
1

Introduction to
Data Structures

For : COP 3330.
Object oriented Programming (Using C++)

http://www.compgeom.com/~piyush/teach/3330

Piyush Kumar

Sorted Arrays As Lists
Arrays are used to store a list of values
Arrays are contained in contiguous memory

Recall – inserting a new element in the middle of an array requires later elements
to be "shifted". For large lists of values, this is inefficient.

void insertSorted(int value, int &length, int list[])
{

int i = length - 1;
while (list[i] > value)
{
list[i + 1] = list[i];
i--;

}
list[i + 1] = value;
length++;

}

Shifting array elements
that come after the
element being inserted

37291384

8 13 29 3764

Insert 6

Sorted Arrays
Due to the need to "shift" elements, sorted arrays are:

Inefficient when inserting into the middle or front
Inefficient when deleting from the middle or front
Efficient for searching

Since inserting and deleting are common operations, we need
to find a data structure which allows more efficiency

Contiguous memory will not work – will always require a
shift
"Random" placement requires "random" memory locations
Dynamic allocation provides "random" locations, and means
that the list can grow as much as necessary
The maximum size need not be known – ever

• This is not true for arrays, even dynamically allocated
arrays

Intro To Linked Lists

A linked list is a data structure which allows efficient insertion
and deletion.
Consists of "nodes". Each node contains:

A value - the data being stored in the list
A pointer to another (the next) node

By carefully keeping pointers accurate, you can start at the first
node, and follow pointers through entire list.
Graphically, linked list nodes are represented as follows:

value ptr

Linked List Info
Each node is dynamically allocated, so memory
placement is "random"

1000
1004
1008
100C
1010
1014
1018
101C
1020
1024
1028
102C
1030
1034
1038

2 4 6

6
*0

2
*1030

*1010

4
*1004

"start"

"start"

The above linked list may
be stored in memory as
shown to the right.

Deletion From Linked Lists
• Given the initial linked list:

2 4 6 8 10

Delete node with value 4

2 4 6 8 10

Resulting in

6 8 102

2

Insertion Into Linked Lists
Given the initial linked list:

2 4 6 8 10

Insert node with value 5

Resulting in

2 4 6 8 10

5

2 4 6 8 105

Linked List Nodes, Example
• Use a class to group the value and the pointer

class ListNodeClass
{
public: // Only for illustration: Bad design

int val; //Will have a list of ints
ListNodeClass *next; //Point to the next node

};

int main()
{
ListNodeClass *head = 0; //Essentially, this declares a

//list, since it will point to the
//first node of a list. Initially,
//list is empty (null pointer)

head = new ListNodeClass; //Note no [] - not
//declaring an array - just
//one single node

...

Printing a List (Visiting Each
Node)

void printList(ListNodeClass *head)
{
ListNodeClass *temp = head;

if (temp == 0)
{
cout << "List is Empty!" << endl;

}
else
{
while (temp != 0)
{

cout << temp->val << " ";
temp = temp->next;

}
cout << endl;

}
}

Try To Insert To Front Of List
bool insertAtHead1(ListNodeClass *head,

int newVal)
{
bool status = true;
ListNodeClass *temp;

temp = new ListNodeClass;
if (temp == 0)
{
cout << "Unable to alloc node"

<< endl;
status = false;

}
else
{
temp->val = newVal;

if (head == 0)
{
temp->next = 0;
head = temp;

}

else
{
temp->next = head;
head = temp;

}
}
return (status);

}
int main(void)
{
ListNodeClass *head1 = 0;
printList(head1);
insertAtHead1(head1, 5);
insertAtHead1(head1, 8);
insertAtHead1(head1, 17);
printList(head1);
return (0);

}

List is Empty!
List is Empty!

