3/6/2017

Classes II: Type Conversion,

Abstraction and
Encapsulation

Y) o Abstraction: Separation of interface
Friends, ... from implementation
o Encapsulation: Combining lower level
elements to form higher-level entity.
For : COP 3330. |
Object oriented Programming (Using C++) ° ACCEISS Labe S
http://www.compgeom.com/~piyush/teach/3330 (pUbIIC/prlvate/prOteCted) enforce
abstraction and encapsulation.
Piyush Kumar
Benefits of Abstraction &
° Concrete Types. :
Encapsulation
o A concrete class exposes, rather than o Class internals are protected from
hides, its implementation user-lever errors.
o Example : pair<> (defined in <utility>) o Class implementation may evolve
o Exists to bundle two data members. over time without requiring change in
ettt user-level code.
Hncludecutilitys
#include<string>

int main(){
std::pair<std::string, int> prl; //-- Declare a pair variable

std::paircstd::string, int> pr2(“heaven”, 7); // Declare - initialize with constructor.

std::cout << pr2.first << "=" << pr2.second << std::endl; // Prints: heaven=7
) return 0;
o Using Typedefs to
° More on Class definitions 91yp

class Screen {
public:

private
std::string contents;
std::string::size_type cursor;
std::string::size_type height,width;

streamline classes.

class Screen {
public:

using index = std::string::size_type;
private:

std::string contents;

index cursor;

index height,width;

h
inline Screen::index Screen::get_cursor() const{

return cursor;

}

3/6/2017

Class declaration

[e]

class Screen; // declaration of the class

Forward declaration: Introduces the name
Screen into the program and indicates that
Screen refers to a class name.

o Incomplete Type: After declaration, before
definition, Screen is an incomplete type. It's
known screen is a type but not known what
members that type contains.

o

Class declaration for class
members.

o Because a class is not defined until its
class body is complete, a class cannot
have data members of its own type.

o A class can have data members that
are pointers or references to its own

type.
class Human {
Screen window;
Human *bestfriend;
Human *father, *mother;

Using this pointer

o Implement Screen class so that:
myScreen.move(4,0).set(‘#);

o Can replace the following two lines:
myScreen.set(4,0);
myScreen.set(‘#);

Using this pointer

o Return reference to Screen in the
member functions.

Screen& move(index r, index c);

Screen& set(char);

Implementation:

Screen& Screen::move(index r,index c){

index row = r* width; cursor = row +c;
return *this;

}

Using this pointer

o Beware of const:

const Screen& Screen::display(ostream &os) const
{
0s << contents;
return *this;
}

o myScreen.move(4,0).set(‘#).display(cout)

Mutable data members

o “Sometimes”, you might want to
modify a variable inside a const
member function.

o A mutable data member is a member
that is never const (even when it is a
member of a const object).

o mutable => removes const
qualification

3/6/2017

° Mutable data members ° Guideline.
P et o Never repeat code.
private: o If you have member functions that
mutable size_t access_ctr; need to have repeated code, abstract
¥ it out in another function and make
void Screen::do_display(std::ostream& os) const { them Ca” it (maybe In“ne It)
++access_ctr; // keep count of calls to any member func.
0s << contents;
}
° Type conversion: Revisited ° Type conversions: revisited
o inti; float f; o Can convert from one type into “this”
o f = i; // implicit conversion type with constructor
o f = (float)i; // explicit conversion Bitset(const unsigned long X);
o f = float(i); // explicit conversion o How do we convert from “this” type to
something else?
Create an operator to output the other
type
Later.
° Implicit Type conversion ° Beware:

o A constructor that can be called with a
single argument defines an implicit
conversion from the parameter type to
the class type.

