
1

C++ IO

For : COP 3330.

Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

C++ IO

 All I/O is in essence, done one
character at a time

 Concept: I/O operations act on
streams (sequences) of ASCII
characters

C++ IO

 cout standard output stream
sequence of characters printed
to the monitor

 cin standard input stream
sequence of characters input
from the keyboard

 both cout and cin are data objects
and are defined as classes

#include <iostream>

cin

(type istream)
class

cout

(type ostream)
class

Keyboard Screen
executing
program

input data output data

Interactive I/O

Namespaces: They provide
a way to avoid name collision.
Be careful about using this.

Example

#include <iostream>

using namespace std;

int main(void){

cout << “Hello World” ;
cout << endl;
return 0;

}

Standard IO library
for C++. Defines two
fundamental types,
istream and ostream.

Stream: A flow of characters (1 or 2 bytes long). Can flow in and out of
Files, strings, etc.

Example

#include <iostream>

using namespace std;

int main(void){

cout << “Hello World” ;
cout << endl;
return 0;

}

Ostream object named cout.

Equivalent to:
operator<< (cout, “Hello World”);

Its calling a friend function of
ostream with input data.

Uses function declaration (approx):
ostream& operator<<(ostream&, const char *)

2

Example

#include <iostream>

using namespace std;

int main(void){

cout << endl;
return 0;

}

invokes a manipulator function called endl.
endl looks something like this:

ostream& endl(ostream& os)
{

os << '\n';
os.flush();
return os;

}

Equivalent Compiler statement:
std::cout.operator<<(

std::endl(std::cout)
);

Scope Operator for
namespaces.

\n new line

\t tab

\b backspace

\r carriage return

\ʹ single quote

\ʺ double quote

\\ backslash

Special Output Characters

Stream IO headers

 iostream -- contains basic information
required for all stream I/O operations

 iomanip – used for performing formatted I/O
with stream manipulators

 fstream – used for performing file I/O
operations

 stringtream -- used for performing in-
memory I/O operations (i.e., into or from
strings in memory)

A Stream

 A flow of characters.

 Buffers: IO to streams goes thru a
buffer. C++ allows you change the
default behavior of associated buffers.

 State: Each stream is associated with
a state indicating various things like if
an error has occurred or not…

C++ IO Class hierarchy
ios

istream ostream

istringstream ostringstreamifstream ofstream

stringbuf

streambuf

filebuf

C++ IO Class hierarchy
ios

istream ostream

istringstream ostringstreamifstream ofstream

stringbuf

streambuf

filebuf

coutcin

3

C++ IO Hierarchy

 The ios hierarchy defines the
interface of the IO system.

 The streambuf hierarchy defines the
implementation of the IO system,
mostly provides the facilities of
buffering and byte-level I/O

Other Predefined Streams

 cerr - the standard destination for
error messages (often the terminal
window). Output through this stream
is unit-buffered, which means that
characters are flushed after each
block of characters is sent.

 clog - like cerr, but its output is
buffered.

Formatting with predefined
streams.

 Remember: Due to inheritance,
anything you learn about formatting IO
with predefined streams (cin, cout,
clog, cerr) also applies to file IO and
string IO.

 Anything available or defined in the
ios class is available everywhere in
the IO subsystem.

Stream IO

 << (left-shift operator)
 Overloaded as stream insertion

operator

 >> (right-shift operator)
 Overloaded as stream extraction

operator
 Both operators used with cin, cout,
cerr, clog, and with user-defined
stream objects

Inside ios

Example

 cin >> Variable;
 cout << Variable;
 clog << Variable;
 Buffered

 cerr << Variable;
 Unbuffered, prints Variable

immediately.
 Note: Variable types are available to

the compiler.

<< operator

 << is overloaded to work on built-in
types of C++.

 Can also be used to output user-
defined types.

 Other interesting examples:
 cout << ‘\n’; // newline.

 cout << “1+2=” << (1+2) << endl;

 cout << endl; // newline.

 cout << flush; // flush the buffer.

4

<< operator

 Associates from left to right, and returns a reference to
its left-operand object (i.e. cout). This enables
cascading.

 Outputs “char *” type as a string.
 If you want to print the address, typecast it to (void *).
 Example:

 char name[] = “cop3330”;
 cout << name << static_cast<void *>(name) << endl;
 static_cast<void *>(name) equivalent to ((void *)

name) in C except that it happens at compile time.

Stream insertion: One char.

 put member function
 Outputs one character to specified stream
cout.put(‘C');

 Returns a reference to the object that called
it, so may be cascaded
cout.put(‘C').put('\n');

 May be called with an ASCII-valued
expression
cout.put(65);

• Outputs A

Input Stream

 >> (stream-extraction)
 Used to perform stream input
 Normally ignores whitespaces (spaces, tabs,

newlines)
 Returns zero (false) when EOF is encountered,

otherwise returns reference to the object from which it
was invoked (i.e. cin)

• This enables cascaded input
cin >> x >> y;

 >> controls the state bits of the stream
 failbit set if wrong type of data input
 badbit set if the operation fails

Input Stream : Looping

while (cin >> fname)

“>>” returns 0 (false) when EOF
encountered and loop terminates.