Corrected Insert To Front Of
List

bool insertAtHead(ListNodeClass **head,
int newVal)

{
bool status = true;
ListNodeClass *temp;

temp = new ListNodeClass;
if (temp == 0)
{
cout << "Unable to alloc node"

<< endl;
status = false;

}
else
{
temp->val = newVal;

if (*head == 0)
{
temp->next = 0;
*head = temp;

}

else
{
temp->next = *head;
*head = temp;

}
}
return (status);

}

int main(void)
{
ListNodeClass *head = 0;
printList(head);
insertAtHead(&head, 5);
insertAtHead(&head, 8);
insertAtHead(&head, 17);
printList(head);
return (0);

}

List is Empty!
17 8 5

Reference to pointer
example

// Reference to pointer example
#include <iostream>
using namespace std;

void increment(int*& i) { i++; }

int main() {
int* i = 0;
cout << "i = " << i << endl;
increment(i);
cout << "i = " << i << endl;

}

0
4

3

Deleting From Front Of List
bool deleteFromFront(

ListNodeClass **head)
{
bool status = true;
ListNodeClass *temp;

if (*head == 0)
{
cout << "Can't delete from list"

<< endl;
status = false;

}
else
{
temp = *head;
*head = temp->next;
//Free the memory we dynamically
//allocated in insert function
delete temp;

}
return (status);

}

int main(void)
{
ListNodeClass *head = 0;
printList(head);
insertAtHead(&head, 5);
insertAtHead(&head, 8);
insertAtHead(&head, 17);
printList(head);
deleteFromFront(&head);
printList(head);
deleteFromFront(&head);
deleteFromFront(&head);
printList(head);
deleteFromFront(&head);
return (0);

}

List is Empty!
17 8 5
8 5
List is Empty!
Cannot delete from list!

Searching A List
bool searchList(ListNodeClass *head, int val)
{
bool found = false;
ListNodeClass *temp = head;

while (temp != 0 && !found)
{
if (temp->val == val)
{

found = true;
}
else
{

temp = temp->next;
}

}
return (found);

}

The Stack Linked Structure
A stack is another data structure

Used to organize data in a certain way
Think of a stack as a stack of cafeteria trays

Take a tray off the top of the stack
Put washed trays on the top of the stack

Bottom tray is not accessed unless it is the only tray in
the stack.
Since only the top of a stack can be accessed, there
needs to be only one insert function and one delete
function

Inserting to a stack is usually called "push"
Deleting from a stack is usually called "pop"

takeTray() putTray()

The Queue Linked Structure
A queue is another data structure.
Think of a queue as a line of people at a store

Get into the line at the back (insert)
Person at front is served next (delete)

Can only insert at one end of the queue.
Inserting to a queue is usually called "enqueue()"
"Get In Line" in above diagram

Can only remove at the other end of the queue
Removing from a queue is usually called "dequeue()"
"Serve Customer" in above diagram

Server

Get In Line Serve Customer

Another Queue Pic: FIFO

First In First out.

© Mark Nelson

Priority Queue Pic: FIFO

Highest priority goes out first.
The STL has three container adaptor
types: stack, queue, and
priority_queue.

© Mark Nelson

4

The Priority Queue Linked
Structure

A priority queue works slightly differently than a "normal" queue
Elements in a priority queue are sorted based on a priority

Queue order is not dependent on the order in which
elements were inserted, as it was for a normal queue
As elements are inserted, they are sorted such that the
element with the highest priority is at the beginning of the
priority queue
When an element is removed from the priority queue, the
first element (highest priority) is taken, regardless of when it
was inserted
Elements of the same priority are maintained in the order
which they were inserted

Using a priority queue in which all elements have the same
priority is equivalent to using a "normal" queue

The Doubly-Linked List Structure
The linked list examples we've seen so far have only one
pointer
Often, it may be advantageous to have a node contain multiple
pointers

2 4 6 8
"head" "tail"

class DoublyLinkedListNodeClass
{

DoublyLinkedListNodeClass *prev;
int val;
DoublyLinkedListNodeClass *next;

};

DoublyLinkedListNodeClass *head;
DoublyLinkedListNodeClass *tail;

STL list<>

A list is a doubly linked list.
Example

list<int> L;
L.push_back(0);
L.push_front(1);
L.insert(++L.begin(), 2);
copy(L.begin(), L.end(), ostream_iterator<int>(cout, " "));
// The values that are printed are 1 2 0

http://www.sgi.com/tech/stl/List.html

Note that singly linked lists, which only support forward traversal,
are also sometimes useful. If you do not need backward traversal,
then slist may be more efficient than list.

