
Testing Parallel Random Number Generators

Ashok Srinivasan (ashok@cs.ucsb.edu)
Department of Computer Science, University of California at Santa Barbara,

Santa Barbara, CA 93106 USA
Michael Mascagni (mascagni@cs.fsu.edu)

Department of Computer Science, 203 Love Building, Florida State University,
Tallahassee, FL 32308-4530 USA

David Ceperley (ceperley@ncsa.uiuc.edu)
National Center for Supercomputing Applications, 405 N. Matthews Avenue,

Urbana, IL 61801 USA

Monte Carlo computations are considered easy to parallelize. However, the results
can be adversely affected by defects in the parallel pseudorandom number generator
used. A parallel pseudorandom number generator must be tested for two types of
correlations – (i) intra-stream correlation, as for any sequential generator, and (ii)
inter-stream correlation for correlations between random number streams on different
processes. Since bounds on these correlations are difficult to prove mathematically,
large and thorough empirical tests are necessary. Many of the popular pseudorandom
number generators in use today were tested when computational power was much
lower, and hence they were evaluated with much smaller test sizes.

This paper describes several tests of pseudorandom number generators, both sta-
tistical and application-based. We show defects in several popular generators. We
describe the implementation of these tests in the SPRNG test suite1 and also present
results for the tests conducted on the SPRNG generators. These generators have passed
some of the largest empirical random number tests.

1 Introduction

Monte Carlo (MC) methods can loosely be defined as numerical processes that
consume random numbers. MC computations have in the past, and continue
to, consume a large fraction of available high-performance computing cycles.
One of the reasons for this is that it is easy to parallelize these computations to
achieve linear speed-up, even when communication latency is high, since usually
little communication is required in MC. We discuss this further in § 2.

Since MC computations depend on random numbers, the results can be ad-
versely affected by defects in the random number sequence used. A random
number generator (RNG) used in a program to produce a random sequence is
actually a deterministic algorithm which produces numbers that look random to
an application, and hence is often referred to as a pseudorandom number gen-
erator (PRNG). That is, the application produces an answer similar to what it
would have with a truly random sequence, typically from a uniform distribution

1The SPRNG [1, 2] parallel pseudorandom number library comes with a suite of tests to
verify the quality of the generators, and is available at http://sprng.cs.fsu.edu.

1

on the unit interval.2

Each PRNG has a finite number of possible states, and hence the “ran-
dom” sequence will start repeating after a certain “period,” leading to non-
randomness. Typically, sequences stop behaving like a truly random sequence
much before the period is exhausted, since there can be correlations between dif-
ferent parts of the sequence. We shall describe these terms further, and discuss
PRNGs and parallel PRNGs (PPRNGs) in greater detail in § 2.1.

Many of the RNGs in use today were developed and tested when compu-
tational power was a fraction of that available today. With increases in the
speed of computers, many more random numbers are now consumed in even
ordinary MC computations, and the entire period of many older generators can
be consumed in a few seconds. Tests on important applications have revealed
defects of RNGs that were not apparent with smaller simulations [4, 5, 6, 7].
Thus RNGs have to be subjected to much larger tests than before. Paral-
lelism further complicates matters, and we need to verify the absence of corre-
lation among the random numbers produced on different processors in a large,
multiprocessor computation. There has, therefore, been much interest over
the last decade in testing both parallel and sequential random number genera-
tors [8, 9, 4, 10, 11, 12, 13, 14, 15, 11, 16], both theoretically and empirically.

While the quality of the PRNG sequence is extremely important, the unfor-
tunate fact is that important aspects of quality are hard to prove mathemati-
cally. Though there are theoretical results available in the literature regarding
all the popular PRNGs, the ultimate test of PRNG quality is empirical. Empir-
ical tests fall broadly into two categories (i) statistical tests and (ii) application-
based tests.

Statistical tests compare some statistic obtained using a PRNG with what
would have been obtained with truly random independent identically distributed
(IID) numbers on the unit interval. If there results are very different, then the
PRNG is considered defective. A more precise explanation is given in section 3.1.
Statistical tests have an advantage over application-based tests in that they are
typically much faster. Hence they permit the testing of a much larger set of
random numbers than application-based tests. Certain statistical tests [17, 18]
have become de-facto standards for sequential PRNGs, and PRNGs that “pass”
these tests are considered “good.” We wish to note that passing an empirical
test does not prove that the PRNG is really good. However, if a PRNG passes
several tests, then our confidence in it increases. We shall later describe parallel
versions of these standard tests that check for correlations in a PPRNG.

It turns out that applications interact with PRNGs in unpredictable ways.
Thus, statistical tests and theoretical results are not adequate to demonstrate
the quality of a PRNG. For example, the 32-bit linear congruential PRNG
CONG, which is much maligned for its well known defects, performed better
than shift register sequence R250 in an Ising model application with the Wolff
algorithm [4], though the latter performed better with the Metropolis algorithm.

2Non-uniform distributions can be obtained from a uniform distribution using certain stan-
dard techniques [3]. So we shall discuss only uniform distributions in the rest of the paper.

2

Subsequently, defects in the latter generator were also discovered. Thus we need
to test PRNGs in a manner similar to that of the application in which it is to be
used. Typically, the application-based tests use random numbers in a manner
similar to those of popular applications, except that the exact solution to the
test applications are known. Such tests are described in § 3.2.

When dealing with a new application, the safest approach is to run the
application with different PRNGs. If the runs give similar results, then the
answers can be accepted. The extra effort is not wasted, because the results
from the different runs can be combined to reduce the statistical error.

Parallelism further complicates matters, and many users resort to ad-hoc
methods of PRNG parallelization. We later demonstrate defects in some of
these strategies in section 4. In order to avoid many of these pitfalls, the SPRNG
[1, 2] PPRNG library was developed. SPRNG provides a standard interface that
permits users to easily change PRNGs and rerun their application, thus ensur-
ing that the results are PRNG independent. These generators have also been
subjected to some of the largest empirical tests of PRNGs, and correct defects
in some popular generators. These test results too are presented in § 4. The
SPRNG software also comes with a suite of “standard” tests for PPRNGs, and
can thus be used to also test non-SPRNG PRNGs.

The outline of the rest of the paper is as follows. In § 2, we discuss paral-
lelization of MC simulations, parallelization of PRNGs, and also mention some
specific PPRNGs that we use in subsequent tests. We then describe empirical
tests for PPRNGs, both statistical and application-based (physical-model tests),
in § 3, along with a description of their implementation in the SPRNG test suite.
We presents test results in § 4 and conclude with a summary of the results and
recommendations on PPRNGs in section 5 .

2 Monte Carlo Parallelization

One of the most common methods of MC parallelization is to use the same
MC algorithm on each processor, and use a different random number stream
on each processor. Results differ on the different processors due to differences
in the random number sequences alone. These results are then combined to
produce the desired answer with an overall smaller error than non-combined
results, as shown in figure 1.

Such a parallelization scheme requires little communication between proces-
sors, and thus one can easily obtain a linear speed-up. This is the main reason
for the popularity of MC on parallel computers.

Of course, the random number (RN) stream on each processors should be of
high quality. In addition, there should be no correlation between RN streams
on different processors. To illustrate the complications that can arise from
parallelism, we consider the following extreme case. If the RN streams on all the
processors were identical, then the results will be identical across the processors,
and there would be no benefit from the parallelization. In real situations, there
could be correlations between the RN streams across the different processors,

3

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

Process 1

Stream 1
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

Process 2

Stream 2

Process 3

Stream 3

1.1 1.6 1.2Result

Combine results 1.3

Figure 1: Parallelization of MC computations through process replication.

or the streams could overlap, reducing the effectiveness of the parallelization.
In the worst case, this could even lead to erroneous results, as demonstrated in
a practical situation in figure 10 presented later, in § 4 of this paper.