Class Salesltem {
Public:
Salesltem(const std::string &ook = *)
:ishbn (book), units_sold(0), revenue(0.0) {}

String null_book = “9-999-9999-9";
Item.sale_isbn(null_book); // implicit type conversion..

class String {

public
String(int); // Allocation constructor
...

h

/I Function that receives an object of type String as an argument
void foo(const String&);

/I Here we call this function with an int as argument
int x = 100;
foo(x); // Implicit conversion =>foo(String(x))

3/6/2017

User defined implicit type

Suppressing implicit

o friend function/classes
Can access private and protected
(more later) members of another class

friend functions are not member
functions of class

Defined outside of class scope

A Friend declaration begins with the
keyword “friend”

°
conversion conversions.
#include: >
#include: “ HPRTRL H
o Use “explicit” before conversion
std::string str;
public:
String(char * cp){str = cp;); ConStrUCtors'
operator const char * () const;
)i
String::operator const char * () const{ ici i (3)
explicit String(char* cp); // Constructor
const char * out = str.c_str():
void foo(const String&
void bar(const char
int main(){
foo("hello"); /f Implicit type conversion char* -> String
String peter = "pan”; // Calls parametrized constructor. Treats "pan” as char *
bar(peter);
return 0;
° Friends. ° Friends

o Properties

Friendship is granted, not taken
NOT symmetric

if B a friend of A, A not necessarily a friend of B
NOT transitive

if Aafriend of B, B a friend of C, A not necessarily a
friend of C.

° Friends

friend declarations
friend function
Keyword £riend before function prototype in
class that is giving friendship.
friend int myfunc(int x);
Appears in the class granting friendship
friend class

Type friend class Classname in class
granting friendship
If ClassOne granting friendship to ClassTwo,
friend class ClassTwo;
appears in ClassOne's definition

Friends

o Why use friends?
to provide more efficient access to data
members than the function call
to accommodate operator functions with
easy access to private data members

o Be careful: Friends can have access to
everything, which defeats data hiding.

o Friends have permission to change the
internal state from outside the class. Always
use member functions instead of friends to
change state

3/6/2017

An example

#inClude <iostream>
#include <string>

class Salesltem {

friend bool operator==(const Sales_item&, const Salesltem&);
friend std::istream& operator>>(std::istream&, Salesltem&);
friend std::ostream& operator<<(std::ostream&, const Salesltem&);
/I other members as before
public:
/I added constructors to initialize from a string or an istream
Salesltem(const std::string &book):
isbn(book), units_sold(0), revenue(0.0) { }
Salesltem(std::istream &is) { is >> *this; }
public:
/I operations on Salesltem objects

/I member binary operator: left-hand operand bound to implicit this pointer

Salesltem& operator+=(const Salesltem&);
/I other members as before

Class to handle an integer sequence

1+ File: numbers.hpp */

#include<iostream>
#include<string>
#include<ostream>

class Sequence{
private:
int * numbers;
int length;
public:
Sequence();
Sequence(const int, std::string &)
Sequence(const Sequenceg);
~Sequence()

/I Parameterized constructor
J/ Copy constructor
Il Destructor

void operator=(const Sequence &)
int operator()(int);

friend std::ostreamé. operator<<(std::ostreamé, const Sequences&);

Il Overloaded assignmnt

(FIRIBEECTIIEEREDY J* File: part of numbers.cpp */
#include "numbers.hpp”
#include<iostream>
#include<string>
#include<sstream>
#include<ostream>

Sequence::Sequence(const Sequence & inseq){
std::cout << "Copy constructor” << std::endI;
length = inseq.length;

new intflength];

0; i< length; i++){

numbers[i] = inseq.numbersil;

Sequence::Sequence(){
numbers = nullptr;)
length = 0;

Sequence::~Sequence(){

if(numbers != nullptr)
Sequence::Sequence(const int n, std:istring & instring){ ‘ B0

std::stringstream s delete [] numbers;
et numbers = nullptr;

ss << instring;

length =

numbers = new intllength]; }
forint i = 0; i < length; i++){
ss >> numbersil;

1* File: part of numbers.cpp */ e —
int Sequence::operator()(int index){ Hinclude<iostream>

return numbersfindex); #include "numbers. hpp"
}

int main(){
std::string instr = "12 34 56 78 88 77",
std:ostream operator<<(sid::ostream& out, const e
Sequenced. seq)(A
L oo et << << sigendl: std::cout << w(2) << std:endl; // overloaded ()
IS ERISEEIB el std:zcout << w; // overloaded << operator
out << seqnumbersf] <" ; ;
out << std:endl;
return out;

}
Output:
56

Overloaded <<
12 3456 78

