
24/06/2019

1

REPRODUCING
PARALLEL

STOCHASTIC
SIMULATIONS

Enabling parallel and sequential results comparison
before scaling on top supercomputers

HILL David – ISIMA/LIMOS UMR CNRS 6158

1ST LET’S GO BACK
TO PHILOSOPHY

OF SCIENCE
Just because we (computer scientists) give our own definitions,

which adds confusion - It’s getting cold… isn’t it?

24/06/2019

2

THE SCIENTIFIC METHOD
https://i0.wp.com/peegel.info/wp-content/uploads/2017/10/scientific_method.png

Traditionally we have 2 main
branches of the scientific
method:
1 – Deductive branch
Mathematics and formal logic
2 – Empirical branch
Statistical analysis of
controlled experiments

Hope for a 3rd & 4th branches
3 – Large Scale Simulation
4 – Data intensive & data
driven computer Science

But we do not meet the
standards of Branch 1 & 2…

CRITERIA OF THE SCIENTIFIC METHOD

The major criteria of the scientific method are intangible principles :

 Refutability : a scientific affirmation is said to be rebuttable if it is possible to record
an observation or conduct an experiment which, if it were positive, would contradict
this statement.

 Non-contradiction : is the law that prohibits affirming and denying the same term
or proposition

 Reproducibility : Science works by drawing "laws" or "principles" from reproducible
observations whose main property is to be true as long as no observation has proved
otherwise.

https://i0.wp.com/peegel.info/wp-content/uploads/2017/10/

24/06/2019

3

REPRODUCIBILITY…

 Many of us know the important work of Karl Popper (philosopher of sciences)
in modeling and simulation. Karl Popper is generally regarded as one of the greatest
philosophers of science of the 20th century.

 The criterion of reproducibility is one of the conditions on which Popper distinguishes
between the scientific or pseudo-scientific character of a study.

 Scientific conclusions can only be drawn from a well observed and described “event”,
which has appeared several times, observed by different people and/or studies.

 This criterion eliminates random effects that distort the results as well as errors
in judgment or manipulations by scientists.

YOU KNOW THAT MANY DOMAINS ARE IMPACTED

‘REPRODUCIBILITY CRISIS…’

24/06/2019

4

WHAT ABOUT COMPUTER SCIENCE ?
(PSEUDO-SCIENCE TOO?)

Remember the recent repeatability issues
found in a 2015 survey :

A study of 601
‘A’ ranked papers
(journal or conference papers)
published by the distinguished ACM
(Association for Computing Machinery)
showed that a only bit more than 30% of the results could be reproduced

http://reproducibility.cs.arizona.edu/

REPRODUCIBILITY & CORROBORATION

 There is a growing alarm of results
that have been published
but that cannot be reproduced.

 Science advances faster when people waste less time pursuing false leads.

 Science moves forward by corroboration when researchers verify each
other’s data.

 A study of top scientific research in UK (REF) showed that only 11%
of medical studies where reproducible. (First page of “The Guardian”)

http://reproducibility.cs.arizona.edu/

24/06/2019

5

REPRODUCIBLE COMPUTER
SCIENCE IS GOOD

BUT REPEATED COMPUTER
SCIENCE CAN BE BETTER

LET’S HAVE A LOOK AT SOME DEFINITIONS…
WHAT DO WE SEE FROM COLLEAGUES

 In Fomel and Claerbout 2009:

Reproducibility often means replication depending on computer scientists

 In Drummond 20091:

 “Reproducibility requires changes; replicability avoids them”

 In Demmel and Nguyen 2013 (COMPUTER ORIENTED – means replication)

 “Reproducibility, i.e. getting bitwise identical results from run to run”

 In Revol and Théveny 2013 (COMPUTER ORIENTED TOO – means replication too)

 “What is called numerical reproducibility is the problem of getting the same result when the
scientific computation is run several times, either on the same machine or on different machines,
with different numbers of processing units, types, execution environments, computational loads,
etc.”

