
4/13/2017

1

Advanced C++

For : COP 3330.

Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

Source: Lutz Kettner.

The user.

#define private public
#define protected public
#define class struct

Types of users

 We can distinguish between two kinds
of protection a design can provide:
 a user that makes occasional

mistakes

 a user that willingly tries to get

around the protection mechanism

Const correctness

// the pointer, the data it refers to
// ---------------------------------------

int* p;
int* const q;

const int* r;
const int* const s;

Revision.

// the pointer, the data it refers to
// ---------------------------------------

int* p; // non-const non-const
int* const q; // const non-const

const int* r; // non-const const
const int* const s; // const const

Const declaration

 struct A {

const int i;

A() : i(42) {}

};

This pointer and const.

 struct C {

// hidden parameter: T* const this;

void foo();

// hidden parameter: const T* const this;

void bar() const;

};

4/13/2017

2

Make Temporary Return Objects in
C++ Classes Const

 L-values: can be used for the left side
of an assignment, they are non-const.

 R-values: cannot be used for the left
side of an assignment. . They are
const.

 For example the post-increment
operator requires an l-value, but is
itself an r-value.

Make Temporary Return Objects in
C++ Classes Const

 Thus, we cannot write:
 int i; i++ ++; // second ++ forbidden!
 Or i++++;
 Error: error.cpp:5: error: non-lvalue in increment

 But:
 struct A {

A operator++ (int); // the post increment operator

};
 Now, lets try: A a; a++++; //compiles!

Make Temporary Return Objects in
C++ Classes Const

 It works, because a++ returns a temporary object of
type A.

 But it probably does not do what one would expect.
 Since the second ++ works on a temporary object, a

itself gets only incremented once.
 We can forbid the second increment explicitly by

making the return type, the type of the temporary
object, const. This should be considered for all similar
temporary return types.

struct A {
// the post increment operator
const A operator++ (int);

};

Empty Classes

#include <iostream>

using namespace std;

struct X {
};

int main(){
cout << sizeof(X) << endl;
return 0;

}

C++ classes are often “empty”!

Empty Classes

#include <iostream>

using namespace std;

struct X {
};

class Y:public X {
};

int main(){
cout << sizeof(X) << endl;
cout << sizeof(Y) << endl;
return 0;

}

EBCO: Empty base class Optimization

Polymorphism

 Recap: Ability to associate different
specific behaviors with a single
generic notation.

 (Many forms or shapes)

 What you have seen:
 Dynamic Polymorphism

4/13/2017

3

Dynamic Polymorphism
Example

Static Polymorphism
#include "coord.hpp"

// concrete geometric object class Circle
// - \bfseries not derived from any class
class Circle {
public:

void draw() const;
Coord center_of_gravity() const;
//...

};

// concrete geometric object class Line
// - \bfseries not derived from any class
class Line {
public:

void draw() const;
Coord center_of_gravity() const;
//...

};

Static Polymorphism
#include "statichier.hpp"
#include <vector>

// draw any GeoObj
template <typename GeoObj>
void myDraw (GeoObj const& obj)
{

obj.draw(); // call draw() according to type of object
}

// process distance of center of gravity between two GeoObjs
template <typename GeoObj1, typename GeoObj2>
Coord distance (GeoObj1 const& x1, GeoObj2 const& x2)
{

Coord c = x1.center_of_gravity() - x2.center_of_gravity();
return c.abs(); // return coordinates as absolute values

}

// draw homogeneous collection of GeoObjs
template <typename GeoObj>
void drawElems (std::vector<GeoObj> const& elems)
{

for (unsigned i=0; i<elems.size(); ++i) {
elems[i].draw(); // call draw() according to type of element

}
}

Static Polymorphism
int main()
{

Line l;
Circle c, c1, c2;

myDraw(l); // myDraw<Line>(GeoObj&) => Line::draw()
myDraw(c); // myDraw<Circle>(GeoObj&) => Circle::draw()

distance(c1,c2); // distance<Circle,Circle>(GeoObj1&,GeoObj2&)
distance(l,c); // distance<Line,Circle>(GeoObj1&,GeoObj2&)

// std::vector<GeoObj*> coll; // ERROR: no heterogeneous
// collection possible

std::vector<Line> coll; // OK: homogeneous collection possible
coll.push_back(l); // insert line
drawElems(coll); // draw all lines

}

Static Polymorphism

 All types must be determined at
compile time.

 Heterogeneous collections can no
longer be handled transparently.

 Generated code is potentially faster
than dynamic polymorphism.

CRTP: Curiously recurring
template pattern

 General class of techniques that
consists of passing a derived class as
a template argument to one of its own
base classes.

// The Curiously Recurring Template Pattern (CRTP)
class derived : public base<derived> {

// ...
};

4/13/2017

4

CRTP

// The Curiously Recurring Template Pattern
// (CRTP)

template <typename Derived>
class CuriousBase {

//…

};

class Curious : public CuriousBase<Curious> {
// ...
// Only valid if the size of CuriousBase<Curious>
// can be determined independently of Curious.

};

Who is my
parent? CRTP: Alternative outline.

// The Curiously Recurring Template Pattern
// (CRTP)

template <typename Derived>
class CuriousBase {

//…

};

template <typename T>
class CuriousT : public CuriousBase<CuriousT<T> > {

// ...

};

CRTP: Alternative outline.

// The Curiously Recurring Template Pattern
// (CRTP)

template < template<typename> class Derived >
class MCuriousBase {

//…

};

template <typename T>
class MoreCuriousT : public MCuriousBase<MoreCuriousT> {

// ...

