
1

C++ IO

For : COP 3330.

Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

C++ IO

 All I/O is in essence, done one
character at a time

 Concept: I/O operations act on
streams (sequences) of ASCII
characters

C++ IO

 cout standard output stream
sequence of characters printed
to the monitor

 cin standard input stream
sequence of characters input
from the keyboard

 both cout and cin are data objects
and are defined as classes

#include <iostream>

cin

(type istream)
class

cout

(type ostream)
class

Keyboard Screen
executing
program

input data output data

Interactive I/O

Namespaces: They provide
a way to avoid name collision.
Be careful about using this.

Example

#include <iostream>

using namespace std;

int main(void){

cout << “Hello World” ;
cout << endl;
return 0;

}

Standard IO library
for C++. Defines two
fundamental types,
istream and ostream.

Stream: A flow of characters (1 or 2 bytes long). Can flow in and out of
Files, strings, etc.

Example

#include <iostream>

using namespace std;

int main(void){

cout << “Hello World” ;
cout << endl;
return 0;

}

Ostream object named cout.

Equivalent to:
operator<< (cout, “Hello World”);

Its calling a friend function of
ostream with input data.

Uses function declaration (approx):
ostream& operator<<(ostream&, const char *)

2

Example

#include <iostream>

using namespace std;

int main(void){

cout << endl;
return 0;

}

invokes a manipulator function called endl.
endl looks something like this:

ostream& endl(ostream& os)
{

os << '\n';
os.flush();
return os;

}

Equivalent Compiler statement:
std::cout.operator<<(

std::endl(std::cout)
);

Scope Operator for
namespaces.

\n new line

\t tab

\b backspace

\r carriage return

\ʹ single quote

\ʺ double quote

\\ backslash

Special Output Characters

Stream IO headers

 iostream -- contains basic information
required for all stream I/O operations

 iomanip – used for performing formatted I/O
with stream manipulators

 fstream – used for performing file I/O
operations

 stringtream -- used for performing in-
memory I/O operations (i.e., into or from
strings in memory)

A Stream

 A flow of characters.

 Buffers: IO to streams goes thru a
buffer. C++ allows you change the
default behavior of associated buffers.

 State: Each stream is associated with
a state indicating various things like if
an error has occurred or not…

C++ IO Class hierarchy
ios

istream ostream

istringstream ostringstreamifstream ofstream

stringbuf

streambuf

filebuf

C++ IO Class hierarchy
ios

istream ostream

istringstream ostringstreamifstream ofstream

stringbuf

streambuf

filebuf

coutcin

3

C++ IO Hierarchy

 The ios hierarchy defines the
interface of the IO system.

 The streambuf hierarchy defines the
implementation of the IO system,
mostly provides the facilities of
buffering and byte-level I/O

Other Predefined Streams

 cerr - the standard destination for
error messages (often the terminal
window). Output through this stream
is unit-buffered, which means that
characters are flushed after each
block of characters is sent.

 clog - like cerr, but its output is
buffered.

Formatting with predefined
streams.

 Remember: Due to inheritance,
anything you learn about formatting IO
with predefined streams (cin, cout,
clog, cerr) also applies to file IO and
string IO.

 Anything available or defined in the
ios class is available everywhere in
the IO subsystem.

Stream IO

 << (left-shift operator)
 Overloaded as stream insertion

operator

 >> (right-shift operator)
 Overloaded as stream extraction

operator
 Both operators used with cin, cout,
cerr, clog, and with user-defined
stream objects

Inside ios

Example

 cin >> Variable;
 cout << Variable;
 clog << Variable;
 Buffered

 cerr << Variable;
 Unbuffered, prints Variable

immediately.
 Note: Variable types are available to

the compiler.

<< operator

 << is overloaded to work on built-in
types of C++.

 Can also be used to output user-
defined types.

 Other interesting examples:
 cout << ‘\n’; // newline.

 cout << “1+2=” << (1+2) << endl;

 cout << endl; // newline.

 cout << flush; // flush the buffer.

4

<< operator

 Associates from left to right, and returns a reference to
its left-operand object (i.e. cout). This enables
cascading.

 Outputs “char *” type as a string.
 If you want to print the address, typecast it to (void *).
 Example:

 char name[] = “cop3330”;
 cout << name << static_cast<void *>(name) << endl;
 static_cast<void *>(name) equivalent to ((void *)

name) in C except that it happens at compile time.

Stream insertion: One char.

 put member function
 Outputs one character to specified stream
cout.put(‘C');

 Returns a reference to the object that called
it, so may be cascaded
cout.put(‘C').put('\n');

 May be called with an ASCII-valued
expression
cout.put(65);

• Outputs A

Input Stream

 >> (stream-extraction)
 Used to perform stream input
 Normally ignores whitespaces (spaces, tabs,

newlines)
 Returns zero (false) when EOF is encountered,

otherwise returns reference to the object from which it
was invoked (i.e. cin)

• This enables cascaded input
cin >> x >> y;

 >> controls the state bits of the stream
 failbit set if wrong type of data input
 badbit set if the operation fails

Input Stream : Looping

while (cin >> fname)

“>>” returns 0 (false) when EOF
encountered and loop terminates.

