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Introduction

What are Monte Carlo Methods?

Monte Carlo Methods: Numerical Experimental that Use Random
Numbers

A Monte Carlo method is any process that consumes random numbers

1. Each calculation is a numerical experiment
I Subject to known and unknown sources of error
I Should be reproducible by peers
I Should be easy to run anew with results that can be combined to reduce the variance

2. Sources of errors must be controllable/isolatable
I Programming/science errors under your control
I Make possible RNG errors approachable

3. Reproducibility
I Must be able to rerun a calculation with the same numbers
I Across different machines (modulo arithmetic issues)
I Parallel and distributed computers?
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Some Illustrative Monte Carlo Applications

Integration: The Classic Monte Carlo Application
1. Consider computing I =

∫ 1
0 f (x)dx

2. Conventional quadrature methods:

I ≈
N∑

i=1

wi f (xi)

I Standard quadrature is of this form with deterministic error bounds
I If we hold work, f (xi ), constant as dimension increases we see the MC advantage vs. the

curse of dimensionality
3. Monte Carlo method has two parts to estimate a numerical quantity of interest, I

I The random process/variable: xi ∼ U[0, 1] i.i.d.
I The estimator or score: f (xi )
I One averages and uses a confidence interval for an error bound

Ī =
1
N

N∑
i=1

f (xi ), var(I) =
1

N − 1

N∑
i=1

(f (xi )− Ī)2 =
1

N − 1

[
N∑

i=1

f (xi )
2 − NĪ2

]
,

var (̄I) =
var(I)

N
, I ∈ Ī ± k ×

√
var (̄I)
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Some Illustrative Monte Carlo Applications

Other Early Monte Carlo Applications
I Numerical linear algebra based on sums: S =

∑M
i=1 ai

1. Define pi ≥ 0 as the probability of choosing index i , with
∑M

i=1 pi = 1, and pi > 0
whenever ai 6= 0

2. Then ai/pi with index i chosen with {pi} is an unbiased estimate of S, as
E [ai/pi ] =

∑M
i=1

(
ai
pi

)
pi = S

I Can be used to solve linear systems of the form x = Hx + b
I Consider the linear system: x = Hx + b, if ||H|| = H < 1, then the following iterative

method converges:
xn+1 := Hxn + b, x0 = 0,

and in particular we have xk =
∑k−1

i=0 H ib, and similarly the Neumann series
converges:

N =
∞∑
i=0

H i = (I − H)−1, ||N|| =
∞∑
i=0

||H i || ≤
∞∑
i=0

Hi =
1

1−H

I Formally, the solution is x = (I − H)−1b
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Various Types of Random Numbers

Various Types of Random Numbers

1. There are ideal random numbers that serve as a powerful abstract for testing, and
abstraction

2. There are several types of computational random numbers optimized for various
aspects of randomness

I “Real" random numbers: use a ‘physical source’ of randomness
I Pseudorandom numbers: deterministic sequence that passes tests of randomness
I Quasirandom numbers: well distributed (low discrepancy) points
I Cryptographic random numbers: unpredictable random numbers

Cryptographic
     numbers

Pseudorandom
      numbers

Quasirandom
     numbers

Uniformity

UnpredictabilityIndependence
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Reproducibility for Random Numbers

Random Numbers and Reproducibility

I In general, all computations that consume random numbers benefit from being
reproducible

1. Reproducibility aids considerably in permitting program debugging, and other careful
testing and measurement functions

2. Unpredictable random numbers are specifically designed not to be reproducible mostly to
enhance cryptographic security

3. Unpredictable random numbers are often produced with the assistance of “real” sources
of randomness such as radioactive decay or thermal noise

I Computational reproducibility is a concept that makes the most sense in simulation,
and so it concerns mostly

1. Pseudorandom numbers: deterministic sequences of random numbers that pass tests of
randomness

2. Quasirandom numbers: highly uniform and deterministic random numbers (not considered
further)
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Reproducibility for Random Numbers

Reproducibility for Monte Carlo Computations and Simulation

I As mentioned previously, Monte Carlo computations and other stochastic simulations
are numerical experiments

1. You publish your computations as a confidence interval using the sample mean and
variance

2. If you use different random numbers, you get different results (mean and variance)
3. Error estimation is stochastic

I Since Monte Carlo computations and simulations are computations, they need to be
done in an environment that permits reproducibility

1. Publication and other scientific communication requires reproducibility
2. Reproducibility of Monte Carlo computations and other stochastic simulations ultimately

rests on the reproducibility of the random numbers used
3. Sometimes a computation may fail due to bad interaction with a particular RNG and one

would like to rerun with a completely different type of RNG to probe the failure
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Requirements for a Reproducible Random Number Generator

I Reproducibility of pseudorandom numbers rests on reconstruction of the random
number generator (RNG) state

I Consider the simple linear congruential generator (LCG)

xn+1 = axn + b (mod m)

1. We denote this as LCG(a, b,m; x0), where there are parameters; state/seed
2. By knowing the parameters and restoring the state/seed one can regenerate the same

random numbers from LCG(a, b,m; x0) as often as you like
I Absolute Reproducibility for a RNG is still challenging (remember that this is an

integer sequence)
1. An RNG running on a single processor
2. An RNG running on a large distributed memory multiprocessor system (SPRNG)
3. The are many situations where RNGs running on complicated and unreproducible

hardware are very hard to make reproducible
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Difficult Situations for RNG Reproducibility

