
1

C++ Tour

For : COP 3330. 

Object oriented Programming (Using C++)

http://www.cs.fsu.edu/~piyush/teach/3330

Piyush Kumar

Administrative Trivia

About me: 

Piyush Kumar

Phone: 645-2355

Email: piyush@cs.fsu.edu

Office hours: Tuesday 4:30 to 5:30.

TAs: Biswas Parajuli, 

Daniel Mock, 

James Parsons
More details on the course information sheet.

Administrative Trivia

TAs: 

Biswas Parajuli, (Sec: 15, 17)

Daniel Mock, (Sec: 10, 16)

James Parsons. (Sec: 2)

Office hours will be held in MCH 315A. Subject to change.

More details on the course information sheet.

Your ID

You have been assigned an ID on the 

Blackboard. You should know your ID.

You will use your FSU ID to setup your 

bitbucket account.

https://bitbucket.org/

Announcement

 First Quiz : Now

 Revise your previous C/C++ material.

- Your C++ background will be tested soon.

 Your first assignment is online. 

 Will be due on Tuesday, 1/17/17.

 You are required to setup your 
bitbucket repository by this Thursday. 
The submission will use the 
blackboard account.

Announcement

 Blackboard Discussions already 

setup.

 Make sure you submit the pre-req 

form today before you leave.

 Bitbucket setup of ssh keys.

 ssh-keygen –t rsa –C “fsu email”

 Add it to bitbucket ssh-keys (without 

adding \n)

 hg clone project1

mailto:piyush@cs.fsu.edu


2

C++ Tour

Why learn C++?

 Ubiquitous

 Object Oriented 

 Easier large scale projects

 Resuability

 High Performance

C++ Features

 Supports data security

 Prevents accidents with data

 Helps code reuse.

 Lets you use operators the way you 

like.

 Allows multiple functions/operators 

with the same name.

When to use C++?

 Large projects

 System applications

 Graphics

 Data Structures

 Speed is an issue?

 Changes in functionality required.

 Need exceptions and error handling?

 Want to speed up your scripts?

When not to use C++?

 Small system programs.

 Fast prototyping.

 Web-based applications (Perl/Python)

Important definitions

 Algorithm: Ordered set of actions to 
accomplish a certain task.

 Program: Implementation of 
algorithms.

 Compiler, function, library, bug.

 Variables, constants.

 Keywords (if, while, for,…)

 Data Types. (long, int, …)



3

Compiling/Running 

programs

 Single source file code:
 g++ -g –Wall –std=c++1y simple.cpp –o 

simple

 Compilation / Editing Demo

 Editors: vim / xemacs

 Xemacs tutorial: 
hanson.geog.udel.edu/cmg/Handouts/xema
cs_tutorial.pdf 

 Vi/vim tutorial : 
http://www.biochem.ucl.ac.uk/~mckenzie/vim
/tutorial.html

int main() {

return 0;

}

Lynda.com

 Up and running with vi

 By David D. Levine

 1.5 hour video course in vim

 Your homework for this weekend is to 

watch and practice vim

simple.cpp

int main()  // Function Declaration

// Function body follows

{   // Block of statements begins.

return 0;

}   // Block ends.

simple.cpp

 On Unix: echo $?

 On Windows: echo %ERRORLEVEL%

Simple.s       (using g++ -O –S simple.cpp)

.file   “simple.cpp"

.def    ___main;        .scl    2;      .type   32;     .endef

.text

.align 2

.p2align 4,,15

.globl _main

.def    _main;  .scl    2;      .type   32;     .endef

_main:

pushl   %ebp    ; Save base pointer

movl    $16, %eax  

movl    %esp, %ebp ; Set up stack frame for debugger 

subl    $8, %esp    ; Save space on the stack

andl    $-16, %esp    ; Align stack pointer 

call    __alloca         ; Platform dependent call

call    ___main         ; Platform dependent call

leave                        ; free space, pop ebp, esp…

xorl    %eax, %eax   ; zero eax

ret                            ; return control to calling procedure.