There is, therefore, a need to check for two types of defects in PPRNGs.
First, we must verify that each RN stream on each processors is random. That is,
there should be no apparent correlation between the elements within a single RN
sequence. We refer to this as the absence of intra-stream correlations. Secondly,
there should be no correlation between streams on the different processors. We
call this the absence of inter-stream correlations.

We observe here that with the above method of parallelization, where the
same algorithm was replicated on each processor, intra-stream correlations gen-
erally tend to affect the results more than inter-stream correlations of MC sim-
ulations of Markov Chains, which are probably the largest consumers of MC
parallel computing cycles. There is an alternate parallelization using domain
decomposition, where the computation of a single sequential run is distributed
across the processors by dividing the state space across the processors. This is
typically done when the solution space is very large. In that case, the initial-
ization time could be significant, since in MC calculations with Markov Chain,
the results of the first several steps are often discarded in order to prevent the
results from depending on the initial state. In these computations, inter-stream
and intra-stream correlation can have an equal effect on the solution. Thus, for
the purpose of testing PPRNGs, such a decomposition is more effective.

4

2.1 Parallelizing PRNGs

We shall next describe popular methods of designing PPRNGs. Before doing
this we explain some terms regarding sequential PRNGs, in terms of figure 2.
A PRNG consists of a finite set of states, and a transition function T that takes
the PRNG from one state to the next. The initial state of the PRNG is called
the seed . Given a state Si for the PRNG, there is a function F that can give
a corresponding integer random number Ii or a floating point random number
Ui. The memory used to store the state of a PRNG is a constant, and therefore
the state space is finite. Therefore, if the PRNG is run long enough, then it will
enter a cycle where the states start repeating. The length of this cycle is called
the period of the PRNG. Clearly, it is important to have a large period.

S S S S0 n-1 n n+1
T T

Seed

Cycle

F F F

I

U

I

U

I

U

n-1

n-1

n

n

n+1

n+1

Figure 2: This figure shows different terms associated with the state-space of a
PRNG.

We next discuss some common methods of parallel random number genera-
tion. In the methods of cycle division, a cycle corresponding to a single random
number generator is partitioned among the different processors so that each
processor gets a different portion of the cycle. This partitioning is generally
performed in one of the following three ways. First, users randomly select a dif-
ferent seed on each processor and hope that the seeds will take them to widely
separated portions of the cycle, so that there will be no overlap between the
RN streams used by the different processors. In the second, sequence splitting,
scheme, the user deterministically chooses widely separated seeds for each pro-
cessor. The danger here is that if the user happens to consume more random
numbers than expected, then the streams on different processors could over-
lap. Apart from this, generators often have long-range correlations [19, 20].
These long-range correlations in the sequential generator become short-range
inter-stream correlations in such a parallel generator. Lastly, if there are n

5

processors, then each stream in the leap frog scheme gets numbers that are n
positions apart in the original sequence. For example, processor 0 gets random
numbers x0, xn, x2n.... This again has problems because long range correlations
in the original sequence can become short-range intra-stream correlations, which
are often worse than inter-stream correlations.

Apart from these defects, the method of cycle-division results in a non-
scalable period. That is, the number of different random numbers that can be
used stays fixed, instead of increasing with the number of processors as in the
scheme that is described below. In addition, since most PRNGs use modular
arithmetic, the cost of generating RNs is dependent on the modulus chosen. In
addition, the period of most PRNGs is also dependent on the modulus. Thus,
with cycle division, longer periods are required as more numbers are generated
on ever faster processors. This leads to the use of larger arithmetic moduli and
a subsequent increase in the generation cost of individual RNs. Thus cycle-
division is not a scalable procedure. In addition, we shall later give results that
demonstrate statistical defects that arise in cycle-division based schemes.

The parallelization scheme we recommend is based on parameterization. This
provides independent full-period streams on each processor. We can parame-
terize a set of streams by a stream number. Given the stream number i, there
is an easy way of producing the i-th stream. These parameterizations are done
in two ways. The first is seed parameterization: in certain generators, the set
of possible states naturally divides itself into a number of smaller cycles. We
can number these cycles from 0 to N − 1, where N is the total number of cycles
available. We then give each processors a seed from a different cycle. The other
is iteration function parameterization: the iteration function is the function that
gives the next state in the sequence, given the current state. In this method of
parameterization, a different iteration function is used for each stream. In order
to achieve this, we need a way of parameterizing the iteration function so that
given i, the ith iteration function can be easily produced.

2.2 Parallel PRNGs tested

We next define the PPRNGs tested in this paper, and the method of their
parallelization.

SPRNG PPRNGs: The following PPRNGs from the SPRNG libraries were tested:

1. Combined Multiple-Recursive Generator: cmrg

This generator is defined by the following recursion:

zn = xn + yn × 232 (mod 264),

where xn is the sequence generated by the 64-bit linear congruential gener-
ator (LCG) given below and yn is the sequence generated by the following
prime modulus multiple recursive generator (MRG):

yn = 107374182× yn−1 + 104480× yn−5 (mod2147483647).

6

The same prime modulus generator is used for all the streams. Streams
differ due to differences in the 64-bit LCG. The period of this generator
is around 2219, and the number of distinct streams available is over 108.

2. 48-Bit Linear Congruential Generator with Prime Addend: lcg

The recurrence relation for the sequence of random numbers produced by
this generator is given by the following recurrence:

xn = a× xn−1 + p (mod 248),

where p is a prime number and a is the multiplier. Different random
number streams are obtained by choosing different prime numbers as the
addend p. The period of this generator is 248, and the number of distinct
streams available is about 219.

3. 64-Bit Linear Congruential Generator with Prime Addend: lcg64

The features of this generator are similar to the 48-bit LCG, except that
the arithmetic is modulo 264. The period of this generator is 264, and the
number of distinct streams available is over 224.

4. Modified Lagged-Fibonacci Generator: lfg

The recurrence relation for this sequence of random numbers is given by
the following equation:

zn = xn ⊕ yn,

where ⊕ is the exclusive-or operator, x and y are sequences obtained
from additive lagged-Fibonacci generator (LFG) sequences X and Y of
the following form:

Xn = Xn−k +Xn−� (mod 232),

Yn = Yn−k + Yn−� (mod 232).

� and k are called the lags of the generator, and we use the convention
that � > k. x is obtained from X by setting the least-significant bit of
the latter to 0. y is obtained from Y by shifting the latter right by one
bit. This modification of the LFG is performed in order to avoid certain
correlations that are observed in the unmodified generator.

The period of this generator is 231(2� − 1), and the number of distinct
streams available is 231(�−1), where � is the lag. For the default generator
with lag � = 1279, the period is approximately 21310, and the number of
distinct streams is 239618.

The sequence obtained is determined by the � initial values of the se-
quences X and Y . The seeding algorithms ensures that distinct streams
are obtained during parallelization.

7

5. Multiplicative Lagged-Fibonacci Generator: mlfg

The recurrence relation for this sequence of random numbers is given by
the folowing equation:

xn = xn−k × xn−� (mod 264).

