// create a bitset out of a number
bitset<8> bs2((long) 131); // display that bitset, too
for(int i = (int) bs2.size()-1; i >= 0; i--) { cout << bs2[i] << " "; }
cout << endl;

return 0;
}

0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1

Output

bitset operators

 != returns true if the two bitsets are not equal.
 == returns true if the two bitsets are equal.
 &= performs the AND operation on the two bitsets.
 ^= performs the XOR operation on the two bitsets.
 |= performs the OR operation on the two bitsets.
 ~ reverses the bitset (same as calling flip())
 <<= shifts the bitset to the left
 >>= shifts the bitset to the right
 [x] returns a reference to the xth bit in the bitset.

Example

Output?
bs2 is 10000011
now bs2 is 00110000

Recommended Exercise:
3.23, 3.21, 3.18, 3.15

#include <bitset>
#include <iostream>

using namespace std;

int main() {
// create a bitset out of a number
bitset<8> bs2((long) 131);
cout << "bs2 is " << bs2 << endl;

// shift the bitset to the left by 4 digits
bs2 <<= 4;
cout << "now bs2 is " << bs2 << endl;

return 0;
}