Example Program
#include <iostream>

using std::cout;
using std::cin;
using std::endl;

int main(void) {
int height = 0, maxheight = 0;

cout << "Enter the heights: (enter end of file to end): ";
while(cin >> height)

if(height > maxheight)
maxheight = height;

cout << "Tallest person's height = "
<< maxheight << endl;

return 0;
}

Output

$./a.exe
Enter the heights: (enter end of file to end): 72
89
54
33
68
66
Tallest person's height = 89

5

istream member function: get

 char ch = cin.get();

 Inputs a character from stream (even
white spaces) and returns it.

 cin.get(c);

 Inputs a character from stream and
stores it in c

istream member function: get
get (array_name, max_size) ;

char fname[256]
cin.get (fname, 256);

 Read in up to 255 characters and inserts
a null at the end of the string “fname". If
a delimiter is found, the read terminates.
The array acts like a buffer. The
delimiter is not stored in the array, but is
left in the stream.

istream member function:
getline (array_name, max_size)

char fname[256]

cin.getline (fname, 256);

 Same as get, except that getline
discards the delimiter from the stream.

istream member functions:
ignore()

 cin.ignore () ;
 Discards one character from the input

stream.

 cin.ignore (10) ;
 Discards 10 characters.

 cin.ignore(256,’\n’);
 Discards 256 characters or newline,

whichever comes first.

istream member functions:
peek(), putback()

 char ch = cin.peek () ;
 Peeks into the stream’s next

character.

 cin.putback (‘A’) ;
 Puts ‘A’ back in the stream.

FILE IO Example.
Copy File “first.txt” into “second.txt”.

#include <iostream>
#include <fstream>

using namespace std;

int main(void)
{

ifstream source("first.txt");
ofstream destin("second.txt");

char ch;
while (source.get(ch))

destin<<ch;
return 0;

}

6

Slightly modified
#include <iostream>
#include <fstream>

using namespace std;

int main(void)
{

ifstream source("first.txt");
ofstream destin("second.txt");

char ch;
while (source.peek() != EOF){

source.get(ch);
destin.put(ch);

}
return 0;

}

More IO functions

 read()
 cin.read(fname, 255);

• Reads 255 characters from the input
stream. Does not append ‘\0’.

 cout.write(fname,255);
• Writes 255 characters.

 gcount: returns the total number of
characters read in the last input
operation.

C++ IO Class Hierarchy
Revisited

ios

istream ostream

istringstream ostringstream

ifstream ofstream

stringstream

iostream

coutcin

fstream

Another example
#include <iostream>
#include <sstream>
#include <string>

using namespace std;

int main() {
int i;
string line;
while(getline(cin,line)){

stringstream sfstream(line);
while (sfstream >> i){

cout << i << endl;
}

}
return 0;

}

What if I replace this
with istringstream?

stringstream operations

 stringstream strm;

 stringstream strm(mystring);
 Initializes strm with a copy of mystring.

 strm.str();
 Returns the content of strm in string format.

 strm.str(s);
 Copies the string s into strm. Returns void.

Stream
Manipulators

#include <iomanip>

7

dec, hex, oct, setbase

 oct, hex, dec
 Cout << hex << 15;

• Prints ‘F’

 cout << setbase(16) << 15;
 Prints ‘F’ again.

Formatting Output - Integers

 int numstdts = 35533;
cout << “FSU has" << numstdts

<< "students."
prints
FSU has35533students.

 default field width == minimum required
default: what happens when explicit
formatting is not specified

Formatting Output - Integers
p.2

 we can specify the field width, or number
of spaces used to print a value

cout << “FSU has" << setw(6)
<< numstdts << " students."

prints
FSU has 35533 students.

prints in field width 6, right-justified

function call

Formatting Output - Integers
p.3

 cout << “FSU has" << setw(10)
<< numstdts << " students."

prints
FSU has 35533 students.

prints in field width 10, right-justified

Formatting Output - Integers
p.4

 cout << left; // flip to left justification

cout << “FSU has " << setw(10)
<< numstdts << "students."

prints
FSU has 35533 students.

prints in field width 10, left-justified

Using the default - Integers p.5
 Note on field widths: if a field width specified is

too small, or is not specified, it is automatically
expanded to minimum required

 numstdts = 100;
cout << “FSU has "

<< numstdts << " students."
prints

FSU has 100 students.

and works for any value of numstdts

8

General Rule of Thumb

 When you are printing numeric values in
sentences or after a verbal label, the default
field width usually works well

 When you are printing numeric values lined
up in columns in a table, it is usually
necessary to call setw to generate well-
formatted output (we will see examples of
this later in the course)

Formatting Output - Reals

 float cost = 5.50;
cout << "Cost is $" << cost

<< "today."
prints
Cost is $5.5today.

 default
 large values printed in scientific notation

 if number is whole, no decimal point

 numbers of digits not under your control

Formatting Output - Reals p.2

 Setting up real formatting

// use fixed point notation
cout << fixed;

// print a decimal point (with whole numbers)
cout << showpoint; (noshowpoint)

these remain in effect until changed explicity, as
does setprecision. setw only changes next value
printed.