The period of this generator is 261(2� − 1), and the number of distinct
streams available is 261(�−1), where � is the larger lag. For the default
generator with lag � = 17, the period is approximately 278, and the number
of distinct stream is 2976.

The sequence obtained is determined by the � initial values of the sequence
x. The seeding algorithms ensures that distinct streams are obtained dur-
ing parallelization.

6. Prime Modulus Linear Congruential Generator: pmlcg

This generator is defined by the following relation:

xn = axn−1 (mod 261 − 1),

where the multiplier a differs for each stream. The multiplier is chosen
to be certain powers of 37 that give maximal period cycles of acceptable
quality. The period of this generator is 261−2, and the number of distinct
streams available is roughly 258.

Each of these PPRNGs has several “variants”. For example, changing the
lags for the lagged Fibonacci generator will give a different variant of this gener-
ator. The user is not allowed to select an arbitrary parameter to get a different
variant, but must choose from a set of well-tested ones. This is done by setting
the parm argument in the initialization call for the PPRNG. This argument can
always be set to 0 to get the default variant.

Other PRNGs:

1. rand: This is a 32-bit LCG available on Unix systems. We use it as
a sequential PRNG to demonstrate defects even in its use on a single
processor, as every PPRNG also needs to be a good PRNG.

2. random: The popular Unix additive LFG, random, with a lag of 31, was
used to demonstrate defects even on a single processor. The SPRNG LFG
corrects these defects.

3. ranf: The 48-bit Cray LCG, ranf is similar to the sequential version of
the 48-bit LCG in SPRNG (as is the popular Unix generator drand48). We
show that when using a sequence splitting scheme with this generator it
fails a particularly effective test. The sequence splitting was performed

8

by splitting the cycle into fragments of size 3× 235, and using a different
fragment for each segment. We chose a factor of 3 in the above fragment
size because it is known that powers of two alone will result in strong
correlations in this generator. In order to give the parallelization a fair
chance of demonstrating its utility, we did not choose such an a priori
worst-case situation.

3 Description of Tests

A good parallel random number generator must also be a good sequential gen-
erator. Since the tests previously performed on sequential generators were not
sufficiently large, we have performed much larger tests. Sequential tests check
for correlations within a stream, while parallel tests check for correlations be-
tween different streams. Furthermore, applications usually require not just the
absence of correlations in one dimension, but in higher dimensions as well. In
fact, many simulations require the absence of correlations for a large number
(say thousands) of dimensions.

PRNG tests, both sequential and parallel, can be broadly classified into two
categories: (i) statistical tests and (ii) application-based tests. The basic idea
behind statistical tests is that the random number streams obtained from a
generator should have the properties of IID random samples drawn from the
uniform distribution. Tests are designed so that the expected value of some
test statistic is known exactly or asymptotically for the uniform distribution.
The empirically generated random number stream is then subjected to the same
test, and the statistic obtained is compared against the expected value. While a
boundless number of tests can be constructed, certain tests have become popular
and are accepted as de facto standards. These include the series of tests pro-
posed by Knuth [21], and the DIEHARD tests implemented by Marsaglia [18].
Generators that pass these tests are considered “good.”

It is also necessary to verify the quality of a PRNG by using it in real
applications. Thus we also include tests based on physical models, which use
random numbers in a manner similar to that seen in a real application, except
that the exact solution is known. The advantage of the statistical tests is that
these tests are usually much faster than the application-based ones. On the other
hand, the latter use random numbers in the same manner as real applications,
and can thus be considered more representative of real random number usage,
and also typically test for correlations of more numbers at a time.

3.1 Statistical Tests

We can modify sequential random number tests to test PPRNGs by interleaving
different streams to produce a new random number stream as shown in figure 3.
This new stream is then subjected to the standard sequential tests. For example
if stream i is given by xi0, xi1, · · ·, 0 ≤ i < N , then the new stream is given
by x00, x10, · · ·xN−1,0, x01, x11, · · ·. If each of the individual streams is random,

9

and the streams are independent of each other, then the newly formed stream
should also be random.

1 1 31 2 2 2 3 3New stream ...

1 2 3

1 2 3

1 2 3Stream 1

Stream 2

Stream 3

...

...

...

Original streams

Figure 3: We interleave three streams to form a new stream, and test this stream
with conventional sequential tests.

We form several such new streams, and test several blocks of random num-
bers from each stream. Usually the result of the test for each block is a Chi-
square value. We take the Chi-square statistics for all the blocks and use the
Kolmogorov-Smirnov (KS) test to verify that they are distributed according to
the Chi-square distribution. If the KS percentile is between 2.5% and 97.5%,
then the test is passed by the random number generator.

It is also important to have a standard implementation of these tests. The
SPRNG test suite provides such an implementation, with a fairly uniform inter-
face for all the tests. The tests in the SPRNG test suite take several arguments.
The first few arguments are common to all the statistical tests, and are ex-
plained below. We have also constructed a Java Test Wizard that helps users
specify the test arguments in the correct order.

The SPRNG tests are called as follows:

test.lib nstreams ncombine seed param nblocks skip test_args

Where the name of the executable test.lib is formed by concatenating the name
of the test and the random number library from which the random numbers are
generated. For example, the calls:

equidist.lcg 4 2 0 0 3 1 2 100
mpirun -np 2 equidist.lcg 4 2 0 0 3 1 2 100

perform the equidistribution test with the 48-bit LCG with prime addend on a
sequential and parallel machine respectively.

The argument ncombine (= 2 in our example) indicates the number of
streams we interleave to form a new stream. We form nstreams (= 4) such

10

new streams and test nblocks (= 3) blocks of random numbers from each new
stream. The argument seed (= 0) is the encoded seed to the random number
generator, and param (= 0) is the parameter for the generator. The argument
skip (= 1) indicates how many random numbers we skip after testing a block
before we start a test on the next block. The rest of the arguments in our
example are specific to that test. Note that we can perform tests on individ-
ual streams (tests for intra-stream correlations) by setting ncombine to 1. The
meaning of the test parameters is clarified in figure 4.

0 < j < 7-

. . .

x , x , x
6,1

., x
7,1

x x

Block: 9

New stream 3:
6,0 7,0

10

Skip

11

x , x , x
0,1

., x
1,1

x x

Block: 0 1 2

New stream 0:
0,0 1,0

Stream j: x , x . . .
j,0 j,1

Figure 4: Illustration of the test parameters from the example given above.

The result of the example given above are as follows:

sprng/TESTS:sif% mpirun -np 2 equidist.lcg 4 2 0 0 3 1 2 100
equidist.lcg 4 2 0 0 3 1 2 100
Result: KS value = 0.601752
KS value prob = 17.50

The KS value prob line gives the KS percentile for the entire set of tests.
Since it is between 2.5% and 97.5%, we consider this example to have passed.
It should be noted that the real tests are much larger than this simple example.
Note: When we state that a particular test is parallel, we are referring to the
fact that it can be used to test for correlations between streams. We do not
mean that it runs on multiple processors. All the SPRNG statistical tests can
run either on a single processor or on multiple processors.

We next briefly describe each test followed by its test specific arguments.
We also give the number of random numbers tested and asymptotic memory
requirements (in bytes, assuming an integer is 4 bytes and a double precision
floating point number is 8 bytes). This should help users estimate the time
required for their calculations from smaller sample runs.

11

The details concerning these tests are presented in Knuth [21], unless we
mention otherwise. The SPRNG PRNGs were also tested with the DIEHARD
test suite, including the parallel tests using interleaving. A more general version
of DIEHARD has recently been developed by the SPRNG team, and should be
available in the next public release of SPRNG.

