
4/13/2017

1

Object Oriented
Programming

For : COP 3330.

Object oriented Programming (Using C++)
http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

OOP

Object 2

Object 1

Object 4

Object 3

Objects: State (fields), Behavior (member functions), Identity
Class : Blue print of an object.

Data and behavior are strongly linked in OOP.
Objects are responsible for their behavior.
Example: Complex numbers, Rational numbers, Floating point numbers

, all understand addition.

OOP components

 Data Abstraction
 Information Hiding, ADTs

 Encapsulation
 Type Extensibility
 Operator Overloading

 Inheritance
 Code Reuse

 Polymorphism

Recap: ADTs

Specify the meaning of the
operations independent of any
implementation/definition.
Least common denominator of all

possible implementations.

 Information Hiding: Do not
expose unnecessary information.

Inheritance

 Two example classes
 Class Employee

class Employee {
public:

Employee(string theName, float PayRate);
string Name() const;
float PayRate() const;
float compute_pay(float hoursWorked) const;

protected:
string name;
float payrate;

};

Inheritance

 Two example classes
 Class Manager

class Manager {
public:

Manager(string theName, float PayRate);
void set_manages(int n);
string Name() const;
float PayRate() const;
float compute_pay(float hoursWorked) const;

protected:
string name;
float payrate;
int manages_n_employees;

};

4/13/2017

2

Reuse

 We have done unnecessary work to create
Manager, which is similar to (and really is a
“is a") Employee.

 We can fix this using the OO concept of
inheritance.

 We let a manager inherit from an employee.
 A manager gets all the data and functionality

of an employee after inheritance.
 We can then add any new data and methods

needed for a manager and redefine any
methods that differ for a manager.

Manager

class Manager : public Employee { // is a relationship
public:

Manager(string theName, float PayRate, int n);
void set_manages(int n);

protected:
int manages_n_employees;

};

Methods of Manager have access to name, payrate because they were
declared in Employee as "protected” .

More on Inheritance :
Access privileges.

 In a public inheritance:
 Public members are accessible to

derived class.

 Protected members are accessible to
derived class. These members are not
accessible to the users of the base
class.

 Private members are not accessible to
derived class.

Inheritance

 Derive a new class (subclass) from an
existing class (base class).
 Syntax:

• class classname : access-label base-class { … }

• Access-labels = { public, private, protected }

 Inheritance creates a hierarchy of
related classes (types) which share
code and interface.

More Examples

Base Class Derived Classes

Student GradStudent
UnderGradStudent

Shape Circle
Triangle
Rectangle
Tetrahedron

Loan CarLoan
HomeImprovementLoan
MortgageLoan

More Examples

Person

Student Employee

FacultyNon-FacultyGradStudent UnderGradStudent

Tenure Teaching

“Is a” relationships.

4/13/2017

3

Inheritance: Subclass

 Code reuse
• derive GradStudent from Student

(also adds fields/methods)

 Specialization: Customization
• derive bounded-stack from stack

(by overriding/redefining push)

 Generalization: Factoring Commonality
 Avoid code-duplications (why?)

Inheritance

 Derived classes contain their base
classes as subobjects.

 Functions in the derived may use
members from the base.

string name;
float payrate;
int manages_n_employees;

Manager object.

There is no requirement that the compiler lay out the base and derived parts
of an object contiguously.

Employee object

Inheritance

 A class must be defined to be used as a
base class.

 A derived class can be used as a base-
class.

 Forward declarations are same for base-
classes as well as derived classes.
 class Manager;

 class Employee;

 class Manager: public employee; // Error

Open-Closed principle in OOP

 The open/closed principle states
that a class must be both open and
closed.
 Open: means it has the ability to be

extended

 Closed: means it cannot be modified
other than by extension.

An interesting paper:
http://www.craiglarman.com/articles/The%20Importance%20of%20Being%20Closed%20-%20Larman%20-%20IEEE%20Software.pdf

Open-Closed principle in OOP

 Once a class has been approved for
use after having gone through code
reviews, unit tests, and other
qualifying procedures, you don't want
to change the class very much, just
extend it.

 Changing base class can complicate
all derived classes.

Example : Open-Closed Pr.

