
4/13/2017

1

Inheritance

For : COP 3330.

Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

OOP components

 Data Abstraction
 Information Hiding, ADTs

 Encapsulation
 Type Extensibility
 Operator Overloading

 Inheritance
 Code Reuse

 Polymorphism

“Is a” Vs “Has a”

 Inheritance
 Considered an “Is a” class relationship

 e.g.: An HourlyEmployee “is a” Employee

 A Convertible “is a” Automobile

 A class contains objects of another class
as it’s member data
 Considered a “Has a” class relationship

 e.g.: One class “has a” object of another
class as it’s data

Another Example

class Car : public Vehicle {
public:

// ...
};

We state the above relationship in several ways:
* Car is "a kind of a" Vehicle
* Car is "derived from" Vehicle
* Car is "a specialized" Vehicle
* Car is the "subclass" of Vehicle
* Vehicle is the "base class" of Car
* Vehicle is the "superclass" of Car (this not as common in the C++ community)

Vehicle

Car

UML

Virtual Functions

 Virtual means “overridable”

 Runtime system automatically invokes
the proper member function.

 Costs 10% to 20% extra overhead
compared to calling a non-virtual
function call.

Virtual Destructor rule

 If a class has one virtual function, you
want to have a virtual destructor.

 A virtual destructor causes the
compiler to use dynamic binding when
calling the destructor.

 Constructors: Can not be virtual. You
should think of them as static member
functions that create objects.

4/13/2017

2

Pure virtual.

 A pure virtual member function is a
member function that the base class
forces derived classes to provide.
 Specified by writing =0 after the

function parameter list.

 A pure virtual function makes a class
an abstract base class (ABC)
 Can not be instantiated!

 An ABC can also have a pure virtual
destructor.

OOP Shape Example

shape

rectangle

triangle circle • • • •

Public inheritance: “Is A” relationships

ABC

Abstract Base class: Shape.

class Shape {
public:

Shape (Point2d& position, Color& c) : center_(position) , color_ (c) {};
virtual void rotate(double radians) = 0;
virtual bool draw(Screen &) = 0; // Inheritance of interface.
virtual ~Shape(void) = 0;
virtual void error(const string& msg); // Inheritance of implementation.
int ObjectID() const; // Do not redefine.
void move(Point2d& p) { _center = p; };

private:
Point2d center_;
Color color_;

};

C++ Shape example

class Triangle: public Shape {
public:

Triangle(Point2d& p[3]);
virtual void rotate (double radians){…}
virtual bool draw(Screen &s) {…};
virtual ~Triangle(void) {…};
// Can use the default error
// Must not define / declare ObjectID

private:
Point2d vertices[3];

};

Concrete derived class

 Has no pure virtual functions.

 Simply provides the definition of all
the pure virtual functions in its ABC.

Typecasts

 Can I convert a pointer of a derived
class type to a base class type?
 ?

 Does it require a typecast?

4/13/2017

3

Containers and Inheritance

 Because derived objects are “sliced
down” when assigned to a base
object, containers and types related
by inheritance do not mix well.

multiset<Item_base> basket;
Item_base base;
Bulk_item bulk;
basket.insert(base);
basket.insert(bulk); // problem! (Slicing!)

Questions

 How can a class Y be a kind-of
another class X as well as get the bits
of X?
 Is-a relationship

 How can a class Y get the bits of X
without making Y a kind-of X?
 Has a relationship

Inheritance

 Except for friendship, inheritance is
the strongest relationship that can be
expressed in C++, and should be only
be used when it's really necessary.

Multiple Inheritance

 Multiple inheritance refers to a feature of
object-oriented programming languages in
which a class can inherit behaviors and
features from more than one superclass.

 Multiple inheritance can cause some
confusing situations (A Diamond!)
 Java compromises. (can inherit

implementation from only one parent).

 Virtual inheritance is used to solve problems
caused by MI.

Virtual and Multiple
Inheritance

 Multiple and virtual Inheritance:
Beyond the scope of this class.

Polymorphism

 Literal meaning : “Many forms”

 We can use the “many forms” of
derived and base classes
interchangeably.

 The fact that static and dynamic types
of references and pointers can differ is
the cornerstone of how C++ supports
polymorphism.

4/13/2017

4

Polymorphism.

 C++ supports several kinds of static (compile-
time) and dynamic (run-time) polymorphism.

 Static Polymorphism

• Function/Operator Overloading

• Class/function templates

 Dynamic polymorphism

• Polymorphism through inheritance/Virtual
member functions

Polymorphism : Example
#include <iostream>

class Bird // the "generic" base class
{

public:
virtual void OutputName() {std::cout << "a bird";}
virtual ~Bird() {}

};

class Swan : public Bird // Swan derives from Bird
{

public:
virtual void OutputName() {std::cout << "a swan";} // overrides virtual function

};

int main()
{

Bird* myBird = new Swan; // Declares a pointer to a generic Bird,
// and sets it pointing to a newly-created Swan.

myBird->OutputName(); // This will output "a swan", not "a bird".
delete myBird;
return 0;

}

RTTI: Run time type
identification.

C++ has the ability to determine the type of a program's
object/variable at runtime.

class base {
virtual ~base(){}

};

class derived : public base {
public:

virtual ~derived(){}
int compare (derived &ref);

};

int my_comparison_method_for_generic_sort (base &ref1, base &ref2)
{

derived & d = dynamic_cast<derived &>(ref1); // rtti used here
// rtti enables the process to throw a bad_cast exception
// if the cast is not successful
return d.compare (dynamic_cast<derived &>(ref2));

}

Inheritance Guidelines

 Prefer minimal classes.
 D&C: Small classes are easier to

write, get right, test, use …

 Prefer composition to inheritance.

 Avoid inheriting from classes that
were not designed to be base classes.

 Prefer providing abstract interfaces.

Inheritance

 Differentiate between inheritance of interface and
inheritance of implementation
 Member function interfaces are always inherited.
 Purpose of pure virtual function is to have derived

classes inherit a function interface only.
 Purpose of declaring a simple virtual function is to

have derived classes inherit a function interface as
well as a default implementation.

 Purpose of non-virtual function is to have a derived
class inherit a function interface as well as a
mandatory implementation.

Inheritance

 Never redefine an inherited non-virtual
function.

 Never redefine an inherited default
parameter value.
 Virtual functions are dynamically

bound but default parameter values
are statically bound.

4/13/2017

5

Inheritance and templates.

 Consider the two design problems
 A stack of objects. Each stack is

homogeneous. You might have a stack of
ints, strings, …

 Classes representing monkeys. You need
several different classes representing
monkeys (each breed is a little different).

 Sound similar? They result in utterly
different software design.

Inheritance and templates.

 With both stacks and monkeys, you are
dealing with variety of different types.

(objects of type T, monkeys of breed T)

 Question you want to ask yourself:
 Does the type T affect the behavior of the

class?
• Nope : Use templates

• Yup: You need virtual functions?

Some real interview
questions.

 What is an explicit constructor?

 What is a mutable member?

 Explain the ISA and Has-A class
relationships. How would you implement
each in a class design?

 What is a virtual destructor?

 What is the difference between a copy
constructor and an overloaded assignment
operator?