1. Collisions test: n logmd log d

We concatenate the log d most-significant bits from logmd random inte-
gers to form a new logm = logmd ∗ log d-bit random integer. We form
n � m such numbers. A collision is said to have occurred each time some
such number repeats. We count the number of collisions and compare
with the expected number. This test thus checks for absence of log d-
dimensional correlation. It is one of the most effective tests among those
proposed by Knuth.

Number of Random numbers tested: n ∗ logmd
Memory: 8 ∗ nstreams ∗ nblocks+ 4 ∗ n+ 2log md∗log d

2. Coupon collector’s test: n t d

We generate random integers in [0, d−1]. We then scan the sequence until
we find at least one instance of each of the d integers, and note the length
of the segment over which we found this complete set. For example, if
d = 3 and the sequence is: 0, 2, 0, 1, ..., then the length of the first
segment over which we found a complete set of integers is 4. We con-
tinue from the next position in the sequence until we find n such complete
sets. The distribution of lengths of the segments is compared against the
expected distribution. In our analysis, we lump segments of length > t
together.

Number of random numbers tested: n ∗ d ∗ log d
Memory: 8 ∗ nstreams ∗ nblocks+ 4 ∗ d+ 16 ∗ (t− d+ 1)

3. Equidistribution test: d n

We generate random integers in [0, d − 1] and check whether they come
from a uniform distribution, that is, if each of the d numbers has equal
probability.

Number of random numbers tested: n
Memory: 8 ∗ nstreams ∗ nblocks+ 16 ∗ d

12

4. Gap test: t a b n

We generate floating point numbers in (0, 1) and note the gap in the se-
quence between successive appearances of numbers in the interval [a, b] in
(0, 1). For example, if [a, b] = [0.4, 0.7] and the sequence is: 0.1, 0.5, 0.9, 0.6, ...,
then the length of the first gap (between the numbers 0.5 and 0.6) is 2.
We record n such gaps, and lump gap lengths greater than t together in
a single category in our analysis.

Number of random numbers tested: n/(b− a)
Memory: 8 ∗ nstreams ∗ nblocks+ 16 ∗ t

5. Maximum-of-t test (Maxt): n t

We generate t floating point numbers in [0, 1) and note the largest number.
We repeat this n times. The distribution of this largest number should be
xt.

Number of random numbers tested: n ∗m
Memory: 8 ∗ nstreams ∗ nblocks+ 16 ∗ n

6. Permutations test: m n

We generatem floating point numbers in (0, 1). We can rank them accord-
ing to their magnitude; the smallest number is ranked 1, ..., the largest
is ranked m. There are m! possible ways in which the ranks can be or-
dered. For example, if m = 3, then the following orders are possible:
(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1). We repeat this test n
times and check if each possible permutations was equally probable.

Number of random numbers tested: n ∗m
Memory: 8 ∗ nstreams ∗ nblocks+ 8 ∗m+ 16 ∗ (m!)

7. Poker test: n k d

We generate k integers in [0, d − 1] and count the number of distinct in-
tegers obtained. For example if k = 3, d = 3 and the sequence is: 0, 1, 1,
..., then the number of distinct integers obtained in the first 3-tuple is 2.
We repeat this n times and compare with the expected distribution for
random samples from the uniform distribution.

13

Number of random numbers tested: n ∗ k
Memory: 8 ∗ nstreams ∗ nblocks+ 0.4 ∗min(n, k) + 12 ∗ k + 4 ∗ d

8. Runs up test: t n

We count the length of a “run” in which successive random numbers are
non-decreasing. For example if the sequence is: 0.1, 0.2, 0.4, 0.3, then the
length of the first run is 3. We repeat this n times and compare with the
expected distribution of run lengths for random samples from the uniform
distribution. Runs of length greater than t are lumped together during
our analysis.

Number of random numbers tested: 1.5 ∗ n
Memory: 8 ∗ nstreams ∗ nblocks+ 16 ∗ t

9. Serial test: d n

We generate n pairs of integers in [0, d − 1]. Each of the d2 pairs should
be equally likely to occur.

Number of random numbers tested: 2 ∗ n
Memory: 8 ∗ nstreams ∗ nblocks+ 16 ∗ d ∗ d

There are certain other tests that are inherently parallel, in contrast to the
above scheme which is really parallelization of sequential tests. The meaning of
the arguments for these tests are slightly different from those for the preceding
tests. Since these tests are inherently parallel, we need not interleave streams,
and thus the second argument ncombine should be set to 1. The first argument,
nstreams, is the total number of streams tested. All these streams are tested
simultaneously, rather than independently as in the previous case. The rest of
the arguments are identical to the previous case. We describe the tests below.

1. Blocking (sum of independent distributions) test: n groupsize

The central limit theorem states that the sum of groupsize independent
variables with zero mean and unit variance approaches the normal distri-
bution with mean zero and variance equal to groupsize. To test for the
independence of random number streams, we form n such sums and check
for normality. (Note: We also computed the exact distribution and deter-
mined that the assumption of normality was acceptable for the number of
random numbers we added in our tests. The SPRNG test suite implemen-
tation uses the normality assumption in the percentile given as the result.

14

However, it also gives a range where the exact percentile will lie. Thus
users are given a margin of error.)

2. Fourier Transform test: n

We fill a two dimensional array with random numbers. Each row of the ar-
ray is filled with n random numbers from a different stream. We calculate
the two-dimensional Fourier coefficients and compare with the expected
values. This test is repeated several times and we check if there are partic-
ular coefficients that are repeatedly “bad.” The current implementation
uses the FFT routine provided by SGI. Users need to modify this test to
the FFT routine available on their local machine. The current implemen-
tation gives the coefficients that are “high”. However, when the number
of coefficients is very large, we can expect several of them to be high,
even for a good generator. If the same coefficients turn out to be high in
repeated runs, or if the number of coefficients that are high is much more
than expected, then we can suspect defects in the generators. This test
does not give a single number that can be presented as a result, and so we
shall not mention it in § 4. We did small tests on the SPRNG generators
and did not detect any anomalies.

3.2 Application-based Tests

Application-based tests use random numbers in a manner similar in which they
are used in practical applications. Generally, the exact behavior of the test is
known analytically. We describe the tests implemented in the SPRNG test suite.

1. Ising model – Metropolis and Wolff algorithms: For statistical
mechanical applications, the two-dimensional Ising model (a simple lattice
spin model) is often used, since the exact answer for quantities such as
energy and specific heat are known [22]. Since the Ising model is also
known to have a phase transition, this system is sensitive to long-range
correlations in the PRNG. There are several different algorithms, such
as those of Metropolis and Wolff, that can be used to simulate the Ising
model, and the random numbers enter quite differently in each algorithm.
Thus this application is very popular in testing random number generators,
and has often detected subtle defects in generators [11, 16, 4, 6, 23].

We can test parallel generators on the Ising model application by as-
signing distinct random number sequences to different subsets of lattice
sites [16]. This is essentially the domain decomposition method of MC
parallelization, and, as mentioned earlier, is more effective in determin-
ing inter-stream correlations than the replication method. In our tests of
PPRNGs, we assign a distinct stream to each lattice site, thus testing the
independence of a larger number of streams simultaneously.