1: http://www.site.uottawa.ca/ICML09WS/papers/w2.pdf THIS IS THE
MOST
COMMON
SCIENTIFIC
SENSE

24/06/2019

6

WHY DO WE NEED REPEATABILITY ?

 If you don’t have repeatability, how would we debug our stochastic simulations ?
How do we repeat/reproduce the events observed in simulations ?
(confirmation of Higgs discovery, etc…)

 In Digital Computer Science we are used to deterministic computing
and we expect « repeatability » of computer experiments. Computer debugging and
program setup is based in repeatability!

 Even when we use pseudo-random numbers for stochastic models, we are running
deterministic experiments since pseudo-random number generators have been
carefully designed to be repeatable (though some computer scientist often use the
“reproducible” term…).

 In the context of a Biological or Physical experiment, repeatability measures the variation
in measurements taken by a single instrument or person under the same conditions,
while reproducibility measures whether an entire study or experiment can be reproduced
in its entirety – by the same research theme or by another team.

IN ADDITION

TO POSSIBLE

INDIVIDUAL ERRORS

AND MISCONDUCTS…

HERE ARE SOME

TECHNICAL REASONS

FOR NUMERICAL

REPEATABILITY

FAILURES

• Round off errors

• Order of floating point operations (dynamic execution / out of order)

• …

Floating point…

• Number of processors, Networking Interconnect, devices and latency

• Difference between architectures (regular processors, vs
accelerators,…) – Hybrid computing.

• Processor implementation or design bugs

• Soft errors

• …

Hardware

• Operating systems, compilers,

• Libraries, dependencies and software stack versions

• Parallelization techniques

• Virtual machines and containers (rare in HPC > bare metal)

• …

Software

24/06/2019

7

ZOOM IN SOME TECHNICAL REASONS LIKE « OUT OF ORDER EXECUTION »
OF FLOATING POINT INSTRUCTIONS

 Out-of-order execution is also known as dynamic execution. Most modern high-
performance microprocessors optimize the execution of instructions based on
the availability of input data to avoid delays. By default C & C++ are not impacted,
unfortunately Fortran is impacted…

 Original order of instructions – not always respected !

 The micro-processor avoids having parts of its internal computing
units being idle by processing the next instructions which are
able to run immediately and “independently”.

 It is the equivalent of the software dynamic recompilation
which enables improving instruction scheduling.

 It may impact floating point operations
floating point arithmetic is not associative (for + & *)
ex: a + (b + c) != (a + b) + c

See Intel – 2014 https://www.mpcdf.mpg.de/services/computing/software/languages-1/FP_accuracy_reproducibility.pdf

ANOTHER EXAMPLE WITH SOFTWARE

FORGET JAVA FOR HPC OR LOOK AT THIS OLD PAPER AND PRESENTATION…

Prof. Kahan
is THE leader for IEEE 754
Floating-Point standard.

Numerically non-expert
programmers are legion

Error-analysis can be very
unobvious

Competent error-analysts
are extremely rare…

24/06/2019

8

FLOATS WERE DESIGNED BY A COMMITTEE IN THE 1980’S
SEE GUSTAFSON’S CONFERENCE – BEATING FLOAT’S AT THEIR OWN GAME
http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf (Posits, Unums…)

EXAMPLE OF MICROPROCESSOR DESIGN ERRORS

AND MISS-BEHAVIORS > HYPER-THREADING, MELTDOWN, SPECTRE,…

24/06/2019

9

17

RELIABILITY & HPC…SILENT & SOFT ERRORS…

1. Change the system state by ‘external forces’
• Alpha particles
• Cosmic rays (High Energy Particles from space)
• Thermal neutrons
• Variation in voltage, temperature, etc.

2. They are at the origin of ECC…to avoids bits flips in memory cells
• There is also a rising of soft errors in arithmetic units !!!
• The more we size down the more this problem increases.
• Chip manufacturers spend money and silicon space to avoid

this kind of errors:
 Samsung, GlobalFoundries, and IBM introduced the world's first 5nm chip

with GAAFET transistors, GAA (gate-all-around) stacked nano-sheet transistors.