System dependent

Simple.s (using VC++ 05 compiler)

//{

00411360  push        ebp  

00411361  mov         ebp,esp 

00411363  sub         esp,0C0h 

00411369  push        ebx  

0041136A  push        esi  

0041136B  push        edi  

0041136C  lea         edi,[ebp-0C0h] 

00411372  mov         ecx,30h 

00411377  mov         eax,0CCCCCCCCh 

0041137C  rep stos    dword ptr es:[edi] 

// return 0;

0041137E  xor         eax,eax 

//}

00411380  pop         edi  

00411381  pop         esi  

00411382  pop         ebx  

00411383  mov         esp,ebp 

00411385  pop         ebp  

00411386  ret 



4

G++ Compilation.

 preprocessing (to expand macros) 

 Try “cpp simple.cpp > simple.i”

 compilation (from source code to assembly language) 

 Try “g++ -Wall –S simple.i”

 assembly (from assembly language to machine code) 

 Try “as simple.s -o simple.o”

 linking (to create the final executable) 

 Try “gcc simple.o”

 Equivalent to “ld -dynamic-linker /lib/ld-linux.so.2 
/usr/lib/crt1.o /usr/lib/crti.o /usr/lib/gcc-
lib/i686/3.3.1/crtbegin.o -L/usr/lib/gcc-lib/i686/3.3.1 
hello.o -lgcc -lgcc_eh -lc -lgcc -lgcc_eh /usr/lib/gcc-
lib/i686/3.3.1/crtend.o /usr/lib/crtn.o” 

$ file ./a.exe  Identify type of file generated (gcc on windows).

./a.exe: PE executable for MS Windows (console) Intel 80386 32-bit

Introduction to C++

Organization

 C++ = C + objects + …

 Main Theme : Objects

 Class Vs Object

 Data Hiding and Abstraction

 Encapsulation

 Inheritance

 Operator and Function Overloading

 Polymorphism.

 Generic Programming

C++ is a superset of C.

 Features present in C are also present in 

C++

 C++ is a object oriented programming 

language ( C++ = c + objects + …)

 OOP is about objects which contain data 

and functions to manipulate that data.

 A single unit that contains data and 

functions that operate on the data is called 

an object.

Main Theme:  objects

 C++ enables you to focus on discrete 
objects that contain both data and 
functions to manipulate that data.

 Instead of data and functions as 
separate entities as was the case in 
C.

 Application = Collection of Objects.

 Makes complex programs easy to 
code.

OOP

 Based on concept of objects and 

classes.

 Objects: Represent entities with 

related state and behaviour 

 Instances of a class

 Classes: Define common 

characteristics of similar objects.



5

Objects/Classes

 Objects are reusable self-contained 

programming modules with data and 

functions.

 Classes are blue-print for objects with 

common properties, attributes, 

operations and behaviors.

The principal building blocks of OO programs are classes and objects.

Object / Class Example

Attributes:

Manufacturer

Model

Color

Engine

Behavior:

Accelerate

Break

Steer

Tune Up

Car Class

Objects: Instantiations of classes.

Another Object / Class 

example

class Point { 

int _x, _y; // point coordinates

public: // begin interface section 

void setX(const int val); 

void setY(const int val); 

int getX() { return _x; } 

int getY() { return _y; } 

}; 

Point tpoint; // defines an object tpoint

Fundamental building block 

of OOP: A Class

 A class defines a data type, much like 

a struct would be in C. 

 A class is a source code for an object 

(hence it has both data+member

functions)

class

Attributes

…

Methods

…

Fundamental building block 

of OOP: A Class

 You can imagine that int is a class that 

has member functions called 

operator++, etc. 

 An object usually means an instance 

of a class

 After the declaration int i; we say that 

"i is an object of type int." 

Data Hiding

 Objects contain information

 Only part of the information contained 

in the object might be presented to the 

user. 