15

We next describe the implementation of these tests in the SPRNG test suite.
The user selects a lattice size, a seed to the random number generator, and
the variant of the random number generator as command line arguments.
Since the configurations change only slightly at successive times steps, it
is necessary to average the results over a larger block. The size of these
blocks too is specified by the user. The user also specifies the number of
such blocks whose results need to be computed. The initial state is chosen
by assigning a random spin to each lattice site. In order to prevent the
results from being influenced by this particular choice of initial state, the
user also needs to specify the number of initial blocks to be discarded.
The tests are carried out with J/KbT = 0.4406868, where J is the energy
per bond and T is the temperature. This parameter can be changed in
the code, to run the tests at different temperatures.

In order to test the quality of the generator, we plot absolute error versus
standard deviation for the specific heat and energy at different points
in the simulation. The points should fall below the 2 − σ line (the line
corresponding to twice the standard deviation) most of the time. In a bad
generator, as the standard deviation decreases (with increase in sample
size), the error does not decrease as fast and remains above this line. An
example of both cases is demonstrated later in figure 10.

2. Random walk test: The random walk test implemented is a simple
one, based on a previously described algorithm [23]. We start a “Random
Walker” from a certain position on a two-dimensional lattice. The random
walker then takes a certain number of steps to other lattice points. The
direction of each step is determined from the value returned by a random
number generated. A series of such tests are performed, and for each
such test, the final position is noted. The user needs to specify the length
of a walk, apart from the common arguments as for the statistical tests.
PPRNGs are tested by interleaving streams.

4 Test Results

In this section, we first demonstrate defects in some popular sequential gener-
ators, and in cycle-division strategies for parallelization of PRNGs. We then
present detailed results of tests on two SPRNG generators (lcg, which had prob-
lems, and mflg, which did not) and summarize test results for the other gener-
ators.

As mentioned earlier, the results of the statistical tests are considered passed
if the KS percentile is between 2.5% and 97.5%. However, this implies that
even a good generator will “fail” around 5% of the tests. Therefore, when
we observe a percentile close to (on either side) of the “pass” thresholds, we
repeated the calculations with different seeds. A good generator is expected to
give percentiles in different ranges with different seeds, while a bad one would

16

consistently fail. In most of the calculations, we take the (global) seed3 to be 0.
The above calculations are generally the reason for some of the seeds displayed
being different from this. We sometimes mention that a PRNG passed a test
with N numbers. This means that it passed a test, with the total number of
RNs used in the test being around N .

Tests on sequential generators: The popular 32 bit Unix LCG, rand fails
even sequential PRNG tests.4 For example, the collisions test fails for the
following parameters: d = 4, k = 5, n = 2×105, when this test was repeated 40
times. The K-S percentile is obtained as 100.00. It keeps failing this test even
with different seeds. Thus this generator fails with about 107 to 108 random
numbers. On a machine capable of generating 107 random numbers per second,
this would take between 1 and 10 seconds! Therefore this generator should not
be used any longer.

The popular Unix additive lagged-Fibonacci generator (LFG), random, with
a lag of 31, fails even the sequential gap test with the following parameters:
[a, b] = [0.5, 0.51], gaps of length greater than 200 are grouped together in one
category, 107 gap lengths were noted, and the test was repeated 100 times
for a total of around 1011 random numbers. The Birthday Spacings test in
the DIEHARD package is more effective and detects the defects in additive
LFGs with much fewer random numbers. This generator also fails sequential
application-based tests. For example, the Wolff algorithm fails with around 108

random numbers for a 16× 16 lattice, as shown in figure 5.
The SPRNG LFG, in contrast, combines two different random number streams

to produce a new stream. This generator passes the gap test even with 1013

random numbers used, which is one of the largest tests ever of random numbers.5

It also passes the Ising model tests, both sequential and parallel, with around
1011 random numbers.

Tests with cycle-division: Among cycle division strategies, sequence-splitting
is considered the most effective [24]. However, there are theoretical results sug-
gesting weaknesses in cycle-division strategies. We demonstrate these defects
empirically, using sequence-splitting.

The 48-bit Cray LCG, ranf is similar to the sequential version of the 48-
bit LCG in SPRNG (as is the popular Unix generator drand48). We show that
using a sequence splitting scheme with this generator fails the blocking test
with around 1010 random numbers. The blocking test was performed with 128
streams, with 256 random numbers from each stream being added together to
form a sum, and 106 such sums being generated. The sequence splitting was

3The term seed is typically used for the starting state of the generator. However, in order
to simplify the interface, SPRNG uses a global seed, which is a 31 bit integer. Based on this
global seed, and on the stream number, the actual state is produced. In the rest of this
document, we shall use the term “seed” to refer to this global seed.

4Note that the rand implementation on recent Linux systems is different; it is the same
generator as the usual PRNG random.

5The test was run on the CONDOR facility at the University of Wisconsin at Madison.

17

10
−6

10
−5

10
−4

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

E
rr

or
 in

 E
ne

rg
y

Standard Error

Figure 5: Plot of the actual error versus the internally estimated standard de-
viation of the energy error for Ising model simulations with the Wolff algorithm
on a 16× 16 lattice with random, an additive LFG (solid line). The dotted line
is an error equal to the standard deviation.

18

performed by splitting the sequence into fragments as mentioned earlier. The
generator failed this test, giving a K-S test percentile of 100.00, demonstrating
the danger of cycle division. We observe that it is popularly believed that
the main problem with sequence-splitting is the possibility of overlap in the
sequences, which can be avoided by ensuring that each subsequence is sufficiently
large. However, in our test, no overlap occurs. The defect is solely due to
long range correlations. Periodically, theoretical results are published exposing
previously undetected long range correlation in some generators [19, 20]. Thus
one needs to be wary of using cycle-division based parallelization.

Tests on the SPRNG multiplicative lagged-Fibonacci generator: We give
the results of the tests on the SPRNG Multiplicative Lagged Fibonacci Generator
(MLFG). This generator gives good results even with small lags, such as 17, 5.

Sequential tests: We first give the results of tests on a sequential version of
this generator.

The DIEHARD [18] test suite runs the following tests to verify the ran-
domness of a block of approximately three million random numbers. The tests
in DIEHARD are the Birthday Spacings Test, the Overlapping 5-Permutation
Test, Binary Rank Test (for 6x8, 31x31 and 32x32 matrices), Bitstream Test, the
Overlapping-Pairs-Sparse-Occupancy (OPSO) Test, the Overlapping-Quadruples-
Sparse-Occupancy (OQSO) Test, the DNA Test, the Count-The-1’s Test (for a
stream of bytes and for specific bytes), the Parking Lot Test, the Minimum Dis-
tance Test, the 3DSpheres Test, the Squeeze Test, the Overlapping Sums Test,
Runs Test, and the Craps Test. All the tests in the DIEHARD suite pass, even
with the small lag of 17.

The first 1024 streams of each of the variants of the MLFG were tested with
the sequential statistical tests from the SPRNG test suite, and with the random
walk test. The parameters were chosen to test around 1011 RNs, except for
the collisions test, which used 1012 RNs. The latter test was larger since that
test is particularly effective in detecting defects. The random walk test used
just around 108 RNs, since we have implemented a rather simple version. The
details of the parameters are summarized in table 1, indicating that all the tests
passed.

The Ising model tests were performed with the Metropolis and Wolff algo-
rithms on a 16×16 lattice. The block size was taken to be 1000, and the results
of 1000000 blocks were considered, after discarding the results of the first 100
blocks. This tests over 1011 random number. The generator passed both these
tests as shown in figures 6 and 7. These figures show the plot for the specific
heat with the Metropolis algorithm, and with the energy for the Wolff algorithm.
We actually tested both energy and specific heat for both the algorithms.