Example Program
#include <iostream>

using std::cout;
using std::cin;
using std::endl;

int main(void) {
int height = 0, maxheight = 0;

cout << "Enter the heights: (enter end of file to end): ";
while(cin >> height)

if(height > maxheight)
maxheight = height;

cout << "Tallest person's height = "
<< maxheight << endl;

return 0;
}

Output

$./a.exe
Enter the heights: (enter end of file to end): 72
89
54
33
68
66
Tallest person's height = 89

5

istream member function: get

 char ch = cin.get();

 Inputs a character from stream (even
white spaces) and returns it.

 cin.get(c);

 Inputs a character from stream and
stores it in c

istream member function: get
get (array_name, max_size) ;

char fname[256]
cin.get (fname, 256);

 Read in up to 255 characters and inserts
a null at the end of the string “fname". If
a delimiter is found, the read terminates.
The array acts like a buffer. The
delimiter is not stored in the array, but is
left in the stream.

istream member function:
getline (array_name, max_size)

char fname[256]

cin.getline (fname, 256);

 Same as get, except that getline
discards the delimiter from the stream.

istream member functions:
ignore()

 cin.ignore () ;
 Discards one character from the input

stream.

 cin.ignore (10) ;
 Discards 10 characters.

 cin.ignore(256,’\n’);
 Discards 256 characters or newline,

whichever comes first.

istream member functions:
peek(), putback()

 char ch = cin.peek () ;
 Peeks into the stream’s next

character.

 cin.putback (‘A’) ;
 Puts ‘A’ back in the stream.

FILE IO Example.
Copy File “first.txt” into “second.txt”.

#include <iostream>
#include <fstream>

using namespace std;

int main(void)
{

ifstream source("first.txt");
ofstream destin("second.txt");

char ch;
while (source.get(ch))

destin<<ch;
return 0;

}

6

Slightly modified
#include <iostream>
#include <fstream>

using namespace std;

int main(void)
{

ifstream source("first.txt");
ofstream destin("second.txt");

char ch;
while (source.peek() != EOF){

source.get(ch);
destin.put(ch);

}
return 0;

}

More IO functions

 read()
 cin.read(fname, 255);

• Reads 255 characters from the input
stream. Does not append ‘\0’.

 cout.write(fname,255);
• Writes 255 characters.

 gcount: returns the total number of
characters read in the last input
operation.

C++ IO Class Hierarchy
Revisited

ios

istream ostream

istringstream ostringstream

ifstream ofstream

stringstream

iostream

coutcin

fstream

Another example
#include <iostream>
#include <sstream>
#include <string>

using namespace std;

int main() {
int i;
string line;
while(getline(cin,line)){

stringstream sfstream(line);
while (sfstream >> i){

cout << i << endl;
}

}
return 0;

}

What if I replace this
with istringstream?

stringstream operations

 stringstream strm;

 stringstream strm(mystring);
 Initializes strm with a copy of mystring.

 strm.str();
 Returns the content of strm in string format.

 strm.str(s);
 Copies the string s into strm. Returns void.

Stream
Manipulators

#include <iomanip>

7

dec, hex, oct, setbase

 oct, hex, dec
 Cout << hex << 15;

• Prints ‘F’

 cout << setbase(16) << 15;
 Prints ‘F’ again.

Formatting Output - Integers

 int numstdts = 35533;
cout << “FSU has" << numstdts

<< "students."
prints
FSU has35533students.

 default field width == minimum required
default: what happens when explicit
formatting is not specified

Formatting Output - Integers
p.2

 we can specify the field width, or number
of spaces used to print a value

cout << “FSU has" << setw(6)
<< numstdts << " students."

prints
FSU has 35533 students.

prints in field width 6, right-justified

function call

Formatting Output - Integers
p.3

 cout << “FSU has" << setw(10)
<< numstdts << " students."

prints
FSU has 35533 students.

prints in field width 10, right-justified

Formatting Output - Integers
p.4

 cout << left; // flip to left justification

cout << “FSU has " << setw(10)
<< numstdts << "students."

prints
FSU has 35533 students.

prints in field width 10, left-justified

Using the default - Integers p.5
 Note on field widths: if a field width specified is

too small, or is not specified, it is automatically
expanded to minimum required

 numstdts = 100;
cout << “FSU has "

<< numstdts << " students."
prints

FSU has 100 students.

and works for any value of numstdts

8

General Rule of Thumb

 When you are printing numeric values in
sentences or after a verbal label, the default
field width usually works well

 When you are printing numeric values lined
up in columns in a table, it is usually
necessary to call setw to generate well-
formatted output (we will see examples of
this later in the course)

Formatting Output - Reals

 float cost = 5.50;
cout << "Cost is $" << cost

<< "today."
prints
Cost is $5.5today.

 default
 large values printed in scientific notation

 if number is whole, no decimal point

 numbers of digits not under your control

Formatting Output - Reals p.2

 Setting up real formatting

// use fixed point notation
cout << fixed;

// print a decimal point (with whole numbers)
cout << showpoint; (noshowpoint)

these remain in effect until changed explicity, as
does setprecision. setw only changes next value
printed.

