
4/13/2017

1

Inheritance

For : COP 3330.

Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

OOP components

 Data Abstraction
 Information Hiding, ADTs

 Encapsulation
 Type Extensibility
 Operator Overloading

 Inheritance
 Code Reuse

 Polymorphism

“Is a” Vs “Has a”

 Inheritance
 Considered an “Is a” class relationship

 e.g.: An HourlyEmployee “is a” Employee

 A Convertible “is a” Automobile

 A class contains objects of another class
as it’s member data
 Considered a “Has a” class relationship

 e.g.: One class “has a” object of another
class as it’s data

Another Example

class Car : public Vehicle {
public:

// ...
};

We state the above relationship in several ways:
* Car is "a kind of a" Vehicle
* Car is "derived from" Vehicle
* Car is "a specialized" Vehicle
* Car is the "subclass" of Vehicle
* Vehicle is the "base class" of Car
* Vehicle is the "superclass" of Car (this not as common in the C++ community)

Vehicle

Car

UML

Virtual Functions

 Virtual means “overridable”

 Runtime system automatically invokes
the proper member function.

 Costs 10% to 20% extra overhead
compared to calling a non-virtual
function call.

Virtual Destructor rule

 If a class has one virtual function, you
want to have a virtual destructor.

 A virtual destructor causes the
compiler to use dynamic binding when
calling the destructor.

 Constructors: Can not be virtual. You
should think of them as static member
functions that create objects.

4/13/2017

2

Pure virtual.

 A pure virtual member function is a
member function that the base class
forces derived classes to provide.
 Specified by writing =0 after the

function parameter list.

 A pure virtual function makes a class
an abstract base class (ABC)
 Can not be instantiated!

 An ABC can also have a pure virtual
destructor.

OOP Shape Example

shape

rectangle

triangle circle • • • •

Public inheritance: “Is A” relationships

ABC

Abstract Base class: Shape.

class Shape {
public:

Shape (Point2d& position, Color& c) : center_(position) , color_ (c) {};
virtual void rotate(double radians) = 0;
virtual bool draw(Screen &) = 0; // Inheritance of interface.
virtual ~Shape(void) = 0;
virtual void error(const string& msg); // Inheritance of implementation.
int ObjectID() const; // Do not redefine.
void move(Point2d& p) { _center = p; };

private:
Point2d center_;
Color color_;

};

C++ Shape example

class Triangle: public Shape {
public:

Triangle(Point2d& p[3]);
virtual void rotate (double radians){…}
virtual bool draw(Screen &s) {…};
virtual ~Triangle(void) {…};
// Can use the default error
// Must not define / declare ObjectID

private:
Point2d vertices[3];

};

Concrete derived class

 Has no pure virtual functions.

 Simply provides the definition of all
the pure virtual functions in its ABC.

Typecasts

 Can I convert a pointer of a derived
class type to a base class type?
 ?

 Does it require a typecast?

4/13/2017

3

Containers and Inheritance

 Because derived objects are “sliced
down” when assigned to a base
object, containers and types related
by inheritance do not mix well.

multiset<Item_base> basket;
Item_base base;
Bulk_item bulk;
basket.insert(base);
basket.insert(bulk); // problem! (Slicing!)

Questions

 How can a class Y be a kind-of
another class X as well as get the bits
of X?
 Is-a relationship

 How can a class Y get the bits of X
without making Y a kind-of X?
 Has a relationship

Inheritance

 Except for friendship, inheritance is
the strongest relationship that can be
expressed in C++, and should be only
be used when it's really necessary.

Multiple Inheritance

 Multiple inheritance refers to a feature of
object-oriented programming languages in
which a class can inherit behaviors and
features from more than one superclass.

 Multiple inheritance can cause some
confusing situations (A Diamond!)
 Java compromises. (can inherit

implementation from only one parent).

 Virtual inheritance is used to solve problems
caused by MI.

Virtual and Multiple
Inheritance

 Multiple and virtual Inheritance:
Beyond the scope of this class.

Polymorphism

 Literal meaning : “Many forms”

 We can use the “many forms” of
derived and base classes
interchangeably.

 The fact that static and dynamic types
of references and pointers can differ is
the cornerstone of how C++ supports
polymorphism.

4/13/2017

4

Polymorphism.

 C++ supports several kinds of static (compile-
time) and dynamic (run-time) polymorphism.

 Static Polymorphism

• Function/Operator Overloading

• Class/function templates

 Dynamic polymorphism

• Polymorphism through inheritance/Virtual
member functions

Polymorphism : Example
#include <iostream>

class Bird // the "generic" base class
{

public:
virtual void OutputName() {std::cout << "a bird";}
virtual ~Bird() {}

};

class Swan : public Bird // Swan derives from Bird
{

public:
virtual void OutputName() {std::cout << "a swan";} // overrides virtual function

};

int main()
{

Bird* myBird = new Swan; // Declares a pointer to a generic Bird,
// and sets it pointing to a newly-created Swan.

myBird->OutputName(); // This will output "a swan", not "a bird".
delete myBird;
return 0;

}

RTTI: Run time type
identification.

C++ has the ability to determine the type of a program's
object/variable at runtime.

class base {
virtual ~base(){}

};

class derived : public base {
public:

virtual ~derived(){}
int compare (derived &ref);

};

int my_comparison_method_for_generic_sort (base &ref1, base &ref2)
{

derived & d = dynamic_cast<derived &>(ref1); // rtti used here
// rtti enables the process to throw a bad_cast exception
// if the cast is not successful
return d.compare (dynamic_cast<derived &>(ref2));

}

Inheritance Guidelines

 Prefer minimal classes.
 D&C: Small classes are easier to

write, get right, test, use …

 Prefer composition to inheritance.

 Avoid inheriting from classes that
were not designed to be base classes.

 Prefer providing abstract interfaces.

Inheritance

 Differentiate between inheritance of interface and
inheritance of implementation
 Member function interfaces are always inherited.
 Purpose of pure virtual function is to have derived

classes inherit a function interface only.
 Purpose of declaring a simple virtual function is to

have derived classes inherit a function interface as
well as a default implementation.

 Purpose of non-virtual function is to have a derived
class inherit a function interface as well as a
mandatory implementation.

Inheritance

 Never redefine an inherited non-virtual
function.

 Never redefine an inherited default
parameter value.
 Virtual functions are dynamically

bound but default parameter values
are statically bound.

4/13/2017

5

Inheritance and templates.

 Consider the two design problems
 A stack of objects. Each stack is

homogeneous. You might have a stack of
ints, strings, …

 Classes representing monkeys. You need
several different classes representing
monkeys (each breed is a little different).

 Sound similar? They result in utterly
different software design.

Inheritance and templates.

 With both stacks and monkeys, you are
dealing with variety of different types.

(objects of type T, monkeys of breed T)

 Question you want to ask yourself:
 Does the type T affect the behavior of the

class?
• Nope : Use templates

• Yup: You need virtual functions?

Some real interview
questions.

 What is an explicit constructor?

 What is a mutable member?

 Explain the ISA and Has-A class
relationships. How would you implement
each in a class design?

 What is a virtual destructor?

 What is the difference between a copy
constructor and an overloaded assignment
operator?