3. Soft errors are difficult to detect and reproduce
Using spare time of Supercomputers to check ?

RUN TO RUN REPEATABILITY ERRORS
SEE THE WORK OF FRANCOIS THOMAS – OPTIMIZATION OF WEATHER APPLICATIONS

ON POWER AND X86 ARCHITECTURES (TOULOUSE CERFACS) – BITWISE REPEATABILITY IS THE TARGET

24/06/2019

10

WE DON’T HAVE EASY SOLUTIONS – BUT TOOLS ARE COMING…

Evolutions of containers like Singularity for HPC - efficient binary containers (ready for ARM
processors…)

Embedded publishing :
Sweave, knitR, ReScience, SHARE, Verifiable Computational Research, SOLE, Collage Authoring
Environment.

Dissemination Platforms:
IPOL, ResearchCompendia.org, Madagascar, MLOSS.org, CoRR (NIST), RunMyCode.org,
nanoHUB.org, thedatahub.org, Open Science Framework, Scientific Open Data,…

Workflow Tracking & Resarch Environment :
Sumatra, CoRR (NIST), CDE, Kepler, Chameleon, Galaxy, Tavera, Pegasus, Jupyter notebook,
GenePattern,

TOWARDS A METHOD
FOR REPETABLE

PARALLEL
STOCHASTIC
SIMULATIONS

24/06/2019

11

21

Most Parallel Monte Carlo Simulations are often easy to parallelize.

 Particularly when they fit with the independent bag-of-work paradigm.

 Such stochastic simulations can easily tolerate a loss of jobs, if hopefully enough jobs
finish for the final statistics…

 Requirements:

 Fine Generator, Fine Parallelization technique and “independent” Parallel random
streams.

 Random statuses should be small and fast to checkpoint at Exascale
(Original MT – 6Kb status – MRG32K3a 6 integers)

 Should fit with different distributed computing platforms / HPC nodes

 Using regular processors

 Using hardware accelerators : GP-GPUs, Intel IGP/GPU Xe, Phi, (and FPGAs ?)

Parallel Stochastic Simulations…
Various requirements…

EVEN IF WE HAVE NO DEPENDENCY BETWEEN ELEMENTARY COMPUTING

REPEATABILITY OF PARALLEL SIMULATION IS NOT GRANTED

A system being of collection of interacting “objects” (dictionary definition)
– a simulation will make all those objects evolve during the simulation time
with a precise modeling goal.

 To obtain repeatability – think parallel when you design your sequential code : Assign
an « independent » random stream and initialization status for the pseudo-random
number generator of each stochastic object of the simulation.

 An object could also encapsulate a random variate used at some points of the simulation.
Every random variate could also have their own random stream with the same approach.

 This O.O. approach, applied to stochastic objects, is the key to have a reference
sequential program that we will be able to compare to a parallel version.

[Hill 1996] : HILL D., “Object-oriented Analysis and Simulation”, Addison-Wesley, 1996, 291 p.

24/06/2019

12

BASICS FOR STOCHASTIC SIMULATIONS

REPEATABLE PARALLEL RANDOM NUMBER GENERATORS

Before proposing a method, we need to be aware of some elements:

1. Check with some top PRNGs used with different execution context (hardware,
operating systems, compilers… (Use exactly the same inputs, Execute on various
environments, When possible, compare our outputs with author’s outputs
(from publications or given files)

2. Have a short list of top generators.

3. Be aware that the initialization of generators
can matter (keep a huge amount of statuses if needed

4. Be aware of the major parallelization techniques
for the current top generators

REPEATING PRNG RESULTS

PORTABILITY ISSUES EVEN ON REGULAR MACHINES

Errors found: Different Compilers (2 cases), With Identical Hardware (2 cases), Operating
Systems (2 cases), Bare Metal vs. Virtual Machine (1 case).

