C++ 10

For : COP 3330.
Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

C++10

o All I/O is in essence, done one
character at a time

o Concept: I/0 operations act on
streams (sequences) of ASCII
characters

emors |

Interactive 1/0

#include <iostream>

output data

input data

=

cin cout

(type istream) (type ostream)
class class

° C++ 10
o cout standard output stream
sequence of characters printed
to the monitor
o cin standard input stream
sequence of characters input
from the keyboard
o both cout and cin are data objects
and are defined as classes
° Example

Namespaces: They provide
away to avoid name collision.
Be careful about using this.

#include <iostream> —_
T

using namespace std; ~ | Standard IO library

for C++. Defines two
fundamental types,
istream and ostream.

int main(void){

cout << “Hello World” ;
cout <<endl;
return O;

}

Stream: A flow of characters (1 or 2 bytes long). Can flow in and out of
Files, strings, etc.

Example

Ostream object named cout.

#include <iostream>
using namespace std;
int main(void){

cout <<,ﬁello World” ;
cout << endt—__

—

return O; —

Equivalent to:

} operator<< (cout, “Hello World”);
Its calling a friend function of
ostream with input data.

Uses function declaration (approx):
o & operator<<(ostream&, const char *)

Exa m |e invokes a manipulator function called end|.
p endl looks something like this:
ostream& endl(ostream& os)
{
os <<'\n';
os.flush();
return os;

#include <iostream>

using namespace std;

int main(void { .

_—
cout << endl;
return O; » | Equivalent Compiler statement:
std::cout.operator<<(
} std::endl(std::cout)

) |

Scope Operator for
namespaces.

Stream |O headers

o iostream -- contains basic information
required for all stream 1/O operations

o iomanip — used for performing formatted I/O
with stream manipulators

o fstream — used for performing file 1/0
operations

o stringtream -- used for performing in-
memory I/O operations (i.e., into or from
strings in memory)

C++ 10 Class hierarchy

st;éémbuf
= , /‘T

|of;ream | //

S

| ifstream | | istringstream | ‘ ostringstream |
AN El
N 7

N /

° Special Output Characters
\n new line
\t tab
\b backspace
\r carriage return
\' single quote
\" double quote
\\ backslash
° A Stream

o Aflow of characters.

o Buffers: 10 to streams goes thru a
buffer. C++ allows you change the
default behavior of associated buffers.

o State: Each stream is associated with
a state indicating various things like if
an error has occurred or not...

[J

C++ 10 Class hierarchy

streambuf
= cout T
/

istream | .
—cin
= /!
|ofstream |/
,,// //
- /
T~ /

| ifstream | | istringstream | ‘ ostringstream |
< El
N J

/

° C++ 10 Hierarchy

o The ios hierarchy defines the
interface of the 10 system.

o The streambuf hierarchy defines the
implementation of the 1O system,
mostly provides the facilities of
buffering and byte-level I/O

Other Predefined Streams

o cerr - the standard destination for
error messages (often the terminal
window). Output through this stream
is unit-buffered, which means that
characters are flushed after each
block of characters is sent.

o clog - like cerr, but its output is
buffered.

Formatting with predefined
streams.

o Remember: Due to inheritance,
anything you learn about formatting 10
with predefined streams (cin, cout,
clog, cerr) also applies to file 10 and
string 10.

o Anything available or defined in the
ios class is available everywhere in
the 10 subsystem.

Stream 10

Inside ios

o << (left-shift operator)

Overloaded as stream insertion
operator

o >> (right-shift operator)

Overloaded as stream extraction
operator

o Both operators used with cin, cout,
cerr, clog, and with user-defined
stream objects

° Example

o c¢in >> Variable;

o cout << Variable;

o clog << Variable;
Buffered

o cerr << Variable;
Unbuffered, prints Variable
immediately.

o Note: Variable types are available to

the compiler.

<< operator

o << is overloaded to work on built-in
types of C++.

o Can also be used to output user-
defined types.

o Other interesting examples:
cout << \n’; // newline.
cout << “142=" << (1+2) << endl;
cout << endl; // newline.
cout << flush; // flush the buffer.

° << operator

o Associates from left to right, and returns a reference to
its left-operand object (i.e. cout). This enables
cascading.

o Outputs “char *” type as a string.

If you want to print the address, typecast it to (void *).

o Example:

char name[] = “cop3330”;

cout << name << static_cast<void *>(name) << endl;
static_cast<void *>(name) equivalent to ((void *)
name) in C except that it happens at compile time.

o

° Stream insertion: One char.

o put member function
Outputs one character to specified stream
cout.put(“C");
Returns a reference to the object that called
it, so may be cascaded
cout.put(“C").put("\n");
May be called with an ASClI-valued
expression
cout.put(65);
Outputs A

° Input Stream

o >> (stream-extraction)
Used to perform stream input

Normally ignores whitespaces (spaces, tabs,
newlines)

Returns zero (false) when EOF is encountered,
otherwise returns reference to the object from which it
was invoked (i.e. cin)

This enables cascaded input
cin >> x >> y;

o >> controls the state bits of the stream
failbit set if wrong type of data input
badbit set if the operation fails

° Input Stream : Looping
while (cin >> fname)

“>>” returns O (False) when EOF
encountered and loop terminates.

