Introduction to the
C++ Standard Library.

For : COP 3330.
Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

2/9/2017

The C++ Standard Library

o Provides the ability to use:
String Types
Data Structures (linked list, dynamic
arrays, priority queues, binary trees etc)
Algorithms (Sorting and Searching...)
10
Classes for internationalization support.

The C++ Standard Library

o Not very homogeneous:
String classes are safe and convenient to
use (almost self explanatory).
The Standard Template Library (STL)
optimizes for performance and is not
required to check for errors. To use it well,
you need to understand the concepts and
apply them carefully.

C++ Standard Library

o Containers
Objects that hold/contain other objects.
Examples: vector, string
o Algorithms
Work on the containers
Examples: sort, search
o lterators
Provide pointer like interface to containers.

Other components

o Allocators: Provide memory
management for containers. Can be
customized.

o Adaptors: A mechanism to make one
thing act like another. Example: Stack.

o Function objects: A function object or
a functor, is a construct allowing an
object to be invoked or called as if it
were an ordinary function.

Containers

o Of course: Contain objects/built in
types.
More powerful than arrays.
Grow (and shrink?) dynamically
Manage their own memory
Keep track of their size

Allow optimal algorithmic operations
like scan, sorts etc.

2/9/2017

Containers

o Standard STL sequence Containers:
vector, string, deque and list
bitset, queue
valarray, priority_queue

° Containers

o Prefer sequential containers to arrays.

o Use vector by default

o Use list when there are a lot of
insertions/deletions in the middle of
the sequence.

o Use deque when there is a lot of
insertion at the beginning or the end
of the sequence.

What is a vector?

° Vector Interface

template <class T, class Allocator = allocator<T> >
class vector {
public:
explicit vector(const Allocator& = Allocator());
explicit vector(size_type n, const T& value = T(),
const Allocator& = Allocator());
void reserve(size_type n);

void resize(size_type sz, const T& ¢ = T());

void push_back(const T& x);
void pop_back();

iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);

iterator erase(iterator position);
iterator erase(iterator first, iterator last);

void clear();

EEEEEEEE T
data ‘ .
N size ”
I capacity |
o A contiguous array of elements data
o The first “size” elements are constructed (initialized) N
o The last “capacity - size” elements are uninitialized S1Z¢
o Four data members anaci
data pointer capacity
size § _ allocator |
capacity | or equivalent |
allocator
Sample data layout: Internals.
VeCtorS #include <vector>

o template <class T, class Allocator =
allocator<T> > class vector { ...}
o A default allocator is provided.
o T is the type of the object stored in the
vector.
o Constructors for vector:
vector<int> ivec1;
vector<int> ivec2(3,9);
vector<int> ivec3(ivec2);

° Containers : is empty?

o Always use:
if(icontainer.empty()) ...
Instead of if(icontainer.size() == 0)

o For some containers, calculating size
takes linear time.

2/9/2017

° An example usage

#include <vector>

#include <iostream> pk@linprog4:~>./a.out

X vec[0]=3
using namespace std; vec[1]=6
. . vec[2]=7
int main() { vec[3]=5
vector<int> vec(1@); // Creates a vector vec[4]=3
ec[5]=5

// Initializes the vector zec%G}ZG
for(int i=0; i < vec.size(); i++) { vec[7]=2
vec[i] = rand() % 10; vec[8]=9
cout << " vec[" << i << "]= vec[9]=1

<< vec[i] << endl;

° An example usage

#include <vector>
#include <iostream>

using namespace std;

int main() {
pk@linprog4:~>./a.out
vector<int> ivec; Segmentation fault (core dumped)
cout << ivec[@]; //error |

vector<int> ivec2(10);

// subscripts available: ©..9

cout << ivec[1@]; // error

return 0; Make this your friend...

