
4/13/2017

1

Advanced C++

For : COP 3330.

Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

Source: Lutz Kettner.

The user.

#define private public
#define protected public
#define class struct

Types of users

 We can distinguish between two kinds
of protection a design can provide:
 a user that makes occasional

mistakes

 a user that willingly tries to get

around the protection mechanism

Const correctness

// the pointer, the data it refers to
// ---------------------------------------

int* p;
int* const q;

const int* r;
const int* const s;

Revision.

// the pointer, the data it refers to
// ---------------------------------------

int* p; // non-const non-const
int* const q; // const non-const

const int* r; // non-const const
const int* const s; // const const

Const declaration

 struct A {

const int i;

A() : i(42) {}

};

This pointer and const.

 struct C {

// hidden parameter: T* const this;

void foo();

// hidden parameter: const T* const this;

void bar() const;

};

4/13/2017

2

Make Temporary Return Objects in
C++ Classes Const

 L-values: can be used for the left side
of an assignment, they are non-const.

 R-values: cannot be used for the left
side of an assignment. . They are
const.

 For example the post-increment
operator requires an l-value, but is
itself an r-value.

Make Temporary Return Objects in
C++ Classes Const

 Thus, we cannot write:
 int i; i++ ++; // second ++ forbidden!
 Or i++++;
 Error: error.cpp:5: error: non-lvalue in increment

 But:
 struct A {

A operator++ (int); // the post increment operator

};
 Now, lets try: A a; a++++; //compiles!

Make Temporary Return Objects in
C++ Classes Const

 It works, because a++ returns a temporary object of
type A.

 But it probably does not do what one would expect.
 Since the second ++ works on a temporary object, a

itself gets only incremented once.
 We can forbid the second increment explicitly by

making the return type, the type of the temporary
object, const. This should be considered for all similar
temporary return types.

struct A {
// the post increment operator
const A operator++ (int);

};

Empty Classes

#include <iostream>

using namespace std;

struct X {
};

int main(){
cout << sizeof(X) << endl;
return 0;

}

C++ classes are often “empty”!

Empty Classes

#include <iostream>

using namespace std;

struct X {
};

class Y:public X {
};

int main(){
cout << sizeof(X) << endl;
cout << sizeof(Y) << endl;
return 0;

}

EBCO: Empty base class Optimization

Polymorphism

 Recap: Ability to associate different
specific behaviors with a single
generic notation.

 (Many forms or shapes)

 What you have seen:
 Dynamic Polymorphism

4/13/2017

3

Dynamic Polymorphism
Example

Static Polymorphism
#include "coord.hpp"

// concrete geometric object class Circle
// - \bfseries not derived from any class
class Circle {
public:

void draw() const;
Coord center_of_gravity() const;
//...

};

// concrete geometric object class Line
// - \bfseries not derived from any class
class Line {
public:

void draw() const;
Coord center_of_gravity() const;
//...

};

Static Polymorphism
#include "statichier.hpp"
#include <vector>

// draw any GeoObj
template <typename GeoObj>
void myDraw (GeoObj const& obj)
{

obj.draw(); // call draw() according to type of object
}

// process distance of center of gravity between two GeoObjs
template <typename GeoObj1, typename GeoObj2>
Coord distance (GeoObj1 const& x1, GeoObj2 const& x2)
{

Coord c = x1.center_of_gravity() - x2.center_of_gravity();
return c.abs(); // return coordinates as absolute values

}

// draw homogeneous collection of GeoObjs
template <typename GeoObj>
void drawElems (std::vector<GeoObj> const& elems)
{

for (unsigned i=0; i<elems.size(); ++i) {
elems[i].draw(); // call draw() according to type of element

}
}

Static Polymorphism
int main()
{

Line l;
Circle c, c1, c2;

myDraw(l); // myDraw<Line>(GeoObj&) => Line::draw()
myDraw(c); // myDraw<Circle>(GeoObj&) => Circle::draw()

distance(c1,c2); // distance<Circle,Circle>(GeoObj1&,GeoObj2&)
distance(l,c); // distance<Line,Circle>(GeoObj1&,GeoObj2&)

// std::vector<GeoObj*> coll; // ERROR: no heterogeneous
// collection possible

std::vector<Line> coll; // OK: homogeneous collection possible
coll.push_back(l); // insert line
drawElems(coll); // draw all lines

}

Static Polymorphism

 All types must be determined at
compile time.

 Heterogeneous collections can no
longer be handled transparently.

 Generated code is potentially faster
than dynamic polymorphism.

CRTP: Curiously recurring
template pattern

 General class of techniques that
consists of passing a derived class as
a template argument to one of its own
base classes.

// The Curiously Recurring Template Pattern (CRTP)
class derived : public base<derived> {

// ...
};

4/13/2017

4

CRTP

// The Curiously Recurring Template Pattern
// (CRTP)

template <typename Derived>
class CuriousBase {

//…

};

class Curious : public CuriousBase<Curious> {
// ...
// Only valid if the size of CuriousBase<Curious>
// can be determined independently of Curious.

};

Who is my
parent? CRTP: Alternative outline.

// The Curiously Recurring Template Pattern
// (CRTP)

template <typename Derived>
class CuriousBase {

//…

};

template <typename T>
class CuriousT : public CuriousBase<CuriousT<T> > {

// ...

};

CRTP: Alternative outline.

// The Curiously Recurring Template Pattern
// (CRTP)

template < template<typename> class Derived >
class MCuriousBase {

//…

};

template <typename T>
class MoreCuriousT : public MCuriousBase<MoreCuriousT> {

// ...