° Example Program

#include <iostream>

using std::cout;
using std::cin;
using std::endl;

int main(void) {
int height = 0, maxheight = 0;

cout << "Enter the heights: (enter end of file to end): ";
while(cin >> height)
if(height > maxheight)
maxheight = height;

cout << "Tallest person's height ="
<< maxheight << endl;
return 0;

° Output

$ /a.exe

Enter the heights: (enter end of file to end): 72
89

54

33

68

66

Tallest person's height = 89

istream member function: get

ochar ch = cin.get();

Inputs a character from stream (even
white spaces) and returns it.

ocin.get(c);
Inputs a character from stream and
stores itin c

istream member function: get
get (array_name, max_size) ;

char fname[256]
cin.get (fname, 256);

o Read in up to 255 characters and inserts
a null at the end of the string “fname". If
a delimiter is found, the read terminates.
The array acts like a buffer. The
delimiter is not stored in the array, but is
left in the stream.

istream member function:
getline (array_name, max_size)

char fname[256]
cin.getline (fname, 256);

o Same as get, except that getline
discards the delimiter from the stream.

istream member functions:
ignore()

o cin.ignore () ;

Discards one character from the input
stream.

o cin.ignore (10) ;
Discards 10 characters.

o cin.ignore(256,\n’);
Discards 256 characters or newline,
whichever comes first.

istream member functions:
peek(), putback()

o char ch = cin.peek () ;

Peeks into the stream’s next
character.

o cin.putback (‘A) ;
Puts ‘A’ back in the stream.

FILE 10 Example.

Copy File “first.txt” into “second.txt”.

#include <iostream>
#include <fstream>

using namespace std;
int main(void)

ifstream source("first.txt");
ofstream destin("second.txt");

char ch;
while (source.get(ch))
destin<<ch;
return 0;

}

° Slightly modified

#include <iostream>
#include <fstream>

using namespace std;
int main(void)

ifstream source("first.txt");
ofstream destin("second.txt");

char ch;

while (source.peek() I= EOF){
source.get(ch);
destin.put(ch);

return 0;

More IO functions

o read()
cin.read(fname, 255);
Reads 255 characters from the input
stream. Does not append “\0".
o cout.write(fname,255);
Writes 255 characters.
o gecount: returns the total number of
characters read in the last input
operation.

C++ 10 Class Hierarchy

Revisited

.
cin

N |
; |
. \
e
iostream

aN

stringstream l l fstr;eam l

Another example

#include <iostream>
#include <sstream>

#include <string> What if | replace this

with istringstream?
using namespace std;

int main() {

inti;

string line; ,,/
while(getiine(cin,line){

w;stringstrear;rbsfstream(line);
while (sfstream >> i)}
cout << i <<endl;

}

}

return O;

° stringstream operations

o stringstream strm;
o stringstream strm(mystring);
Initializes strm with a copy of mystring.
o strm.str();
Returns the content of strm in string format.

o strm.str(s);
Copies the string s into strm. Returns void.

#include <iomanip>

Stream
Manipulators

dec, hex, oct, setbase

o oct, hex, dec
Cout << hex << 15;
Prints ‘F’
o cout << setbase(16) << 15;
Prints ‘F’ again.

Formatting Output - Integers

o int numstdts = 35533;
cout << “FSU has" << numstdts
<< "students."
prints
FSU has35533students.

o default field width == minimum required
default: what happens when explicit
formatting is not specified

Formatting Output - Integers
p.2

o we can specify the field width, or number
of spaces used to print a value

cout << “FSU has" << setw(6)
<< numstdts << " students."
prints
FSU has 35533 students. .
function call

prints in field width 6, right-justified

Formatting Output - Integers
p.3
o cout << “FSU has" << setw(10)
<< numstdts << " students."

prints
FSU has 35533 students.

prints in field width 10, right-justified

Formatting Output - Integers
p.4

o cout << left; //flip to left justification

cout << “FSU has " << setw(10)
<< numstdts << "students."

prints

FSU has 35533 students.

prints in field width 10, left-justified

Using the default - Integers p.5

o [Note on field widths: if a field width specified is
too small, or is not specified, it is automatically
expanded to minimum required

o numstdts = 100;
cout << “FSU has "
<< numstdts << " students."
prints

FSU has 100 students.

and works for any value of numstdts

General Rule of Thumb

o When you are printing numeric values in
sentences or after a verbal label, the default
field width usually works well

o When you are printing numeric values lined
up in columns in a table, it is usually
necessary to call setw to generate well-
formatted output (we will see examples of
this later in the course)

Formatting Output - Reals

float cost = 5.50;

cout << "Cost is $" << cost
<< "today."

prints

Cost is $5.5today.

o default
large values printed in scientific notation
if number is whole, no decimal point
numbers of digits not under your control

Formatting Output - Reals p.2
Setting up real formatting

/I use fixed point notation
cout << fixed;

/I print a decimal point (with whole numbers)
cout << showpoint; (noshowpoint)

these remain in effect until changed explicity, as
does setprecision. setw only changes next value
printed.