See > DAO V.T., MAIGNE L., BRETON V., NGUYEN H.Q., HILL D., “Numerical Reproducibility, Portability And Performance Of Modern Pseudo
Random Number Generators : Preliminary study for parallel stochastic simulations using hybrid Xeon Phi computing processors”, European
Simulation And Modelling Conference, Oct. 22-24, 2014, Porto, Portugal, pp. 80-87.

24/06/2019

13

REMEMBER THE POTENTIAL IMPACT OF THE GENERATOR QUALITY

FOR SENSITIVE APPLICATIONS…

Example of two results of a local TEST simulation – PDE Harmonic solution computed with
Brownian movements.
• On the left the image is obtained with the current Linux rand (which is already far better

than the old std UNIX rand on 15bits).
• On the right – same simulation with the 2002 version of Mastumoto Mersenne Twister

Then, the right solution is obtained : ellipsoid with a circular section.

THERE IS NO PERFECT GENERATOR - THE INITIALIZATION MATTERS TOO…
EX: FIRST MERSENNE TWISTER : A KNOWN DEFAULT…

26

Ex: very long recovery of zero-excess initial state
for MT19237 before 2002.
(More than 700 000 drawing to recover).

Figure on the right is an extract from:
(Panneton et al., 2006)
Panneton F., L'Ecuyer P. and Matsumoto M. Improved Long-Period
Generators Based on Linear Recurrences Modulo 2 [Article] // ACM
Transactions on Mathematical Software. - 2006. - 1 : Vol. 32. - pp. 1-16.

Number of prints to find proportions of 1 and 0 equilibrated
after an initialization with a large majority of 0
Tested with WELL and Mersenne Twister 19937
(ordinate: proportion of 1 and on the x-axis the number of
prints made).

24/06/2019

14

27

SOME TOP PRNGS (PSEUDO RANDOM NUMBER GENERATORS)

Green PRNG are said ‘crush’ resistant (TestU01 software) and can be recommended:

 MRG (Multiple Recursive Generator) – slow but top API for reproducing parallel simulations
xi = (a1*xi-1 + a2*xi-2 + … + ak*xi-k + c) mod m – with k>1

Ex: MRG32k3a & MRG32kp – by L’Ecuyer and Panneton

 MLFG (Multiple Lagged Fibonacci Generator) – Non linear
by Michael Mascagni MLFG 6331_64

 Mersenne Twisters – by Matsumoto, Nishimura, Saito (MT, SFMT, MTGP, TinyMT…)

 WELLs generators by – Panneton, L’Ecuyer and Matsumoto, L’Ecuyer

 Phylox and Threefry – by Salmon et al. presented at SC’11 with crypto background and a
parameterization technique to distribute different. In his master’s thesis, Liang Li (Prof.
Mascagni’s student couldn’t reproduce these tests. I had the same problem with Philox4x32-10.

See the following reference for advices including hardware accelerators.

HILL D. PASSERAT-PALMBACH J. MAZEL C., TRAORE, M.K., "Distribution of Random Streams for Simulation Practitioners",
Concurrency and Computation: Practice and Experience, June 2013, Vol. 25, Issue 10, pp. 1427-1442.

28

 The Central Server (CS) technique (avoid for HPC reproducibility)

 The Leap Frog (LF) technique. Means partitioning a sequence {xi, i=0, 1, …} into ‘n’ sub-
sequences, the jth sub-sequence is {xkn+j-1, k=0, 1, …} - like a deck of cards dealt to card
players.

 The Sequence Splitting (SS) – or blocking or regular/fixed spacing technique. Means
partitioning a sequence {xi, i=0, 1, …,} into ‘n’ sub-sequences, the jth sub-sequence is
{xk+(j-1)m, k=0, …, m1} where m is the length of each sub-sequence

 The Cycle Division or Jump ahead approach. Analytical computing of the generator
state in advance after a huge number of cycles (generations). Jump Ahead technique
(can be used for both Leap Frog or Sequence splitting)

 The Indexed Sequences (IS) - or random spacing. Means that the generator is initialized
with ‘n’ different seeds/statuses

QUICK SURVEY OF RANDOM STREAMS PARALLELIZATION

(1) USING THE SAME GENERATOR

24/06/2019

15

QUICK SURVEY OF RANDOM STREAMS PARALLELIZATION

(2) USING DIFFERENT GENERATORS:
Parameterization:

The same type of generator is used with different parameters for each processor meaning
that we produce different generators

 A paper describes an implementation of parallel random number sequences by varying a
set of different parameters instead of splitting a single random sequence
(Chi and Cao 2010).

