
1

Lecture 4

Redirecting standard I/O & Pipes

COP 3353 Introduction to UNIX

2

Standard input, output and error

• standard input (0: stdin)

– The default place where a process reads its input

(usually the terminal keyboard)

• standard output (1: stdout)

– The default place where a process writes its output

(typically the terminal display)

• standard error (2: stderr)

– the default place where a process can send its error

messages (typically the terminal display)

3

Redirecting standard I/O

• Standard input and output can be redirected providing a

great deal of flexibility in combining programs and unix

tools

• Can redirect standard input from a file using <

a.out < input12

– any use of stdin will instead use input12 in this example

• Can redirect standard output to a file using >

testprog1 > testout1

cal > todaycal

a.out < input12 > testout

– the stdout of a.out is directed to file testout1 in this example

• Can also redirect stderr and / or stdout at the same time

4

Appending to a file

• The >> operator appends to a file rather than

redirecting the output to a file

cat textinfo >assign4

prog1.exe >>assign4

prog2.exe >>assign4

cat endinfo >>assign4

5

Pipes

• Pipes allow the standard output of one program to
be used as the standard input of another program

• The pipe operator ‘|’ takes the input from the
command on the left and feeds it as standard input
to the command at the right of the pipe

• Examples
ls | sort -r

prog1.exe < input.dat | prog2.exe |

prog3.exe >output.dat

ls -l | cut -c 38-80

• Pipes are more efficient as compared to using
intermediate files

6

Another Example

du -sc * | sort -n | tail

• The du command is for disk usage (default is in

blocks of 512 bytes). The s and c flags are for

summarize and give a grand total respectively

• the sort -n command will sort by numeric value

• head and tail commands print out a few lines at

the head or tail of the file respectively

• http://learnlinux.tsf.org.za/courses/build/shell-

scripting/ch01s04.html

7

Separating commands

• Multiple instructions on one line

– separate instructions by ‘;’

ls -l; cal; date

• Suppose you need to continue a command to the

next line - use the ‘\’ to do so and then continue

your command on the next line

cat filename | sort \

| wc