Difficult Situations for RNG Reproducibility

I Many RNG reproducibility issues follow from the desire to run a computation
previously run with the same random numbers on a different architecture

1. A computation run on a multiprocessor recomputed on a single processor: support for
RNG serialization

2. A computation run on differently configured multiprocessors (ignoring accelerators) is
currently supported in SPRNG

3. A computation run on unpredictable hardware: example being an OpenMP code running
on a multiprocessor with unknown numbers of threads

I Absolute Reproducibility for a RNG is still desirable, but we are working in SPRNG to
ensure a new type of reproducibility

1. Most computations do not need to be reproducible, as they are part of development or
proof-of-concept

2. Reproducibility is necessary when a computation will be used for publication
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SPRNG

SPRNG is Based on Parameterization

1. SPRNG is based on parameterized RNGs, which was invented by the SPRNG authors
2. Advantages of using parameterized generators

I Each unique parameter value gives an “independent” stream
I Each stream is uniquely numbered
I Numbering allows for absolute reproducibility, even with MIMD queuing
I Effective serial implementation + enumeration yield a portable scalable implementation
I Provides theoretical testing basis

3. Implementation details
I Generators mapped canonically to a binary tree
I Extended seed data structure contains current seed and next generator
I Spawning uses new next generator as starting point: assures no reuse of generators

4. A good application that provides motivation is executing parallel neutronics in an
absolutely reproducible way
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Reproducibility for Random Numbers

Forensic Reproducibility

A New Concept: Forensic Reproducibility

I Forensic Reproducibility: The ability to annotate a computation in a manner that the
same computation can be redone using the annotations, and new software tools;
however, the computation many not be feasible on the same architectures

I Forensic reproducibility in random number generation is a major new focus for further
SPRNG development

1. The SPRNG RNG data type will be expanded to record the parameters and state/seed of
all the generators

2. This will be communicated to a central file created during the computation
3. This file can be used, with new SPRNG utilities, to recompute using the same RNGs
4. At present, this recomputation will only be supported on a single processor in SPRNG

I Absolute reproducibility will still be possible on SPRNG as long the computation does
not have

1. Serialization
2. Unreproducible hardware
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Many Types of Computations Have Had Reproducibility Issues

Numerous scientific applications have reported failure of numerical reproducibility:

I Modeling deformation of metal sheets [1];

I Compressible fluid dynamics simulations [2];

I Hydrodynamic finite element simulations [3];

I Climate simulations [4];

I Molecular dynamics simulations [5];

I Neural network simulation [8];
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A Major Problem

A Major Problem

I Scientific applications have different requirements on numerical reproducibility
1. Strictly bit-by-bit identical
2. Reproducible within satisfactory bounds
3. Reproducible if the results are statistically distributed in a manner consistent with the

problem
I The major problem lies in

1. How to define appropriate measures of numerical reproducibility
2. How to estimate to what extent a reproduced numerical operation can be deemed

acceptable to scientific computing applications
I A good measure of numerical reproducibility allows us to identify critical components

within a scientific computing program that mostly affect the overall numerical
reproducibility
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Potential Solutions

Potential Solutions

I Measuring numerical reproducibility problem from both deterministic and statistical
aspects

I Interval algorithms [6], which deal with intervals instead of numbers and obtain
guarantees that the exact results are within the intervals.

I The following needed to be investigated:
1. The propagation of the intervals along computation path under different orders
2. How different floating point execution orders impact the result intervals
3. How well these intervals contain the results from different execution order
4. Determine whether interval arithmetic suffers from underestimate or overestimate

problems
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Potential Solutions

Potential Solutions

I Stochastic methods [7], which is based on random sampling to approximate round-off
error accumulated in scientific codes

I Numerical reproducibility can be quantified by confidence intervals, which are
estimated by the distribution of randomly perturbed execution order

I The solution of dynamical system can have stable long-term structure that is relatively
immune to perturbations due to unreproducible accumulation of round-off errors

1. ODEs that have nonlinearities can have solutions that exhibit threshold behavior
2. Accumulated round-off errors can lead to quantitatively different solutions if execution

order is changed
3. The qualitative nature of the solutions is not changed
4. Characterization of the qualitative nature of a solution for the purposes of a phase-space

reproducible solution is a possible approach
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Potential Solutions

Potential Solutions
Different ordering of 
arithmetic operations

Confidence interval of a 
computed result

Evaluating round-off errors
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Figure: Computing the Overall Confidence Interval of the Computed Result of a Summation of Three
Floating-point Numbers using Stochastic Arithmetic.
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Conclusions and Ongoing Work

I Reproducible RNGs
1. Reproducibility for RNGs is very different than other computational tools
2. Absolute reproducibility, while very desirable, is sometimes not feasible
3. Forensic reproducibility is a more tractable goal

I Future Work
1. Studying two numerical problems, integration and matrix-matrix multiplication, to evaluate

the effectiveness of various deterministic and stochastic measures
2. Comparing the computational efficiency, accuracy, and coverage of the deterministic and

stochastic measures of numerical reproducibility on various numerical operations
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Questions?

Questions/Comments/Offers?

Thank You
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