° Iterators

o A replacement for subscripting, for
example in case of vectors: v[i]

o Subscripts are not available for all
containers but iterators are.

o You can think of an iterator as pointing
to an item that is part of a larger
container of items.

};
return 0;
}
° Iterators
o Browsers for containers.
o Allows restricted access to objects
stored in a container.
o Can be a class, data structure or an
Abstract Data Type.
° Iterators

o Container.begin() : All containers
support a function called begin, which
will return an iterator pointing to the
beginning of the container (the first
element)

o Container.end() : returns an iterator
corresponding to having reached the end
of the container. (Not the last element)

° Iterators

o Support the following operations:
Operator * : Element at the current position
(example: (*it)). You can use “->” to access
object members directly from the iterator.
(Like a pointer)
Operator++ : Moves the iterator to the next
element. Most iterators will also allow you to
use “ - - ” for stepping back one element.
Operator == and != : Compare two iterators
for whether they represent the same position
(not the same element).
Operator = : Assigns an iterator.

° Iterators

o Vector iterator picture.

v.begin() v.end()

| l
data—LLTTTTTTTTITT]

o Reason for half-open range:
Easy looping
Empty containers =» begin() == end()

2/9/2017

° Iterators

o Defining an iterator:
std::class_name<template_parameters>::iterator name;
o Example:
std::vector<int>::iterator vit = myvec.begin();
cout << (*vit) <<endl;
Printing all elements of a container.
std::container_type<template_parameter>::iterator pos;
for (pos = container.begin();
pos != container.end(); ++pos)
cout << (*pos) << endl;

o

° Iterators : Examples

The non-STL way, using subscripts to access data:
using namespace std;
vector<int> myIntVector

// Add some elements to myIntVector

myIntVector.push_back(1); //adds an element to end of vector.

myIntVector.push_back(4);
myIntVector.push_back(8);

for(int y=0; y<myIntVector.size(); y++) {
cout<<myIntVector[y]<<" "; //Should output 1 4 8
}

° Iterators: Examples

#include <vector>
#include <iostream>

int main() {
using namespace std;
vector<int> myIntVector;
// vector<int>::iterator myIntVectorIterator; (use auto instead)

// Add some elements to myIntVector
myIntVector.push_back(1);
myIntVector.push_back(4);
myIntVector.push_back(8);

for (auto myIntVectorIterator = myIntVector.begin();
myIntVectorIterator != myIntVector.end();
myIntVectorIterator++) {

° Iterator Types

o Input Iterator : read only, forward moves.
o Output Iterator : write only, forward moves.
o Forward lterator: Both read/write with (++)
support
o Backward: Both read/write with (--) support
(o Bi-Directional :Read write and Both ++ or —
Most support.

Common) o Random: Read/Write/Random access.
L (Almost act like pointers)

cout << *myIntVectorIterator << " ";
// Should output 1 4 8
}
}
° Iterators

Type of iterator Example
Input lterator istream_iterator
Output Iterator ostream_iterator, inserter,

front_inserter, back inserter

Bi-directional iterator list, set, multiset, map,

multimap

Random access iterator Vector, deque

2/9/2017

Random Access lterators

o Allow arithmetic

it+n

The result will be the element corresponding

to the nth item after the item pointed to be

the current iterator.

it — n also allowed

(it1 — it2) allowed
Example: Type of this operation for vectors is
defined by vector<T>::difference_type.

Back to vectors

\'/.max_size()

Maximum number of elements
possible (in entire memory!).

v.capacity()

Returns maximum number of
elements without reallocation

v.reserve(new_size)

Increases capacity to new_size.

v.at(idx)

Returns the element with index
idx. Throws range error
exception if idx is out of range.

v.front() , v.back()

Returns first, last element.

v.resize(new_size)

Changes the size to new_size.