Container Adaptors

Container adaptors take sequence
containers as their type arguments,
for example:

stack < vector < int > > a;

Stack (Last In First Out)

Use with vector (best/default),
deque, or list (bad choice)

Basic interface:
bool empty();
size_type size();
value_type& top();
const value_type& top();
void push(const value_type&);
void pop();

Stack

Container Function Stack Adapter Function

back() top()
push_back() push()
pop_back() pop()
empty() empty()
size() size()

To support this functionality stack expects the underlying container
to support push_back(), pop_back(), empty() or size() and back()

#include <stack> Provides: stack<T, Sequence>

5

Stack Example.
// C++ STL Headers
#include <iostream>
#include <vector>
#include <stack>

int main(int argc, char *argv[])
{

stack<const char *, vector<const char *> > s;

// Push on stack in reverse order
s.push("order");
s.push("correct"); // Oh no it isn't !
s.push("the");
s.push("in");
s.push("is");
s.push("This");

// Pop off stack which reverses the push() order
while (!s.empty()) {
cout << s.top() <<" "; s.pop(); /// Oh yes it is !

}
cout << endl;

return(EXIT_SUCCESS);
} ©Phil Ottewell's STL Tutorial

Simpler Stack example
int main() {

stack<int> S;
S.push(8);
S.push(7);
S.push(4);
assert(S.size() == 3);

assert(S.top() == 4);
S.pop();

assert(S.top() == 7);
S.pop();

assert(S.top() == 8);
S.pop();

assert(S.empty());
}

http://www.sgi.com/tech/stl/stack.html

Queue

Use with deque (default), or list. (Vector
works, but its extremely inefficient)
Basic interface:

bool empty();
size_type size();
value_type& front();
const value_type& front();
value_type& back();
const value_type& back();
void push(const value_type&);
void pop();

#include <queue>
#include <vector>
#include <list>
#include <iostream>

int main() { using namespace std;

// Declares queue with default deque base container
queue <char> q1;
// Explicitly declares a queue with deque base container
queue <char, deque<char> > q2;

// These lines don't cause an error, even though they
// declares a queue with a vector base container
queue <int, vector<int> > q3;
q3.push(10);

// but the following would cause an error because vector has
// no pop_front member function
// q3.pop();
// Declares a queue with list base container
queue <int, list<int> > q4;

// The second member function copies elements from a container
list<int> li1; li1.push_back(1); li1.push_back(2);
queue <int, list<int> > q5(li1);
cout << "The element at the front of queue q5 is " << q5.front() << "." << endl;
cout << "The element at the back of queue q5 is " << q5.back() << "." << endl;
}

int main() {
priority_queue<int> Q;
Q.push(1);
Q.push(4);
Q.push(2);
Q.push(8);
Q.push(5);
Q.push(7);

assert(Q.size() == 6);

assert(Q.top() == 8);
Q.pop();

assert(Q.top() == 7);
Q.pop();

assert(Q.top() == 5);
Q.pop();

assert(Q.top() == 4);
Q.pop();

assert(Q.top() == 2);
Q.pop();

assert(Q.top() == 1);
Q.pop();

assert(Q.empty());
}

Graphs

An introduction

6

Graphs

A graph G = (V,E) is composed of:
V: set of vertices
E ⊂ V × V: set of edges connecting
the vertices

An edge e = (u,v) is a __ pair of
vertices

Directed graphs (ordered pairs)
Undirected graphs (unordered pairs)

Directed graph

Directed Graph Undirected GRAPH

Undirected Graph Some More Graph Applications

transportation

Graph
street intersections

Nodes Edges
highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires

7

World Wide Web
Web graph.

Node: web page.
Edge: hyperlink from one page to another.

cnn.com

cnnsi.comnovell.comnetscape.com timewarner.com

hbo.com

sorpranos.com

9-11 Terrorist Network
Social network graph.

Node: people.
Edge: relationship between
two people.