};

CRTP Concrete Example
Counting Objects

#include <stddef.h>

template <typename CountedType>
class ObjectCounter {
private:

static size_t count; // number of existing objects

protected:
// default constructor
ObjectCounter() {

++count;
}

// copy constructor
ObjectCounter (ObjectCounter<CountedType> const&) {

++count;
}

// destructor
~ObjectCounter() {

--count;
}

public:
// return number of existing objects:
static size_t live() {

return count;
}

};

// initialize counter with zero
template <typename CountedType>
size_t ObjectCounter<CountedType>::count = 0;

A Generic solution
to object counting.

CRTP Concrete Example
Counting Objects

#include "objectcounter.hpp"
#include <iostream>

template <typename CharT>
class MyString : public ObjectCounter<MyString<CharT> > {
//...

};

int main()
{

MyString<char> s1, s2;
MyString<wchar_t> ws;

std::cout << "number of MyString<char>: "
<< MyString<char>::live() << std::endl;

std::cout << "number of MyString<wchar_t>: "
<< ws.live() << std::endl;

}

CRTP and the current
assignment

 the graph knows the node and the
edge class that are supposed to work
together, and therefore the graph
class passes itself as template
argument to both types.

4/13/2017

5

Another CRTP application

 Implement Inequality in terms of
equality.

class A {
public:

bool operator == (const A& a) const;
bool operator != (const A& a) const {

return ! (*this == a);
}
// ...

};

Another CRTP application

 Implement Inequality in terms of
equality.

template <class T>
class Inequality {
public:

bool operator != (const T& t) const {
return ! (static_cast<const T&>(*this) == t);

}
};

class A : public Inequality<A> {
public:

bool operator == (const A& a) const;
};

More CRTP usage.

 The same technique can be used to
implement a base class for iterators
that contains all those small member
functions that are defined in terms of a
much smaller set of member
functions.

Proxy Classes

Is this legal?

int data[10][20];

void processInput(int dim1, int dim2){
int data[dim1][dim2];
…

}

…

int *data = new int[dim1][dim2];

Proxy classes

 A dynamic two-dimensional array of
integers could be declared in C++ as
follows:
class Array2D {

public:
Array2D(int dim1, int dim2);
// ...

};

4/13/2017

6

Proxy Classes

 Of course, in a program we would like
use the array similar to the builtin
(static) two-dimensional arrays and
access an element as follows:

int main()

{

Array2D a(5,10);

// ...

int i = a[2][8]; // …(a[2])[8]…

}

Proxy Classes

 However, there is no operator[][] in
C++.

 Instead, we can implement operator[]
to return conceptually a one-
dimensional array, where we can
apply operator[] again to retrieve the
element.

Proxy Classes

class Array1D {
public:

Array1D(int dim);
int operator[](int i);
// ...

};
class Array2D {
public:

Array2D(int dim1, int dim2);
Array1D& operator[](int i);
// ...

};

The intermediate class Array1D is called proxy class,
also known as surrogate [Item 30, Meyers97].

Proxy classes

 Conceptually, it represents a one-
dimensional array.

 In this application we surely do not want to
copy the elements to actually create a one-
dimensional array.

 The proxy class will just behave as if it is an
one-dimensional array and internally it will
use a pointer to the two-dimensional array
to implement its operations.

Double Dispatch

 is a mechanism that dispatches a
function call to different concrete
functions depending on the runtime
types of multiple objects involved in
the call.
 Lookup (Myers Item 31, More effective C++)

Smart pointers

I shot an arrow into the air,

It fell to earth, I know not where.

“The Arrow and the Song”

H. W. Longfellow

4/13/2017

7

Smart Pointers: unique_ptr

 Typical pointer usage.

 Source of trouble!

void f() {
MyClass *ptrmyclass = new MyClass;
// … perform some operators
delete ptrmyclass;

}

What if you forgot a return in the middle?

Smart Pointers: unique_ptr

 A return in the middle of the function.

 An exception thrown.
 Or else the function has to catch all

exceptions.

 How do we avoid resource leaks?
 Recap: valgrind?

Smart Pointers: auto_ptr

// Fixing the last program : Complicated.

void f(){
MyClass *ptr = new MyClass;

try {
…
}

catch(…){
delete ptr;
throw; // rethrow the exception

}

delete ptr;
}

Smart Pointers: auto_ptr

#include <memory> // header for unique_ptr

void f(){
// create and initialize a unique_ptr
std::unique_ptr<MyClass> ptr(new MyClass);
// … perform some operators

}

► delete and catch are no longer necessary!
► The smart pointer can free the data to which it points whenever the

pointer itself gets destroyed.
► A unique_ptr is a pointer that serves as an owner of the object to which

it refers to.
► As a result , the object gets destroyed when its unique_ptr gets destroyed.
► A requirement of unique_ptr is that its object has only one owner.

unique_ptr

 Has much of the same interface as an
ordinary pointer (operator *, operator
->)

 Pointer arithmetic (such as ++) is not
defined.

 Note:
std::auto_ptr<MyClass> ptr1(new MyClass); // OK
std::auto_ptr<MyClass> ptr1 = new MyClass; // Error

Misusing unique_ptrS.

 Cannot share ownerships.

 Do not do reference counting.

 Do NOT meet the requirements for
container elements.
 When a unique_ptr is copied/assigned the

source unique_ptr gets modified! Because it
transfers its value rather than copying it.

4/13/2017

8

Unit Testing

 unit testing is a procedure used to
validate that individual units of source
code are working properly.

 Unit = Smallest testable part of an
application

 In C++, Smallest unit = Class

 Goal: Isolate each part of the program
and show individual parts are correct.