Formatting Output - Reals p.3

o float cost = 5.50;
cout << "Cost is $" << setw(5)
<< setprecision(2) << cost
<< " today."
prints
Cost is $ 5.50 today.

o if no field width is specified, minimum is used,
just as for integers

You can just do this, once:

o cout << fixed << showpoint
<< setprecision(2);

and these settings will remain in effect
throughout your program run

Formatting Output - char

default field width ==
note: setw does have effect on
char type data too.

charch ='Q’;
cout << "™ << ch << setw(3) <<"™;

prints
*Q *

Formatting Output - Strings

Useful Output Spacer

const string BLANK ="";

cout << setw(10) << BLANK;
prints 10 blanks

o consider this:
const char BLANK ="";
cout << setw(10) << BLANK;
prints 10 blanks!

#include <iostream>
#include <iomanip>

using namespace std

Example Quiz

. 0.1,1,1.23457e+009

. 0.100000, 1.000000, 1234567936.000000

. 1.000000e-001, 1.000000e+000, 1.234568e+009
. 0.100, 1.000, 1234567936.000

. 0.10000000000000000555

moow>

int main() {

const double tenth = 0.1;
const float one = 1.0;
const float big = 1234567890.0;

cout << "A. " << tenth << ", " << one << ", " << big << endl;

cout << "B. " << fixed << tenth << ", " << one << ", " << big << endl;

cout << "C. " << scientific << tenth << ", " << one << ", " << big << end|

cout << "D. " << fixed << setprecision(3) << tenth << ", " << one << ", " << big << endl
cout << "E. " << setprecision(20) << tenth << endl;

return 0;

o
default field width == number of
characters in the string
can use setw
cout << setw(10) << "Hello";
prints
Hello
° Unitbuf manipulator
o If you want to flush every output
cout << unitbuf
<< “first”
<< “second”
<< nounitbuf;
o Manipulators: Rolling your own.

*How to create our own stream

An Example. on ostreams.
manipulators?
bell " N
. #include <iostream>
ret (carriage return) #inolude <ostream>
tab
endLine

using namespace std;

ostream& myend|(ostreaos) {
0s << "test\n";
os.flush();
return os;

}

int main(void) {
cout << myendl;
return 0;

Copy not allowed

Stream Error States

° Error states

o strm::eofbit
if (cin.eof() == true) break; // stream end of file.
o strm::failbit
if (cin.fail() == true) break; // stream format error.
o strm::badbit
If (cin.bad() == true) break; // data lost!
o Goodbit?
cin.good() = ((leofbit) && (!failbit) && (!badbit))
Al eofbit, failbit and badbit should be false.
o cin.clear() // makes cin good.

° Error States Example

intival;

while (cin >> ival, Icin.eof()){
Assert(Icin.bad() , “IO stream corrupted”);
if (cin.fail()){ //bad input
cerr << “Bad data, try again.”;
cin.clear(istream::failbit); // reset the stream
continue;
}
/I ok to process ival now
}//lend of while.

° Operators for testing.

operator!
Returns true if badbit or failbit set

Useful for file processing
if (! readmefile) cerr << “Error”;

° Interactive Input

o Write a prompt
make it friendly and informative

prompt typically contains prefix
character to signal point at which to
enter input

o Read value(s)
user types data at keyboard

° Interactive Input: Example
int num;
char response; prefix

cout << "Enter a number —é "
cin >> num;

cout << "EnterYorN->";
cin >> response;

Output Window

Enter a number -> 17<return>

Enter Y or N -> ¥Y<return>

Interactive Input: Contents of

the program will not process the

input until the return key is struck

10

o Arguments: Count, Vector

#include <iostream>

int main(int argc, char** argv) {
std::cout << “Argument Count: " << argc << std::endl;

// Print Argument Vector

for (int i = @; i < argc; ++i) {
std::cout << argv[i] << std::endl;

}

Another C++ Program
(Hello argv[1])

#include <iostream>
#include <stdlib.h>
using namespace std;

int main(int argc, char *argv[]) {
if (argc !'= 2) {
cout << "Usage: hi.exe <name>" << endl;
exit (1);

cout << "Hello " << argv[1] << endl;
return @;

}

o Control structures

o Statements you should already know :

While
For
If

Recommended Assignments: 1.17, 1.25

11