Formatting Output - Reals p.3

 float cost = 5.50;
cout << "Cost is $" << setw(5)

<< setprecision(2) << cost
<< " today."

prints
Cost is $ 5.50 today.

 if no field width is specified, minimum is used,
just as for integers

You can just do this, once:

 cout << fixed << showpoint
<< setprecision(2);

and these settings will remain in effect
throughout your program run

Formatting Output - char

 default field width == 1
note: setw does have effect on

char type data too.

char ch = 'Q';
cout << '*' << ch << setw(3) << '*';

prints
*Q *

9

Formatting Output - Strings

 default field width == number of
characters in the string

can use setw

cout << setw(10) << "Hello";
prints

Hello

Useful Output Spacer

 const string BLANK = " ";

cout << setw(10) << BLANK;
prints 10 blanks

 consider this:
const char BLANK = ' ';
cout << setw(10) << BLANK;
prints 10 blanks!

Unitbuf manipulator

 If you want to flush every output
 cout << unitbuf

<< “first”

<< “second”

<< nounitbuf;

Example Quiz

#include <iostream>
#include <iomanip>

using namespace std;

int main() {
const double tenth = 0.1;
const float one = 1.0;
const float big = 1234567890.0;
cout << "A. " << tenth << ", " << one << ", " << big << endl;
cout << "B. " << fixed << tenth << ", " << one << ", " << big << endl;
cout << "C. " << scientific << tenth << ", " << one << ", " << big << endl;
cout << "D. " << fixed << setprecision(3) << tenth << ", " << one << ", " << big << endl;
cout << "E. " << setprecision(20) << tenth << endl;
return 0;

}

A. 0.1, 1, 1.23457e+009
B. 0.100000, 1.000000, 1234567936.000000
C. 1.000000e-001, 1.000000e+000, 1.234568e+009
D. 0.100, 1.000, 1234567936.000
E. 0.10000000000000000555

Manipulators: Rolling your own.

#include <iostream>
#include <ostream>

using namespace std;

ostream& myendl(ostream& os) {
os << "test\n";
os.flush();
return os;

}

int main(void) {
cout << myendl;
return 0;

}

•How to create our own stream
manipulators?

bell
ret (carriage return)
tab
endLine

An Example.
Copy not allowed
on ostreams.

Stream Error States

10

Error states

 strm::eofbit
 if (cin.eof() == true) break; // stream end of file.

 strm::failbit
 if (cin.fail() == true) break; // stream format error.

 strm::badbit
 If (cin.bad() == true) break; // data lost!

 Goodbit?
 cin.good() = ((!eofbit) && (!failbit) && (!badbit))
 All eofbit, failbit and badbit should be false.

 cin.clear() // makes cin good.

Error States Example

int ival;

while (cin >> ival, !cin.eof()){
Assert(!cin.bad() , “IO stream corrupted”);
if (cin.fail()){ //bad input

cerr << “Bad data, try again.”;
cin.clear(istream::failbit); // reset the stream
continue;

}
// ok to process ival now

} //end of while.

Operators for testing.

 operator!

• Returns true if badbit or failbit set

 Useful for file processing
• if (! readmefile) cerr << “Error”;

Interactive Input

 Write a prompt
make it friendly and informative

prompt typically contains prefix
character to signal point at which to
enter input

 Read value(s)
user types data at keyboard

Interactive Input: Example

int num;
char response;

cout << "Enter a number -> ";
cin >> num;

cout << "Enter Y or N -> ";
cin >> response;

prefix

Interactive Input: Contents of
Output Window

Enter a number -> 17<return>

Enter Y or N -> Y<return>

the program will not process the
input until the return key is struck

11

Arguments: Count, Vector

#include <iostream>

int main(int argc, char** argv) {
std::cout << “Argument Count: " << argc << std::endl;

// Print Argument Vector
for (int i = 0; i < argc; ++i) {

std::cout << argv[i] << std::endl;
}

}

Another C++ Program
(Hello argv[1])

#include <iostream>
#include <stdlib.h>
using namespace std;

int main(int argc, char *argv[]) {
if (argc != 2) {

cout << "Usage: hi.exe <name>" << endl;
exit (1);

}

cout << "Hello " << argv[1] << endl;
return 0;

}

Control structures

 Statements you should already know :
 While

 For

 If

Recommended Assignments: 1.17, 1.25