Parallel tests: In contrast to the SPRNG generator lcg (described later),
the SPRNG generator mlfg passed the tests without requiring any modifications,
even for small lags. For those tests from the test suite that needed interleaved
streams, we created four streams, with each stream being the result of interleav-
ing 256 streams. Each of these was subjected to the standard tests. The details

19

Figure 6: Plot of the actual error versus the internally estimated standard
deviation of the specific heat for Ising model simulations with the Metropolis
algorithm on a 16× 16 lattice with a sequential version of the SPRNG mlfg with
lags (17, 5). We expect around 95% of the points to be below the dotted line
(representing an error of two standard deviations) with a good generator.

20

Figure 7: Plot of the actual error versus the internally estimated standard de-
viation of the specific heat for Ising model simulations with the Wolff algorithm
on a 16×16 lattice with a sequential version of the SPRNG mlfg with lags (17, 5).
We expect around 95% of the points to be below the dotted line (representing
an error of two standard deviations) with a good generator.

21

Test Parameters K-S Percentile
Collisions n = 100000, logmd = 10, log d = 3 71.8
Collision n = 200000, logmd = 4, log d = 5 90.8
Coupon n = 5000000, t = 30, d = 10 19.6
Equidist d = 10000, n = 100000000 5.9
Gap t = 200, a = 0.5, b = 0.51, n = 1000000 87.1
Maxt n = 50000, t = 16 59.7
Permutations m = 5, n = 20000000 78.8
Poker n = 10000000, k = 10, d = 10 88.4
Random walk walk length = 1024 96.4
Runs t = 10, n = 50000000 47.5
Serial d = 100, n = 50000000 45.9

Table 1: Sequential PRNG tests on mlfg. The common test parameters were:
nstreams= 1024, ncombine= 1, seed= 0, nblocks= 1, skip= 0, with the
following exceptions: (i) The collisions tests used nblocks= 1000. This test
was done twice, with seed= 9999 in the first instance above and seed= 0 in
the second. (ii) the Maxt and randomwalk tests used nblocks= 100 (iii) The
Maxt test used seed= 9999. The Kolmogorov-Smirnov test percentile given
above is for the default lags 17, 5, thus with param= 0.

of the parameters and results are given in table 2, indicating that all the tests
passed. The number of random numbers consumed in each test was around
1011, unless mentioned otherwise. As with the sequential tests, we used around
1012 RNs with the collisions test, since it is very effective. The Equidistribution
test is redundant in the parallel version, since interleaving streams does not
make any difference over the sequential test.

The Ising model tests were performed with the Metropolis and Wolff algo-
rithms on a 16×16 lattice. The block size was taken to be 1000, and the results
of 1000000 blocks were considered, after discarding the results of the first 100
blocks. This tests over 1011 random number. Figure 8 shows the plot for the
specific heat with the Metropolis algorithm.

Tests on LCG: We give details of the tests on the SPRNG lcg generator,
which is a power-of-two modulus 48-bit LCG. The defects in power-of-two mod-
ulus generators are well known, and so this generator should typically not be
used as the default. However, it can be used to verify the results of computa-
tions first performed using another generator. If the two results agree, then the
results from both the generators can be combined to reduce the error estimate.
We also wish to note that the 48-bit and 64-bit generators perform well in most
real applications, as long the the application is not sensitive to correlations be-
tween RNs that are a power-of-two apart in the sequence. In contrast, the 32-bit
version should probably never be used.

22

Figure 8: Plot of the actual error versus the internally estimated standard de-
viation of the specific heat for Ising model simulations with the Metropolis
algorithm on a 16 × 16 lattice with a sequential version of the SPRNG genera-
tor mlfg with lags (17, 5). We expect around 95% of the points to be below
the dotted line (representing an error of two standard deviations) with a good
generator.

23

Test Parameters K-S Percentile
Blocking n = 1000000, r = 128 10.2
Collision n = 200000, logmd = 10, log d = 3 60.6
Collision n = 200000, logmd = 4, log d = 5 46.8
Coupon n = 5000000, t = 30, d = 10 12.9
Gap t = 200, a = 0.5, b = 0.51, n = 1000000 78.0
Permutations m = 5, n = 20000000 7.2
Poker n = 10000000, k = 10, d = 10 9.7
Random walk walk length = 1024 6.8
Runs t = 10, n = 50000000 33.2
Serial d = 100, n = 50000000 31.2

Table 2: Parallel PRNG tests on mlfg. The common test parameters were:
nstreams= 4, ncombine= 256, seed= 0, nblocks= 250, skip= 0, with the
following exceptions: (i) The blocking test does not do interleaving, and used
the 1024 streams directly. (ii) The collisions test was performed twice. In the
first one above the values nstreams= 32, ncombine= 32, and nblock= 160 were
used. While in the second one the values nstreams= 16, ncombine= 64, and
nblocks= 50000 were used. (iii) the random walk test used nblocks= 25000
for around 108 RNs. The Kolmogorov-Smirnov test percentile given above is for
the default lags 17, 5, thus with param = 0.

Sequential tests: We first give the results of tests on a sequential version of
this generator.

All the DIEHARD tests passed, except that the lower order bits (generally
the 8 to 10 lowest bits) failed the DNA, OQSO, and OPSO tests. The poorer
quality of the lower bits is expected from theoretical results. SPRNG include a 64-
bit LCG too, to ameliorate this defect. In addition, SPRNG includes a combined
multiple recursive generator (CMRG) that combines a 64-bit LCG stream with
a stream from a MRG to produce a better stream. Even the lower order bits of
these generators pass all the DIEHARD tests.6

The first 1024 streams of each of the variants of the 48-bit LCG were tested
with the sequential statistical tests from SPRNG test suite, and with the random
walk test. The parameters were chosen to test around 1011 RNs, except that
the collisions test used 1012 RNs and the random walk test used just around 108

RNs, for the same reason as with the MLFG tests. The details of the parameters
are summarized in table 3, indicating that all the tests passed.

6Note that the least-significant bits of the states of the 64-bit LCG use in the CMRG will
have the same defects as that of the 48-bit LCG. However, when we generate a RN from the
state of the LCG, we use only the most-significant bits. For example, a random integer will
use the 32 most-significant bits of the state. Thus the least-significant bit of a RN from the
64-bit LCG is the 33rd least-significant bit of the corresponding state, whereas in the 48-bit
LCG, it is the 17th least-significant bit. Thus even the lower order bits of a RN from a 64-bit
LCG can be expected to be much better than the corresponding ones from a 48-bit LCG, as
proved by the tests.

24

Test Parameters K-S Percentile
Collisions n = 100000, logmd = 10, log d = 3 63.7
Collision n = 200000, logmd = 4, log d = 5 73.8
Coupon n = 5000000, t = 30, d = 10 67.2
Equidist d = 10000, n = 100000000 3.1
Gap t = 200, a = 0.5, b = 0.51, n = 1000000 6.5
Maxt n = 50000, t = 16 62.6
Permutations m = 5, n = 20000000 85.8
Poker n = 10000000, k = 10, d = 10 17.8
Random walk walk length = 1024 21.2
Runs t = 10, n = 50000000 80.7
Serial d = 100, n = 50000000 73.9

Table 3: Sequential PRNG tests on the SPRNG generator lcg. The common
test parameters were: nstreams= 1024, ncombine= 1, seed= 0, nblocks= 1,
skip= 0, with the following exceptions: (i) The collisions tests used nblocks=
1000. This test was done twice, with seed= 9999 in the first instance above
and seed= 0 in the second. (ii) The Maxt and random walk tests used
nblocks= 100. (iii) The poker test seed was 9999. The Kolmogorov-Smirnov
test percentile given above is for the default multiplier 2875a2e7b175 (base 16),
thus with param = 0.