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

Ecological Food Web

Food web graph.
Node = species.
Edge = from prey to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Terminology

a is adjacent to b iff (a,b) ∈ Ε.
degree(a) = number of adjacent
vertices (Self loop counted twice)
Self Loop: (a,a)

Parallel edges: E = { ...(a,b), (a,b)...}

a

a b

Terminology

A Simple Graph is a graph with no self
loops or parallel edges.
Incidence: v is incident to e if v is an
end vertex of e.

v
e

Question

Max Degree node? Min Degree
Node? Isolated Nodes? Total sum of
degrees over all vertices? Number of
edges?

8

QUESTION

How many edges are there in a graph
with 100 vertices each of degree 4?

Connected graph

Undirected Graphs: If there is at least
one path between every pair of
vertices. (otherwise disconnected)

complete graph

Every pair of graph vertices is
connected by an edge.

n(n-1)/2 edges

Trees

An undirected graph is a tree if it is
connected and does not contain a cycle.

Theorem. Let G be an undirected graph on
n nodes. Any two of the following
statements imply the third.

G is connected.
G does not contain a cycle.
G has n-1 edges.

representation

Two ways
Adjacency List

• (as a linked list for each node in the
graph to represent the edges)

Adjacency Matrix
• (as a boolean matrix)

Representing Graphs
11

22

33
44

11
22

33

44

1, 42

1, 43

1, 2, 34

2, 3, 41

Adjacent
VerticesVertex

12

3

1, 2, 34

31

Terminal
Vertices

Initial
Vertex

9

adjacency list adjacency matrix

Another example AL Vs AM

AL : Total space = 4|V| + 8|E| bytes
(For undirected graphs its 4|V| + 16|E|
bytes)
AM : |V| * |V| / 8

Question: What is better for very
sparse graphs? (Few number of
edges)

AL Vs AM

Question: How much time does it take
to find out if (vi,vj) belongs to E?

AM ?
AL ?

Stable Marriage

Our next problem

10

The problem

There are n men and n women
Each man has a preference list, so does the
woman.
These lists have no ties.

Devise a system by which each of the n
men and n women can end up getting
married.

Other Similar problems

Given a set of colleges and students pair
them. (Internship – Company assignments)
Given airlines and pilots, pair them.
Given two images, pair the points belonging
to the same point in 3D to extract depth
from the two images.
Dorm room assignments.
Hospital residency assignments**.
Your first programming assignment…

Stereo Matching

Fact: If one knows the distance between the cameras
And the matching, its almost trivial to recover depth..

Example Preference Lists

Z
Y
X

Man

A
B
A
1st

B
A
B

2nd

C
C
C

3rd

C
B
A

Woman

X
X
Y

1st

Y
Y
X

2nd

Z
Z
Z

3rd

What goes wrong?

Unstable pairs: (X,C) and (B,Y)
They prefer each other to current pairs.

Stable Matching

Z
Y
X

Man

A
B
A
1st

B
A
B

2nd

C
C
C

3rd

C
B
A

Woman

X
X
Y

1st

Y
Y
X

2nd

Z
Z
Z

3rd

No Pairs creating instability.

Another Stable Matching

Z
Y
X

Man

A
B
A
1st

B
A
B

2nd

C
C
C

3rd

C
B
A

Woman

X
X
Y

1st

Y
Y
X

2nd

Z
Z
Z

3rd

11

Stability is Primary.

Any reasonable list of criteria must
contain the stability criterion.

A pairing is doomed if it contains a
shaky couple.

Main Idea

Idea: Allow the pairs to keep Idea: Allow the pairs to keep
breaking up and reforming until breaking up and reforming until
they become stablethey become stable

Can you argue that the couples will not
continue breaking up and reforming forever?

Men Propose
(Women dispose)

Gale-Shapley Algorithm (men propose)

Initialize each person to be free.
while (some man m is free and hasn't proposed to every woman)

w = first woman on m's list to whom m has not yet proposed
if (w is free)

assign m and w to be engaged
else if (w prefers m to her fiancé m')

assign m and w to be engaged, and m' to be free
else
w rejects m