};

CRTP Concrete Example
Counting Objects

#include <stddef.h>

template <typename CountedType>
class ObjectCounter {
private:

static size_t count; // number of existing objects

protected:
// default constructor
ObjectCounter() {

++count;
}

// copy constructor
ObjectCounter (ObjectCounter<CountedType> const&) {

++count;
}

// destructor
~ObjectCounter() {

--count;
}

public:
// return number of existing objects:
static size_t live() {

return count;
}

};

// initialize counter with zero
template <typename CountedType>
size_t ObjectCounter<CountedType>::count = 0;

A Generic solution
to object counting.

CRTP Concrete Example
Counting Objects

#include "objectcounter.hpp"
#include <iostream>

template <typename CharT>
class MyString : public ObjectCounter<MyString<CharT> > {
//...

};

int main()
{

MyString<char> s1, s2;
MyString<wchar_t> ws;

std::cout << "number of MyString<char>: "
<< MyString<char>::live() << std::endl;

std::cout << "number of MyString<wchar_t>: "
<< ws.live() << std::endl;

}

CRTP and the current
assignment

 the graph knows the node and the
edge class that are supposed to work
together, and therefore the graph
class passes itself as template
argument to both types.

4/13/2017

5

Another CRTP application

 Implement Inequality in terms of
equality.

class A {
public:

bool operator == (const A& a) const;
bool operator != (const A& a) const {

return ! (*this == a);
}
// ...

};

Another CRTP application

 Implement Inequality in terms of
equality.

template <class T>
class Inequality {
public:

bool operator != (const T& t) const {
return ! (static_cast<const T&>(*this) == t);

}
};

class A : public Inequality<A> {
public:

bool operator == (const A& a) const;
};

More CRTP usage.

 The same technique can be used to
implement a base class for iterators
that contains all those small member
functions that are defined in terms of a
much smaller set of member
functions.

Proxy Classes

Is this legal?

int data[10][20];

void processInput(int dim1, int dim2){
int data[dim1][dim2];
…

}

…

int *data = new int[dim1][dim2];

Proxy classes

 A dynamic two-dimensional array of
integers could be declared in C++ as
follows:
class Array2D {

public:
Array2D(int dim1, int dim2);
// ...

};

4/13/2017

6

Proxy Classes

 Of course, in a program we would like
use the array similar to the builtin
(static) two-dimensional arrays and
access an element as follows:

int main()

{

Array2D a(5,10);

// ...

int i = a[2][8]; // …(a[2])[8]…

}

Proxy Classes

 However, there is no operator[][] in
C++.

 Instead, we can implement operator[]
to return conceptually a one-
dimensional array, where we can
apply operator[] again to retrieve the
element.

Proxy Classes

class Array1D {
public:

Array1D(int dim);
int operator[](int i);
// ...

};
class Array2D {
public:

Array2D(int dim1, int dim2);
Array1D& operator[](int i);
// ...

};

The intermediate class Array1D is called proxy class,
also known as surrogate [Item 30, Meyers97].

Proxy classes

 Conceptually, it represents a one-
dimensional array.

 In this application we surely do not want to
copy the elements to actually create a one-
dimensional array.

 The proxy class will just behave as if it is an
one-dimensional array and internally it will
use a pointer to the two-dimensional array
to implement its operations.

Double Dispatch

 is a mechanism that dispatches a
function call to different concrete
functions depending on the runtime
types of multiple objects involved in
the call.
 Lookup (Myers Item 31, More effective C++)

Smart pointers

I shot an arrow into the air,

It fell to earth, I know not where.

“The Arrow and the Song”

H. W. Longfellow

4/13/2017

7

Smart Pointers: unique_ptr

 Typical pointer usage.

 Source of trouble!

void f() {
MyClass *ptrmyclass = new MyClass;
// … perform some operators
delete ptrmyclass;

}

What if you forgot a return in the middle?

Smart Pointers: unique_ptr

 A return in the middle of the function.

 An exception thrown.
 Or else the function has to catch all

exceptions.

 How do we avoid resource leaks?
 Recap: valgrind? 

Smart Pointers: auto_ptr

// Fixing the last program : Complicated.

void f(){
MyClass *ptr = new MyClass;

try {
…
}

catch(…){
delete ptr;
throw; // rethrow the exception

}

delete ptr;
}

Smart Pointers: auto_ptr

#include <memory> // header for unique_ptr

void f(){
// create and initialize a unique_ptr
std::unique_ptr<MyClass> ptr(new MyClass);
// … perform some operators

}

► delete and catch are no longer necessary!
► The smart pointer can free the data to which it points whenever the

pointer itself gets destroyed.
► A unique_ptr is a pointer that serves as an owner of the object to which

it refers to.
► As a result , the object gets destroyed when its unique_ptr gets destroyed.
► A requirement of unique_ptr is that its object has only one owner.

unique_ptr

 Has much of the same interface as an
ordinary pointer (operator *, operator
->)

 Pointer arithmetic (such as ++) is not
defined.

 Note:
std::auto_ptr<MyClass> ptr1(new MyClass); // OK
std::auto_ptr<MyClass> ptr1 = new MyClass; // Error

Misusing unique_ptrS.

 Cannot share ownerships.

 Do not do reference counting.

 Do NOT meet the requirements for
container elements.
 When a unique_ptr is copied/assigned the

source unique_ptr gets modified! Because it
transfers its value rather than copying it.

4/13/2017

8

Unit Testing

 unit testing is a procedure used to
validate that individual units of source
code are working properly.

 Unit = Smallest testable part of an
application

 In C++, Smallest unit = Class

 Goal: Isolate each part of the program
and show individual parts are correct.