DeltaBoundedQueue TestBoundedQueue

Queue TestQueue

Client (Composition)

Subclass (Inheritance)

4/13/2017

4

More on Inheritance

 A pointer to a derived class can
always be used as a pointer to a base
class when public inheritance is used.
(But not vice-versa)
 Private base classes are different

 STL Containers which need to contain
both base/derived classes should be
made of pointers to base classes.
 Otherwise : Slicing problem.

Virtual Methods

 A base class must indicate which of its
member functions it intends its
derived classes to redefine.

 These member functions are defined
as “virtual” in the base class.

Example
class Base {
public:
int i;

 virtual void print()
 {

cout << "i value is " << i
<< " inside object of type Base\n\n";

}
};

class Derived: public Base {
public:
 virtual void print()
 {

cout << "i value is " << i
 << " inside object of type Derived\n\n";

}
};

Base *bp;
Derived d;
bp = &d;
bp->print(); // invokes

Dynamic Binding

 Allows invocation of general methods
using a base class pointer.

 The fact that a reference or pointer
might refer to either a base or derived-
class object is the key to dynamic
binding.

 Allows easy extensibility.

Dynamic Vs Static Binding

 Static Binding: The compiler uses the
type of the pointer to find out which
method to call.

 Dynamic Binding: The decision is
made at runtime. (uses ‘virtual’
keyword)

Dynamic Vs Static Binding

 Static Binding
 Less time and space overhead.

 Inlining possible

 Dynamic Binding
 Extensibility

 Better code-reuse.

4/13/2017

5

Dynamic Vs Static Binding

 Efficiency Vs Flexibility

 Static Binding
 More efficient

• Less time and space overhead, can use inlining.

 Dynamic Binding
 Flexible: Enables extension of behavior of a

system easily.

Virtual Functions

 Have a fixed interface.
 Derived implementations can change.
 Dispatched using object’s “dynamic

type” to select the appropriate
method.

 “Once Virtual, always virtual” rule.
 Once a base-class defines a function

as virtual, it remains virtual through
out the inheritance hierarchy.

An example base class
// Item sold at an undiscounted price
// derived classes will define various discount strategies
class Item_base {

friend std::istream& operator>>(std::istream&, Item_base&);
friend std::ostream& operator<<(std::ostream&, const Item_base&);
public:

virtual Item_base* clone() const { return new Item_base(*this); }
public:

Item_base(const std::string &book = "", double sales_price = 0.0): isbn(book), price(sales_price) { }

std::string book() const { return isbn; }

// returns total sales price for a specified number of items
// derived classes will override and apply different discount algorithms
virtual double net_price(std::size_t n) const { return n * price; }

// no work, but virtual destructor needed
// if base pointer that points to a derived object is ever deleted
virtual ~Item_base() { } // Always virtual. Why? (Hint: Static Vs Dynamic Binding)

private:
std::string isbn; // identifier for the item

protected:
double price; // normal, undiscounted price

};

Scoping rules

 In a public base class, public and
protected members of the base class
remain public and protected members
of the derived class.
 Example:

class circle: public point {};

circle c;

//can call point::move(int,int)

c.move(1,2);

Scoping Rules.

 Private derivation:
 public base class members are private in derived

class.
 Example:

class stack: private linkedList {};
stack s;
s.insert(1,2);
// cannot call linkedList::insert(int,int)

where insert is public

 Protected derivation:
 public base class members are protected in

derived class.

Out of scope of this class.
Do not use.

“Is a” Vs “Has a”

 Inheritance
 Considered an “Is a” class relationship

 e.g.: An HourlyEmployee “is a” Employee

 A Convertible “is a” Automobile

 A class contains objects of another class
as it’s member data
 Considered a “Has a” class relationship

 e.g.: One class “has a” object of another
class as it’s data

4/13/2017

6

OOP Shape Example

shape

rectangle

triangle circle • • • •

Public inheritance: “Is A” relationships

Abstract Base class: Shape.

class Shape {
public:

Shape (Point2d& position, Color& c) : center_(position) , color_ (c) {};
virtual void rotate(double radians) = 0;
virtual bool draw(Screen &) = 0;
virtual ~Shape(void) = 0;
void move(Point2d& p) { _center = p; };

private:
Point2d center_;
Color color_;

};

C++ Shape example

class Triangle: public Shape {
public:

Triangle(Point2d& p[3]);
virtual void rotate (double radians){…}
virtual bool draw(Screen &s) {…};
virtual ~Triangle(void) {…};

private:
Point2d vertices[3];
Color color_;

};