The swap trick.

o To trim capacity, you can use the

following trick:

std::vector<T>(v).swap(v);

Makes capacity
Example: vecto

= size.
r<int>(ivec2).swap(ivec2);

° Back to vectors
o lterator type: Random-access
o Operator [] overloaded
v.size() Number of elements in vector
v.clear() Removes all elements
v.pop_back() Removes last element
v.push_back(elem) Adds elem at end of vector
v.insert(pos,elem) Inserts elem at position pos and
returns the position of the new
element.
v.erase(pos) Removes the element at the
Another form: iterator position pos and returns
v.erase(bpos,epos) the position of the next element.
° Important facts
o For vectors, the C++ standard states:
&V[i] = &v[0] + i
vector < char > vv;
vv.push_back ('P');
vv.push_back ('Q");
vv.push_back ('R");
vv.push_back ("\0');
printf("%s\n",&vv[0]);
Output : PQR
° Important Facts

o When deleting containers of
newed/malloced elements, remember
to delete/free them before deleting the
container.

o Thread safety of STL containers:

Multiple readers are ok

Multiple writers to different containers
are ok.

What can a container
contain?

o Minimal constraint on elements of a
container.

Operator=
a = b; should be valid
A copy constructor
YourType b(a); should be valid
o Question :
Is vector<int&> allowed?
Is vector<const int> allowed?

2/9/2017

Suggestions

o Prefer vector and string to dynamically
allocated arrays.

o Use reserve() to avoid unnecessary
reallocations.

o Avoid using vector<bool>

#include <algorithm>

Algorithms

o Methods that act on containers (may or may
not change them)
Examples: Sorting, searching, reversing etc.
Examples:
sort(v.begin(), v.end())

pos = find(v.begin(), v.end(), 3) // returns an
iterator in the container.

reverse(v.begin(), v.end())

unique(v.begin(), v.end()) // operates on a sorted
range to collapse duplicate elements.

Understand Complexity
Example: Vector Insert
|

l What happens when the vector

EEE T is large?

Linear on the number of elements
inserted (copy/move construction)
plus the number of elements after
position (moving).

X O(num_inserted + num_after_pos)

Intro To The Standard string
Class

o C++ has a standard class called "string"
o Strings are simply a sequence of characters
Note: This is not a sufficient definition for a "C-string"
A"C-string" is an array of characters terminated by a
null byte
o Must #include <string> using the standard namespace to
get C++ standard string functionality
Note: This is different from #include'ing <string.h>
which is the header required for "C-string"s
o string variables are used to store names, words, phrases,
etc.
o Can be input using ">>" and output using "<<" as other
types

]

o

]

]

O
firstName[5] = ‘h’
Some string Functionality

firstNamel[6]
is undefined unlike
C where its \0".

Declaring a string:
string lastName;
string firstName(“Piyush”); //Note: String literal en
string fullName;
Assigning a string:
lastName = “Kumar”; //The usual assi
Appending one string on the end of an,
fullName = firstName + lastNamé; //Results in “PiyushKumar"
fullName = firstName + " " 3fastName; //Results in “Piyush Kumar"
Accessing individual characters in a string:
myChar = firstName[4]; //Results in ‘s’ (no bounds checking)
myChar = firstName.at(4); //Results in ‘s' (does bounds checking)
Appending a character to the end of a string:
lastName = lastName + myChar; //Results in “Kumars"
Determining number of characters in string:
mylnt = firstName.length(); /Results in 6

sed'in double quotes

#include <iostream>
#include <string>
using namespace std;
int main(void)

{

string Example #1

2/9/2017

Length of Drew is: 4

Length of Morgan is: 6
Length of DrewMorgan is: 10
Length of Morgan is: 6
Length of Drew Morgan is: 11

string first; N .
Length of Morgan is: 6

string last("Morgan™);

first = "Drew"; //Would be illegal for C-string
cout << "Length of " << first << " i " << first.length() << endl;
cout << "Length of " << last << " is: " << last.length() << endl;

first += "Morgan™;
cout << "Length of " << first << " is: " << first.length() << endl;
cout << "Length of " << last << " is: " << last.length() << endl;

first.assign("Drew™);
First.append(” ");
first.append(last);

cout << "Length of " << first << " i
cout << "Length of " << last << " is
return(0);

" << first.length() << endl;
" << last.length() << endl;

Constructors

“A constructor is a kind of member function that initializes an
instance of its class.”