 Rest is concealed.

Interface

Engine



6

Data Hiding

 Internal dynamics are not visible to 

the user.

 Data hiding is done by using the 

“private” keyword in the class 

definition.

Interface

Engine

Data Hiding

 Allows data to be accessed by certain 

functions class Point {  // private

// concealed info

int _x, _y; // point coordinates

public: // begin interface section 

void setX(const int val); 

void setY(const int val); 

int getX() { return _x; } 

int getY() { return _y; } 

}; 

Point tpoint; // defines an object tpoint

tpoint._x = 5; // ILLEGAL

Data Abstraction 

 DA is a programming technique where 

one separates the interface from the 

implementation

 Class designer worries about the 

interface

 Programmers implement 

String s; s.rfind(‘\’);

Data Encapsulation

 Combine lower level elements to form 

a new higher level entity.

 Grouping of attributes and behaviors 

to form an object.

C++ vector type is an example of both data abstraction

and Data encapsulation

OOP : Inheritance

 Many classes have common attributes.

 These classes can be arranged in a 

hierarchy.

 Inheritance enables you to reuse code and 

add data and functionality without making 

any changes to the existing code.

 For example, objects can inherit

characteristics from other objects.

Inheritance

 Children inherit traits from their 

parents.

 When a class is inherited all the 

functions and data member are 

inherited, although not all of them will 

be accessible by the member 

functions of the derived class. 



7

Inheritance

 protected/public members of the base 

class are accessible to the derived 

class

 private members are not.
class vehicle {

protected:

char colorname[20];

int number_of_wheels;

public:

vehicle();

~vehicle();

void start();

void stop();

void run();

};

class Car: public vehicle {

protected:

char type_of_fuel;

public:

Car();

}; 

Subclass or derived class
Super class or Base class

Inheritance

 Derived classes are specialized form 

of their base class.

 Abstract class : A base class that is 

undefined and unimplemented.

Multiple definitions…?

 C++ allows for the same function (or 

overloaded operator) to have multiple 

defintions.

 Swap(int& I, int& j);

 Swap(string& I, string& j);

 Swap(double& I, double& j);

a.k.a. Function overloading.

Operator Overloading

 C++ gives you the power to define operators 

on user defined types.

 Example: 

 MyMatrix m = m1 + m2; // cant do this in C.

 Overloading is a type of polymorphism.

 Not all operators can be overloaded in C++.

Polymorphism

 Base Class MyShape establishes the 

common interface to anything 

inherited from MyShape.

 All shapes can be drawn and erased.

MyShape

2DShape 3DShape

Circle Square Triangle Sphere Cube Tetrahedron

Methods:

Draw()

Erase()

Polymorphism

 Overriding: When a child class extends the 
functionality of its parent class.

 Polymorphism allows the programmer to 
implement different draw/erase methods for 
derived classes.

 Sphere and Cube have the same function 
draw() with different functionality.

MyShape

2DShape 3DShape

Circle Square Triangle Sphere Cube Tetrahedron

Methods:

Draw()

Erase()



8

Polymorphism

 No matter what shape the object is, 

one can use the “draw” method to 

draw it correctly.

MyShape

2DShape 3DShape

Circle Square Triangle Sphere Cube Tetrahedron

Methods:

Draw()

Erase()

Polymorphism

 Using operators and functions in 

different ways depending on what 

they are operating on is called 

polymorphism.

 Static

 Dynamic

 These concepts builds upon 

encapsulation and inheritance.

Generic Programming

 Type independent code

 Write code for one generic type and 

use it for multiple types.

Without Generic Programming: 

void swap(int & x, int & y)      { int tmp = x; x = y; y = tmp;    } 

void swap(long & x, long & y){ long tmp = x; x = y; y = tmp; }

…

With Generic Programming

template <typename T> 

void swap(T & x, T & y) { T tmp = x; x = y; y = tmp; }