The Ising model tests were performed with the Metropolis and Wolff algo-
rithms on a 16×16 lattice. The block size was taken to be 1000, and the results
of 1000000 blocks were considered, after discarding the results of the first 100
blocks. This tests over 1011 random number. The generator passed both these
tests.

Parallel tests: We now give the results of tests on the parallel version of
this generator. The parallelization is through parameterization, as mentioned
in § 2.1.

In the original version of this generator, all the streams were started from
the same initial state. The streams differed due to differences in the additive
constants. It can be seen from the blocking test results in figure 9 and the
dashed line of figure 10 that this generator has inter-stream correlation. (Since
the sequential tests passed, this failure could not be due to intra-stream corre-
lations.)

Even if we discard the first million numbers from each sequence, these cor-
relations persist and the streams still fail these tests. In the final version of this
generator, the initial states are staggered so that each stream starts at a suffi-
ciently different position in the sequence. Then, the tests are passed, as shown
by the solid line of Fig. 10 and from the results in table 4. Thus one needs
to be careful with the seeding, even with parallelization through the iteration
function.

For those tests from the test suite that needed interleaved streams, we cre-

25

Figure 9: Plot of the percentile from the Kolmogorov-Smirnov test versus the
number of sums added together in the blocking test. The parameter ngroups
was taken to be 128, and we used 1024 streams in this test. The PPRNG used
was an older version of the SPRNG generator lcg, where each stream was started
from the same initial state.

26

10
−5

10
−4

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Standard Error

E
rr

or
 in

 E
ne

rg
y

Figure 10: Plot of the actual error versus the internally estimated standard
deviation of the energy error for Ising model simulations with the Metropolis
algorithm on a 16×16 lattice with a different LCG sequence from the SPRNG lcg
generator used at each lattice site. The dashed line shows the results when all
the LCG sequences were started with the same seeds but with different additive
constants. The solid line shows the results when the sequences were started with
different seeds. We expect around 95% of the points to be below the dotted line
(which represents an error of two standard deviations) with a good generator.

27

ated four streams, with each stream being the result of interleaving 256 streams.
Each of these was subjected to the standard tests. The details of the parame-
ters and results are given in table 4, indicating that all the tests passed. The
number of random numbers consumed in each test was around 1011 except for
the Gap, Runs, and Collisions tests, which used 1012, and for the random walk
test which used just 108.

Test Parameters K-S Percentile
Blocking n = 1000000, r = 128 73.4
Collision n = 200000, logmd = 4, log d = 5 9.9
Coupon n = 5000000, t = 30, d = 10 55.4
Gap t = 200, a = 0.5, b = 0.51, n = 10000000 25.3
Permutations m = 5, n = 20000000 62.3
Poker n = 10000000, k = 10, d = 10 87.7
Random walk walk length = 1024 5.6
Runs t = 10, n = 500000000 64.4
Serial d = 100, n = 50000000 60.3

Table 4: Parallel PRNG tests on the SPRNG generator lcg. The common test
parameters were: nstreams= 4, ncombine= 256, seed= 0, nblocks= 250,
skip= 0, with the following exceptions: (i) The blocking test does not do in-
terleaving, and used the 1024 streams directly. (ii) The collisions test used
nstreams= 16, ncombine= 64, and nblocks= 50000. (iii) The random walk
test used blocks= 10000, and seed= 9111999. The Kolmogorov-Smirnov test
percentile given above is for the default multiplier 2875a2e7b175 (base 16), thus
with param= 0.

The Ising model tests were performed with the Metropolis and Wolff algo-
rithms on a 16×16 lattice. The block size was taken to be 1000, and the results
of 1000000 blocks were considered, after discarding the results of the first 100
blocks. This tests over 1011 random number. Figure 10 shows the plot for the
energy with the Metropolis algorithm.

Miscellaneous results: De’Matteis and Pagnutti [25] showed that power-of-
two modulus LCGs parallelized through additive constants differ only by a con-
stant (modulo the modulus), if the streams are shifted by a certain “shift-factor.”
More formally, given two sequences y and z such that

yn+1 = ayn + c1 (mod 2t) and zn+1 = azn + c2 (mod 2t)

where a is the same maximal period multiplier in both cases, c1 and c2 are odd
integers, and 2t is the modulus, there exists an s and c such that

zn+s = yn + c (mod 2t) (1)

We performed tests to determine the shift factor s required for the first 1000
streams produced by the LCG. If the shifts were much smaller than the size

28

of the sequence used from each stream, then this could result in inter-stream
correlations. Let us define the distance between two streams as the smallest shift
required to satisfy equation 1. For each of the 1000 streams, we determined the
distance to the nearest stream out of this set of streams. We give the results
for the multiplier 2875a2e7b175 in base 16. The mean distance between streams
was 7 × 1010, the median was 4 × 1010, the maximum distance was 5 × 1011

and the minimum 1 × 108. Note that in our larger parallel tests, we checked
for a total of around 1012 RNs across 1024 streams, for around 109 RNs per
stream. Since this is smaller than the typical shift, the tests could not detect
this correlation, as expected. This also demonstrates that the shifts with these
particular streams are sufficiently large that they do not pose a problem in
practice. We note, however, that if the number of streams is increased, then we
can expect the nearest neighbors to come closer, and thus the mean shifts will
decrease. Conversely, if the number of streams used is lower, or if the modulus
is higher (as with the 64-bit generator), then the shifts will be higher.

Summary of tests results: We give below a summary of the results of tests
on the SPRNG generators.

All the SPRNG generators were tested with the DIEHARD suite, and they all
passed these tests7, except that the lower order bits of the 48-bit LCG are bad.
The following tests from Knuth [21] were performed, including their parallel
versions: collisions, coupon collector, equidistribution, gap, maximum of t, per-
mutations, poker, runs-up, serial. At least O(1011) random numbers were tested
for each generator in each case. The collisions test used 1012 random numbers.
The sequential gap test for the additive LFG used 1013 random numbers – one
of the largest empirical random number tests ever accomplished. The parallel
gap test for this generator used 1012 random numbers. We also performed the
blocking test for parallel generators, and the Metropolis and Wolff algorithm
for the Ising model with at least 1011 random numbers. All SPRNG generators
passed these tests. More details and the latest results can be found at the SPRNG
web site.

5 Conclusions

In this section we shall describe the weaknesses of different generators and give
general guidelines on their use. We also mention those tests that we also found
to be particularly effective in detecting defects.

LCGs with power-of-two moduli are known to have extremely nonrandom
lower order bits – the ith least-significant bits has a period of 2i. Thus, if

7All the final versions of the SPRNG generators passed. Original versions sometimes had
defects which had to be corrected with, for example, lfg, lcg, and pmlcg. The cases of lfg
and lcg have been mentioned above. In the case of pmlcg, we use different multipliers for
parameterization. As one might expect, some of these multipliers are not as good as others.
We therefore eliminated the defective ones, and tests using the first 1024 multipliers in the
current implementation suggest that they are quite good.