“A constructor has the same name as the class and no return
value.”

string() /I empty string
string(string s) /I copy of s
string(string s, int start) // substring start, end
string(string s, int start, int len) /I substring
string(char* a) /I copy of C-string
string(int cnt, char c¢) // one or more chars
string(char* beg, char* end) /I [beg, end)

Additional string
Functionality

o Strings can be compared with usual operators
>, >= (greater than, greater than/equal to)
<, <= (less than, less than/equal to)
== (equality)

o Strings also have a member function called "compare"
int string::compare(string rhs);
Return value is negative if calling string is less than rhs
Return value is positive if calling string is greater than rhs
Return value is zero if both strings are identical

Other overloaded operators

o =is used to assign a value (char, C-string,
or string) to a string.

o +=is used to append a string, character, or
C-string to a string.

o + is used to concatenate two strings or a
string with something else

o << and >> are used for input and output. On
input, leading whitespace is skipped, and
the input terminates with whitespace or end
of file.

When you need a C-string

string s = “1234”;

s.data() // returns s as a data array, no \0’.
s.c_str() // returns s as a C-string with \0’
int i = atoi(s.c_str()); // conversion

/l'iis now 1234.

char *carray = new char[80];
s.copy(carray, 79); // copies up to 79 char

String Operations

s.append(s2); // append s2 to s
s.push_back(c); // append a char
s.erase(various); // erases substrings
s.insert(various); // inserts substrings
s.clear(); // removes all contents
s.resize(cnt); // change the size of s to cnt
swap(a, b); // for general containers.

° String Operations

s.replace(various); // replaces
characters

s.size(); or s.length(); // how many
characters?

s.max_size(); // maximum number of
char?

s.empty(); // is s empty?
s.reserve(cnt); // reserves memory

2/9/2017

° string Example #2

#include <string>
#include <iostream>

using namespace std;

int main(void)

string s3;
int result;

s3 = "Bob";
if (s3 < s1)

cout << “oper: s3 less than si";
s1

cout << “oper: s3 greater than s1";
1

cout << “oper: s3 is equal to s1";
cout << endl;

result = s3.compare(sl);
if (result < 0)

cout << “comp: s3 less than si";
else if (result < O

cout << “comp: s3 greater than s1";
else

cout << “comp: s3 is equal to s1";
cout << endl;

s3 = "Drew";
if (s3 < s1)

cout << “oper: s3 less than si";
if (s3> s1)

cout << “oper: s3 greater than s1";
if (s3 == sl

cout << “oper: s3 is equal to s1";
cout << endl;

result = s3._compare(s1);
if (result < 0)

cout << “comp: s3 less than si1";
else if (result < 0

cout << “comp: s3 greater than s1";

cout << “comp: s3 is equal to s1";
cout << endl

return (0);

Output

oper: s3 less than sl
comp: s3 less than s1

oper: s3 is equal to s1
comp: s3 is equal to sl

[Even More string Functionality

o Getting a substring of a string:
string string::substr(int startPos, int length)
Returns the substring starting at "startPos" with length of "length”
o Finding the location of a substring within a string:
int string::find(string lookFor);
Returns the index where the first instance of "lookFor" was found in the string
Returns "string::npos" (which is usually -1) when the substring isn't found
int string::find(string lookFor, int startFrom);
Returns the index where the first instance of "lookFor" was found, starting the search
at the index "startFrom”, or "string::npos" when the substring isn't found
o Finding specific characters in a string:
int string::find_first_of(string charList, int startFrom);
Returns the index of the first instance of any character in "charList", starting the sear
at the index "startFrom", or "string::npos" if none of the chars are found
nd_first_not_of(string charList, int startFrom);
Returns the index of the first instance of any character NOT in "charList", starting the
search at the index "startFrom", or "string::npos" if none of the chars are found