 For Mersenne Twister a dynamic creation technique is available.

 Phylox & Threefry (2011) are counter based generator, thus they propose parametric
statuses formed only by a single key that can be set at runtime according to a unique
identifier for each thread.

 They can be used on CPU or GPU with good performance in terms of throughput and memory footprint (a
GPU version of these PRNGs is supplied directly by their authors, either for CUDA or for OpenCL).

29

A METHOD FOR REPEATABLE PARALLEL

STOCHASTIC SIMULATIONS

Remember that a stochastic program is « deterministic » if we use (initialize and parallelize) correctly
the pseudo-random number.

1. An object oriented approach has to be chosen for every stochastic objects which has its own
random stream.

2. Select a modern and statistically sound generators according to the most stringent testing
battery (TestU01);

3. Select a fine parallelization technique adapted to the selected generator,

4. The simulation must first be designed as a sequential program which would emulate parallelism:
this sequential execution – with compiler flags set on ‘repeatability’ – will be the reference to
compare parallel and sequential execution at small scales on the same node.

5. Externalize, sort or give IDs to the results for reduction in order to keep the execution order or
use compensated algorithms

[Hill 2015] :
Hill D., “Parallel Random Numbers, Simulation and reproducibility”. IEEE/AIP - Computing in Science and Engineering, vol. 17, no 4, 2015,
pp. 66-71.

24/06/2019

16

TEST APPLICATION FOR
PARALLEL MONTE

CARLO
SIMULATION OF

MUONIC TOMOGRAPHY

‘ORIGINAL’ TEST/REFERENCE APPLICATION WITH PHYSICISTS

MUONIC TOMOGRAPHY – UP TO A BILLIONS OF THREADS…

Puy de Dôme
Volcano
(France)

Places of atmospheric
Muons sensors

24/06/2019

17

Atmospheric muons go through matter. Depending on their energy and of the matter they
traverse it is possible to reconstruct the inner image of a large edifice with multiple sensors
(figure by Samuel Béné)

PRINCIPLE OF MUONIC TOMOGRAPHY

The muon is an elementary particle similar to the electron, with a negative charge and a spin of 1/2, but with a
much greater mass. It is classified as a lepton. The muon is not believed to have any sub-structure—that is, it is
not thought to be composed of any simpler particles (as is the case of other leptons).

TOMUVOL PROJECT

LMV (Laboratoire Magmas et
Volcans) and LPC (Laboratoire
de Physique Corpusculaire)
made a joint venture with
computer scientists for this
TOMUVOL project
(TOmographie MUonique des
VOLcans)

http://wwwobs.univ-bpclermont.fr/tomuvol/presentation.php

24/06/2019

18

TARGET NODES WITH REGULAR XEON & INTEL XEON PHI
XEON PHI – STILL ON TOP CEA MACHINE LIKE JOLIOT – CURIE > 9 PF

Parallel stochastic simulation of muonic tomography – Aim finish computing in less than 24h

 Parallel programming model using p-threads

 Each Muon is a stochastic object

 Multiple streams using MRG32k3a

 A billion threads handled by a single node

 Compiling flags set to maximum reproducibility – Sequential results obtained after 5 weeks – 3
months for a single Phi core (results below are with all CPU/Phi cores).

https://github.com/HeisSpiter/HPCsim

1st we did a round of sequential optimization
with the code given by our physicists colleagues

16X on a single CPU core

SCHWEITZER, P., MAZEL, C., FEHR, F., CÂRLOGANU, C., HILL D., “Proper parallel Monte Carlo for computed tomography of volcanoes”, Proceedings of the
2013 International Conference on High Performance Computing & Simulation, ACM/IEEE/IFIP, Helsinki July 1st-5th, 2013, pp. 519-526.