29

an application is sensitive to lower order bits, then erroneous results can be
obtained. The larger the modulus, the farther are the least-significant bits from
the most-significant bits, and thus we can expect these correlations to influence
a floating point random number to a lesser extent. The 32 bit generator rand is
extremely bad by today’s standards, and should not be used, either in parallel
or in sequential calculations. The 48-bit generator, lcg, is much better, and
of course, the 64-bit generator, lcg64, is better yet. Despite this problem, lcg
has proven to be good in most applications. However, one should take care to
ensure that the application is not sensitive to this power-of-two correlation.

The combined multiple-recursive generator, cmrg attempts to remedy this
problem by combining the 64-bit LCG with a multiple-recursive generator. We
use a 32-bit version of cmrg, which improves the quality of the 32 most-significant
bits. However, the lower order bits are still identical to those of the correspond-
ing LCG.

The SPRNG prime modulus LCG pmlcg does not have these power-of-two
correlations. However, some caution is required regarding the parallel genera-
tor. We use different multipliers to ensure that different streams are obtained.
However, if we consider a large number of streams, there may be a few with
bad multipliers. Furthermore, the initialization of this generator is a bit slow
compared with the others.

The additive LFG implemented in the SPRNG package, lcg, actually com-
bines two different random number streams to produce a new one. Otherwise,
a plain additive LFG sequence fails certain tests such as the Birthday Spac-
ings test implemented in DIEHARD, and the gap test described in section (3).
To be on the safe side, we suggest using a large lag. The multiplicative LFG,
mlfg, is the only generator considered here that has a fundamentally non-linear
recurrence relation. We expect it to be safe to use it even with a small lag.

Among the tests, the Birthday Spacings test (from DIEHARD), the Colli-
sion, Gap, and Runs tests (from Knuth, and their parallel versions as imple-
mented in the SPRNG test suite), and the Blocking and Ising model tests were
particularly effective in exposing defects in PRNGs and PPRNGs. One prob-
lem is that DIEHARD is “hardwired” to perform its suite of tests on a fixed
number of RNs. This is somewhat restrictive. However, a general version of the
DIEHARD suite, which allow the user to vary the number of RNs tested, has
now been implemented, and should be available in future releases of SPRNG .

We conclude this paper by recommending the technique of independent
streams for parallelizing random number generators. Using the technique of cy-
cle division can turn long range correlations in the original sequence into short
range inter- or intra-stream correlation.8 The SPRNG software provides several
generators using parameterization, and suite of “standard” parallel tests to test
even non-SPRNG generators. In the future, we expect to provide a web-based

8There have been some warnings about the dangers of using independent streams [24]
since it may so happen that different parameters just take you to different points on the same
sequence. However, this is really only a warning against a naive parallelization strategy. One
can design (as we have done in the SPRNG package) a parallelization strategy that avoids this
pitfall.

30

testing facility as well.

Acknowledgment

The SPRNG software was developed with funding from DARPA Contract Num-
ber DABT63-95-C-0123 for ITO: Scalable Systems and Software, entitled A
Scalable Pseudorandom Number Generation Library for Parallel Monte Carlo
Computations. We also wish to acknowledge the computational resources pro-
vided by NCSA, University of Illinois at Urbana-Champaign. SPRNG is now
funded through a Department of Energy Accelerated Strategic Computing Ini-
tiative (ASCI) Level 3 contract sponsored by Lawrence Livermore, Los Alamos,
and Sandia National Laboratories.

References

[1] SPRNG – Scalable Parallel Random Number Generators. SPRNG
1.0 -- http://www.ncsa.uiuc.edu/Apps/SPRNG; SPRNG 2.0 --
http://sprng.cs.fsu.edu.

[2] M. Mascagni and A. Srinivasan. SPRNG: a scalable library for pseudo-
random number generation, 2001. To appear in ACM Transactions on
Mathematical Software.

[3] S. S. Lavenberg. Computer Performance Modeling Handbook. Academic
Press, New York, 1983.

[4] A. M. Ferrenberg, D. P. Landau, and Y. J. Wong. Monte Carlo simulations:
Hidden errors from “good” random number generators. Phys. Rev. Let.,
69:3382–3384, 1992.

[5] P. Grassberger. On correlations in ’good’ random number generators. Phys.
Lett. A, 181(1):43–46, 1993.

[6] W. Selke, A. L. Talapov, and L. N. Schur. Cluster-flipping Monte Carlo
algorithm and correlations in “good” random number generators. JETP
Lett., 58(8):665–668, 1993.

[7] F. Schmid and N. B. Wilding. Errors in Monte Carlo simulations using shift
register random number generators. Int. J. Mod. Phys. C, 6(6):781–787,
1995.

[8] S. A. Cuccaro, M. Mascagni, and D. V. Pryor. Techniques for testing the
quality of parallel pseudorandom number generators. In Proceedings of the
Seventh SIAM Conference on Parallel Processing for Scientific Computing,
pages 279–284, Philadelphia, Pennsylvania, 1995. SIAM.

31

[9] M. J. Durst. Testing parallel random number generators. In Computing
Science and Statistics: Proceedings of the XXth Symposium on the Inter-
face, pages 228–231, 1988.

[10] J. Saarinen, K. Kankaala, T. Ala-Nissila, and I. Vattulainen. On random
numbers - test methods and results. Preprint series in theoretical physics
HU-TFT-93-42, Research Institute for Theoretical Physics, University of
Helsinki, 1993.

[11] P. Coddington. Analysis of random number generators using Monte Carlo
simulation. Int. J. of Mod. Phys. C, 5(3):547–560, 1994.

[12] P. L’Ecuyer, J.-F. Cordeau, and R. Simard. Close-point spa-
tial tests for random number generators. Operations Research
(To appear): http://www.iro.umontreal.ca/ lecuyer/papers.html
(npair.ps), 1999.

[13] A. De’Matteis and S. Pagnutti. Controlling correlations in parallel Monte
Carlo. Parallel Computing, 21:73–84, 1995.

[14] K. Entacher. Bad subsequences of well-known linear congruential pseudo-
random number generators. ACM Trans. Model. Comput. Simul., 8:61–70,
1998.

[15] I. Vattulainen. Framework for testing random numbers in parallel calcula-
tions. Phys. Rev. E, 59:7200–7204, 1999.

[16] P. Coddington. Tests of random number generators using Ising model
simulations. Int. J. of Mod. Phys. “C”, 7(3):295–303, 1996.

[17] D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumeri-
cal Algorithms, Second edition. Addison-Wesley, Reading, Massachusetts,
1981.

[18] G. Marsaglia. Diehard software package. http://stat.fsu.edu/∼geo.
[19] A. De’Matteis and S. Pagnutti. Parallelization of random number genera-

tors and long-range correlations. Parallel Computing, 15:155–164, 1990.

[20] A. De’Matteis and S. Pagnutti. Long-range correlations in linear and non-
linear random number generators. Parallel Computing, 14:207–210, 1990.

[21] D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, Third edition. Addison-Wesley, Reading, Massachusetts, 1998.

[22] P.D. Beale. Exact distribution of energies in the two-dimensional Ising
model. Phys. Rev. Lett., 76:78, 1996.

[23] I. Vattulainen, T. Ala-Nissila, and K. Kankaala. Physical tests for random
numbers in simulations. Phys. Rev. Lett., 73:2513–2516, 1994.

32

[24] P. Coddington. Random number genera-
tors for parallel computers, 28 April 1997.
www.npac.syr.edu/users/paulc/papers/NHSEreview1.1/PRNGreview.ps.

[25] A. De’Matteis and S. Pagnutti. A class of parallel random number gener-
ators. Parallel Computing, 13:193–198, 1990.

33