° string Example #3

Tude <string>
#include <iostream>

using namespace std;
int mainQ
{

int startPos;
int len;

int commaloc;
int howLoc;
int loc;

int spaceloc;
string myStr;
string myStr2;

myStr = “Hello, how are you?";
startPos 7

len =
myStr2 = myStr.substr(startPos, len);
cout << “Substr: * << myStr2 << endl;
commaloc = myStr.find(",");

howLoc = myStr. find(myStr2);

cout << "'Comm: << commaLoc;

cout << " how: " << howLoc << endl;

cout << “Spaces:";
spaceloc = myStr
while (spaceloc

cout << " " << spacelo
spaceLoc = myStr.find(

cout << endl;

cout << “Punct and space:
find_fi

Toc = mystr.find_first_of(0);
while (loc 1= string::npos)
{

cout << " << loc

Toc = myStr.find_first_of(" ,?", loc + 1);
ks
cout << endl;

return (0):

Output

Substr: how

Comma: 5 how: 7

Spaces: 6 10 14

Punct and spaces: 56 10 14 18

° string Class Implementation

o The string class uses dynamic memory allocation to be sure segmentation faults
don't occur
When a string is updated such that it requires more characters than currently
allocated, a new, larger array is allocated and the prior contents are copied over
as necessary
o Since dynamic allocation is relatively slow, it is not desirable to be re-allocating
strings often

C++ allows some memory to be "wasted" by often allocating more space than is
really needed

However, as strings are appended to the end, it is likely that a re-allocation won't}
be needed every time

Occasionally, re-allocation is necessary and is performed, again allocating more
memory than necessary

o Note: this is all done automatically by the string class (Similar to vectors?)

Some Final string
Functionality

o Several member functions are available to get information about

a string

capacity: The number of characters that can be placed in a
string without the inefficiency of re-allocating

length: The number of characters currently in the string
o You can manually change the capacity of a string
resize: Sets the capacity of a string to be at least a user-

defined size

This can be useful if you know a string will be at most n

characters long

By resizing the string to capacity n only that amount of
memory is associated with the string

This prevents wasted memory when you know the exact

size you need

Additionally, it can help prevent numerous re-allocations
if you will be appending on to the end of the string, but
know the final size ahead of time

2/9/2017

str += "-111-";
cout << "Str: " << str << endl;
cout << “Length: " << str.length();
° Examp|e H4 TG S A o
cout << endl;
str += "
cout << " str << endl;
#include <string> cout << ™ " << str.lengthQ);
#include <iostream> cout << " " << str.capacityQ;
cout <<
using namespace std;
str += "abcdefghijkImnopgrstuv';
int main(void) cout << "'Str: " << str << endl;
cout << "Length: " << str.lengthQ);
string str; cout << " Cap: " << str.capacity();
string str2; cout << endl;
cout << "Str: " << str << endl; return (0);
cout << “Length: " << str.length();
cout << " Cap: " << str.capacity();

cout << endl;

str = "888";
cout << "Str: " << str << endl;
cout << "Length: " << str.length(Q);

cout << ** Cap: " << str.capacity();
cout << endl;

Str: 888- 9abedefghijklmnopgrstuy
Length: 36 Cap: 63

C Vs C++: Strings

C Library Functions C++ string operators
Imember functions.

strepy =

strcat +=

strcmp == 1=, <, > <=, >=

strchr, strstr find() method

strrchr .rfind() method

strlen .size() or .length()
methods

Reading text into a string

getline(istream, s); // Reads from istream (e.g.,
cin or a file) into the string s. Returns a
reference to istream that can be used again.

o Reads all characters until a line delimiter or
end of file is encountered.

o The line delimiter is extracted but not put
into the string

o You can then parse s without worrying
about end of line or end of file characters.

