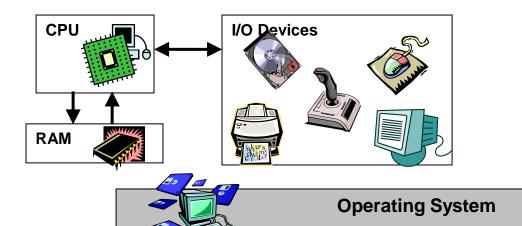
Lecture 1


Introduction & Getting Started

COP 3353 Introduction to UNIX

Brief History

- Dennis Ritchie and Ken Thompson of Bell Laboratories developed the Unix operating system in the early 1970's
 - Unix is a "pun" on Multics. Multics was a joint project of many companies and universities designed to be a leap forward in OSs. Multics contributed many ideas to OS development but failed as a useful OS.
 - Thompson needed to build an OS for a PDP-7 (9
 Kbytes of main memory) and did so with the help of
 Ritchie (who also developed the C language with Brian Kernighan). This became Unics, and then Unix.

Basic System Components & OS

Basic Components

- CPU (Central Processing Unit, "Processor")
 - Brain
- Main Memory (RAM)
 - Temporary Workspace
- I/O (Input/Output)
 - Keyboard, Mouse
 - Monitor
 - Mass Storage (Hard Drives, CD-ROM)
- Operating System
 - Oversees interaction of hardware components
 - Provides interface between software and hardware
 - Provides interface to user
 - Most common use is running programs and managing "files"

Major Components of the Unix OS

- Kernel
 - The master control program
 - Schedules tasks and switching to provide multitasking and multiuser operation
 - Manages resources
- Shell
 - Interprets user commands
 - Passes user commands to the kernel for execution (executes programs)
- File System
 - Information organized as files and specialized files called directories
- Utilities
 - Software tools provided as part of the OS. Often called commands

Some Definitions

- Executable
 - A program in a form that can be executed by the OS
- Process
 - The activation or instantiation of an executable
- Daemons
 - Processes spawned by the kernel (OS) to perform tasks on behalf of OS to manage system resource
- Filters
 - General purpose utilities transforming an input stream to an output stream while doing well-defined processing

Varieties of Unix

- Developed at Bell Labs and AT&T
- University of California Berkeley
 - BSD Unix
- Commercial versions
 - SunOS, Solaris, SCO Unix, Aix, HP/UX, Ultrix
- Freely available version
 - GNU (Gnu's not Unix) & Free Software Foundation
 - Linux (Linus Torvalds created for PCs), NetBSD, FreeBSD
- Linux Distributions (Linux kernel core + parts of Gnu etc.)
 - Fedora Core (Red Hat), SUSE Linux (Novell), Ubuntu, Mandriva, Gentoo, Debian
- Posix a standard
 - A standard for Unix like operating systems

Logging on to a CS Machine

- Machines
 - Diablo ("diablo.cs.fsu.edu") Faculty only (do not use)
 - Shell ("shell.cs.fsu.edu") Use this one generally (Linux OS)
 - Linprog ("linprog.cs.fsu.edu") Use for programming (actually a stack of "linprog1" – "linprog4", Linux OS)
 - Program ("program.cs.fsu.edu") Also for programming ("program1" "program4", Solaris OS)
- SSH (Secure Shell)
 - Use an SSH client program to connect to CS machines
 - Info from CS Systems Group on accessing CS servers, including Tectia download
 - <u>https://system.cs.fsu.edu/newuser/ssh-how-to/</u>
- New Account Application
 - http://system.cs.fsu.edu/info/newuser/index.html
 - Use SSH Client to connect to "shell.cs.fsu.edu"
 - username: **newacct**
 - password: newacct
 - Carefully follow *rules* for creating your password.
 - Remember to record / remember your username and remember your password

Variety of Shells

- Some aspects
 - Prompt (\$, %, >, machine you are on, etc)
 - History mechanism (arrow keys), string completion (tab)
- Different shells
 - sh: Bourne shell, (S.R. Bourne, good scripting capabilities)
 - csh: C shell, (UC Berkeley, closer to C syntax)
 - ksh: Korn shell, (David Korn, better interactivity)
 - bash: Bourne-again shell (built on sh with more features)
 - tcsh: T shell: (Tenex shell) similar to C shell, default on Linux /Intel installations, default on CS accounts

Editors

- Common text editors that are available (none have many of the features available on word processors) for plain text files such as programs, shell scripts, etc.
 - vi (vee-eye)
 - Available on almost all Unix machines
 - Fairly powerful and sophisticated
 - emacs (ee-macs)
 - Also widely available
 - Powerful and popular
 - nano (updated version of pico)
 - Easier to learn but simpler and not as powerful

Starting pico

• The command "nano" at a shell prompt will start the "nano" text editor with an empty buffer

\$ nano

• Specifying a file name will have "nano" open that file (or start a new file)

\$ nano testfile1

- Basic Command
 - Arrow keys are used to navigate around the document
 - Typing will insert text at the point of the cursor
 - The caret sysmbol (^) indicates you must press and hold the control (ctrl) key first, then press the command key
 - Some available commands are at the bottom of the nano window
 - ^o writes "out" the text to a file (a prompt will let you specify the name)
 - ^x exits nano

Marking and cutting and pasting in nano

- You cannot use your mouse in "nano" (actually, the mouse works to cut and paste because of the SSHClient program, but you must learn how to work without it)
- ^^ (ctrl-*shift*-^) begins marking text at the current cursor position
- Use the arrow keys to mark text
- ^k cuts text (kills),
- ^u then brings the text back at the current cursor position

nano command summary

(arrows)	Move cursor
(bksp)	Move cursor left one space, deleting character
^a	Move to beginning of line
^b	Move back one character (same as left arrow)
^e	Move to end of line
^f	Move forward one character (same as right arrow)
^n	Move to next line (same as down arrow)
^p	Move to previous line (same as up arrow)
^v	Move forward one page
^У	Move back one page
^(space)	Move to next word

nano command summary continued

^C	Shows current position
^d	Delete character at current position
^g	Display help file (^V and ^Y to scroll through)
^h	Delete previous character (same as bksp)
^i	Insert TAB character (same as tab)
^j	Justify paragraph
^ ^	Begin selecting text at current cursor position
^k	Cut selected text
^1	Redraw screen
^0	Output current buffer to a file (save)
^r	Insert text from a file
^u	Undelete last line, series of lines, or marked block you deleted. Can also "unjustify"
^ _W	Search file for text
^X	Exit nano