REPRODUCIBILITY BETWEEN PHI & REGULAR XEON

FIRST ATTEMPTS

 First try with simple compilations of simulation to study the validity of the results
Intel C compiler with the "-O2 -g -Wall -Wextra" - (no -fast-math no aggressive –O3)

 For Xeon Phi, we added the "-mmic“ option. (no -fast-math no aggressive –O3).

 We evaluate the deviation in the results when the compilation is left free (limited to 1000 muons
events – muon reaching the detector)

 Very important differences in final muon energy have been noticed (up to 0.18 GeV)

 Also noticed important differences for the final position (up to 0.3 m).

 If the initial energy of the particle is between 5 GeV and 10 TeV, its final energy is between 0.15 GeV
and 5 TeV (or even zero, if it does not even reach the detector). A difference of 0.18 GeV is therefore
not acceptable.

 The detector has plans whose size is one meter by one meter. An inaccuracy of 0.3 m on the end
position means a 30% inaccuracy on one dimension of the plane!

24/06/2019

19

MORE CAREFUL ATTENTION TO COMPILER FLAGS

After different tries with Intel Compiler flags we retained the following:

“-fp-model precise -fp-model source -fimf-precision=high -no-fma”

for the compilation on the Xeon Phi – (no -fast-math no aggressive –O3)

“-fp-model precise -fp-model source -fimf-precision=high”

for the compilation on the Xeon CPU – (again no -fast-math no aggressive –O3)

With this set of flags, the results on the two architectures are reproducible (the same order).

Both of them have the same sign and the same exponent (even if some exceptions would be
theoretically possible, they would be very rare and haven’t been observed).

The only bits that can differ between these results are the least significant bits of the significand.

For a given exponent e, and a result r1 = m × 2e, the closest value greater than r1 is r2 = (m + εd) ×
2e, where εd is the value of the least significant bit of the significand: εd = 2-52 ≈ 2.22 10-16.

BIT FOR BIT REPRODUCIBILITY STUDY (X86 VS K1OM)

As announced by Intel we cannot expect bit for bit reproducibility when working with such different
architectures - in our case (x86 & k1Om).

 However with the best compiler flags, we observed bit for bit reproducibility in single precision but
not in double precision (but with the best compiler flags we found for reproducibility)

 The relative difference
between processors
(E5 vs Phi) in double
precision were
analyzed and
are shown here.

Run-to-Run Reproducibility of Floating-Point Calculations for Applications on Intel® Xeon Phi™ Coprocessors (and Intel® Xeon® Processors) – by Martin Cordel -
https://software.intel.com/en-us/articles/run-to-run-reproducibility-of-floating-point-calculations-for-applications-on-intel-xeon

See also P. Schweitzer thesis & paper : SCHWEITZER P., CIPIÈRE S., DUFAURE A., PAYNO H., PERROT Y., HILL D. and MAIGNE L., "Performance evaluation of multi-
threaded Geant4 simulations using an Intel Xeon Phi cluster", Scientific Programming, Article ID 980752, 10 pages, 2015. doi:10.1155/2015/980752.

24/06/2019

20

 Huge Numerical differences when we do not pay attention to compiler flags

 Repeatability achieved only for identical execution platforms.

 Comparison possible with sequential results – gain in confidence (with the given method)

 Numerical Reproducibility is possible (not repeatability) for Parallel Stochastic
applications with independent computing on different architectures.

 Can be resilient to soft errors on supercomputers (use statistics – ‘N out of M’).

 Key elements of a method have been presented to produce numerically reproducible results
for parallel stochastic simulations comparable with a sequential implementation (before
large scaling on coming Exascale systems)

 Numerical replication is important for scientists in many sensitive areas, finance, climate,
nuclear safety, medicine…

CONCLUSION

COMPUTERS CAN BE AMPLIFIERS OF ERRORS…