Char functions in C/C++

#include <ctype.h>

int isalnum(int c); //non-zero iff ¢ is alphanumeric
intisalpha(int c); //non-zero iff ¢ is alphabetic
int isdigit(int c); /Inon-zero iff ¢ a digit: 0 to 9
intislower(int c); //non-zero iff ¢ is lower case
int ispunct(int c); //non-zero iff ¢ is punctuation
intisspace(int c); //non-zero iff c is a space char
int isupper(int c); // non-zero iff c is upper case
int isxdigit(int c); //non-zero iff ¢ is hexadecimal
int tolower(int c); //returns c in lower case

int toupper(int c); //returns c in upper case

O 0O 0O 0O O OO O0OO0OOoOOo

Using the transform algorithm
#include <algorithm>

o Lowercase all characters of a string:
transform(s.begin(), s.end(), // source
s.begin(), /I destination
tolower); // operation

o Uppercase all characters:
transform(s.begin(), s.end(), s.begin(), toupper);

o tolower and toupper are C-string functions. Other
functions can also be used.

Using the transform algorithm
#include <algorithm>

o What does the following do?
If (s == reverse(s.begin(),s.end()))
cout<<“Sisa...”;

2/9/2017

Project 1 Solution

#include <iostream>
#include <string>

I*IN\brief function to return the max count of character in a given string.

Description: Takes in a string as input and returns the count of
* the char which appears most often in said string.

*/
int get_max_count(const std::string & s)
const unsigned NUM_CHARS = 128; /* Number of lower case letters (en). */

unsigned chars|[NUM_CHARS] ={ 0 }; /* Array of counters; for each lapha. */
unsigned maxCount = 0; /* Count of lapha which appears most. */

...what does this code do?

Project 1 Solution (cont.)

/* For each char of the string, uptick its associated counter. */
for (unsigned i = 0; i < s.length(); ++i)
++chars[static_cast<unsigned>(s][i])];

/* Get the count of the char which appears most often. */
for (unsigned i = 0; i < NUM_CHARS; ++i)
if (maxCount < chars[i])
maxCount = charsl[i];

return maxCount;

Reading assignment: Chapter 3, 9
Including Bitset.

bitset operators

1= returns true if the two bitsets are not equal.

== returns true if the two bitsets are equal.

&= performs the AND operation on the two bitsets.
A= performs the XOR operation on the two bitsets.
|= performs the OR operation on the two bitsets.

~ reverses the bitset (same as calling flip())

<<= shifts the bitset to the left

>>= shifts the bitset to the right

[x] returns a reference to the xth bit in the bitset.

O 0O 00O 0O O0OOO0OO 0o

o Ordered collection of bits.
o Example program:
#include <bitset>
#include <iostream>
using namespace std;
int main() {
/I create a bitset that is 8 bits long
bitset<8> bs;
1/ display that bitset
for(inti = (int) bs.size()-1; i >= 0; i~) { cout << bs[i] <" *; }
cout << endl;
Il create a bitset out of a number
bitset<8> bs2((long) 131); // display that bitset, too
for(inti = (int) bs2.size()-1; i >= 0; i--) { cout << bs2[i] <<"
cout << endl;
return 0;
}

#include <bitset> Output?
#include <iostream> bs2 is 10000011
now bs2 is 00110000

using namespace std;

int main() {
// create a bitset out of a number
bitset<8> bs2((long) 131);
cout << "bs2 is " << bs2 << endl;

/1 shift the bitset to the left by 4 digits
bs2 <<=4;
cout << "now bs2 is " << bs2 << endl;
Recommended Exercise:
return 0; 3.23,3.21,3.18,3.15

10