Formatting Output - Reals p.3

 float cost = 5.50;
cout << "Cost is $" << setw(5)

<< setprecision(2) << cost
<< " today."

prints
Cost is $ 5.50 today.

 if no field width is specified, minimum is used,
just as for integers

You can just do this, once:

 cout << fixed << showpoint
<< setprecision(2);

and these settings will remain in effect
throughout your program run

Formatting Output - char

 default field width == 1
note: setw does have effect on

char type data too.

char ch = 'Q';
cout << '*' << ch << setw(3) << '*';

prints
*Q *

9

Formatting Output - Strings

 default field width == number of
characters in the string

can use setw

cout << setw(10) << "Hello";
prints

Hello

Useful Output Spacer

 const string BLANK = " ";

cout << setw(10) << BLANK;
prints 10 blanks

 consider this:
const char BLANK = ' ';
cout << setw(10) << BLANK;
prints 10 blanks!

Unitbuf manipulator

 If you want to flush every output
 cout << unitbuf

<< “first”

<< “second”

<< nounitbuf;

Example Quiz

#include <iostream>
#include <iomanip>

using namespace std;

int main() {
const double tenth = 0.1;
const float one = 1.0;
const float big = 1234567890.0;
cout << "A. " << tenth << ", " << one << ", " << big << endl;
cout << "B. " << fixed << tenth << ", " << one << ", " << big << endl;
cout << "C. " << scientific << tenth << ", " << one << ", " << big << endl;
cout << "D. " << fixed << setprecision(3) << tenth << ", " << one << ", " << big << endl;
cout << "E. " << setprecision(20) << tenth << endl;
return 0;

}

A. 0.1, 1, 1.23457e+009
B. 0.100000, 1.000000, 1234567936.000000
C. 1.000000e-001, 1.000000e+000, 1.234568e+009
D. 0.100, 1.000, 1234567936.000
E. 0.10000000000000000555

Manipulators: Rolling your own.

#include <iostream>
#include <ostream>

using namespace std;

ostream& myendl(ostream& os) {
os << "test\n";
os.flush();
return os;

}

int main(void) {
cout << myendl;
return 0;

}

•How to create our own stream
manipulators?

bell
ret (carriage return)
tab
endLine

An Example.
Copy not allowed
on ostreams.

Stream Error States

10

Error states

 strm::eofbit
 if (cin.eof() == true) break; // stream end of file.

 strm::failbit
 if (cin.fail() == true) break; // stream format error.

 strm::badbit
 If (cin.bad() == true) break; // data lost!

 Goodbit?
 cin.good() = ((!eofbit) && (!failbit) && (!badbit))
 All eofbit, failbit and badbit should be false.

 cin.clear() // makes cin good.

Error States Example

int ival;

while (cin >> ival, !cin.eof()){
Assert(!cin.bad() , “IO stream corrupted”);
if (cin.fail()){ //bad input

cerr << “Bad data, try again.”;
cin.clear(istream::failbit); // reset the stream
continue;

}
// ok to process ival now

} //end of while.

Operators for testing.

 operator!

• Returns true if badbit or failbit set

 Useful for file processing
• if (! readmefile) cerr << “Error”;

Interactive Input

 Write a prompt
make it friendly and informative

prompt typically contains prefix
character to signal point at which to
enter input

 Read value(s)
user types data at keyboard

Interactive Input: Example

int num;
char response;

cout << "Enter a number -> ";
cin >> num;

cout << "Enter Y or N -> ";
cin >> response;

prefix

Interactive Input: Contents of
Output Window

Enter a number -> 17<return>

Enter Y or N -> Y<return>

the program will not process the
input until the return key is struck

11

Arguments: Count, Vector

#include <iostream>

int main(int argc, char** argv) {
std::cout << “Argument Count: " << argc << std::endl;

// Print Argument Vector
for (int i = 0; i < argc; ++i) {

std::cout << argv[i] << std::endl;
}

}

Another C++ Program
(Hello argv[1])

#include <iostream>
#include <stdlib.h>
using namespace std;

int main(int argc, char *argv[]) {
if (argc != 2) {

cout << "Usage: hi.exe <name>" << endl;
exit (1);

}

cout << "Hello " << argv[1] << endl;
return 0;

}

Control structures

 Statements you should already know :
 While

 For

 If

Recommended Assignments: 1.17, 1.25

