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Abstract

We analyze the optimization of the running times of Green’s function first-passage
(GFFP) algorithms. The running times for these new first-passage (FP) algorithms [1–
4], which use exact Green’s functions for the Laplacian to eliminate the absorption
layer in the “walk on spheres” (WOS) method [5–9], are compared with those for
WOS algorithms. It has been empirically observed that GFFP algorithms are more
efficient than WOS algorithms when high accuracy is required [2–4]. Additionally,
it has been observed that there is always an optimal distance from the surface of
the absorbing boundary, δI , for a GFFP algorithm within which a FP surface can
be permitted to intersect the boundary [2–4]. In this paper, we will provide a rig-
orous complexity analysis consistent with these observations. This analysis is based
on estimating the numbers of WOS and GFFP steps needed for absorption on the
boundary, and the complexity and running times of each WOS and GFFP step. As
an illustration, we analyze the running times for calculating the capacitance of the
unit cube using both GFFP and WOS.

Key words: Green’s function first-passage (GFFP), “walk on spheres” (WOS),
complexity analysis
PACS: 87.15.Vv, 84.37.+q, 82.20.Pm

1 Introduction

It is well known that random walk methods or Monte Carlo diffusion algo-
rithms can be used to solve parabolic and elliptic partial differential equa-
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tions [5,10–14]. The probability of finding an isotropic and spatially homo-
geneous random walker at a given point in space-time satisfies the diffusion
equation. The steady state first-passage distribution of a random walker can
also be used to solve the Laplace equation.

The diffusive motion of the random walker can be simulated on discrete grids
or in continuum space. In continuum space, the motion of the free Brownian
particles (random walkers) can be realized using a first-passage (FP) prob-
ability distribution [5,12,15,16] to enable large steps to be taken. The FP
probability, w(x;x0), is the probability of hitting the vicinity of x on the
bounding surface (FP surface) for the first time with a Brownian particle
starting at x0 inside the bounding surface. If the bounding surface is a sphere
and a Brownian particle starts from the center of the sphere, the FP proba-
bility distribution yields the hitting probability distribution on the bounding
surface where the Brownian particle, starting from the center of the sphere,
reaches the surface of the sphere for the first time. This hitting probability
is uniform over the spherical surface for isotropic Brownian motion. Instead
of following the complicated zig-zag motions of a nondifferentiable Brownian
trajectory, the FP probability distribution allows us to move Brownian parti-
cles from one FP surface to the next by constructing new FP geometries at
each step. The particular diffusion Monte Carlo method that uses only the
FP probability distribution of a sphere is called the ”walk on spheres” (WOS)
method [5–9]. As we will see below, there are more general versions of these
FP methods.

Simulation of diffusion in continuum space is more accurate than that on
spatially discretized grids because it avoids the error which is introduced with
a discrete grid [17]. However, if only the simplest FP distribution (spherical
FP surface) is used, like in the WOS method, another error is introduced. This
is due to the fact that with spherical FP surfaces, no walker ever terminates
its walk on an arbitrary boundary due to geometric considerations. Thus we
are required to add an absorption layer in WOS to provide a geometrical
circumstance when absorption on the boundary can occur [15] (see Fig. 1).
The absorption layer, which we call the δh-layer in this paper, is the region
near the surface of the given boundary within which a Brownian particle is
declared to be absorbed on the boundary. 1 A Brownian particle is considered
to be absorbed on the absorbing boundary if it lies a small distance (inside
the absorbing layer), δh, from the absorbing boundary.

The need for an absorbing boundary was removed by using the set of Laplacian
surface Green’s functions given by Given, Hubbard, and Douglas [1]. They al-
lowed the classical WOS FP surface to intersect the absorbing boundary (see

1 In this paper we refer to the δh-layer and use δh itself to refer to the thickness of
this layer.
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Fig. 2): this introduces a new family of possible FP surfaces. These FP sur-
faces consist of the intersected boundary surface and the spherical FP surface
outside of the boundary. If the FP surface is sufficiently simple, geometrically,
to construct a surface Green’s function for the Laplacian inside the bounding
surface, this surface Green’s function can be used as the FP probability to
construct absorbed Brownian trajectories.

A set of such Laplacian surface Green’s functions was obtained based on FP
probabilistic potential theory [10,11]. The probability density, σ1(x1), at point
x1 of a Brownian particle starting from point x0 and being absorbed at point
x1 is given by

σ1(x1) =
∂

∂n
G(x0,x1), (1)

where n is the inward-pointing unit normal vector to the absorbing surface at
x1 and G(x0,x1) is the Green’s function for the Laplacian with unit source
at the point x0 and a homogeneous Dirichlet boundary condition. Using the
known Green’s functions for the electrostatic problem of two conducting inter-
secting spheres, and the method of inversion for other geometries, Given, Hub-
bard, and Douglas [1] tabulated the necessary FP probability density functions
to exactly deal with absorbing boundaries that are either flat or spherical. This
enhancement to WOS was called the Green’s function first-passage (GFFP)
algorithm [1–4]. Using GFFP leaves only the statistical sampling error in this
Monte Carlo diffusion method.

Two properties that have been observed in numerical calculations are that
GFFP algorithms are more efficient than WOS algorithms when enough accu-
racy is required, and for a GFFP algorithm there is always an optimal choice
for δI , the distance from the surface of the absorbing boundary within which
a FP surface can intersect the boundary [1–3]. In this paper, we analyze the
optimization of GFFP algorithms with respect to δI , and compare the run-
ning times of GFFP algorithms with those of WOS algorithms. This analysis
is based on a comparison of the number of WOS and GFFP steps needed for
absorption on the boundary, and the running times of each WOS and GFFP
step. Using this complexity analysis, we provide a theoretical basis for the
observation that GFFP algorithms are more efficient than WOS algorithms
when enough accuracy is required. Also, we demonstrate the theoretical rea-
son for the existence of an optimal δI for the GFFP algorithm. As an example,
numerical experiments are presented for the calculation of the capacitance of
the unit cube, a notoriously difficult problem.

This paper is organized as follows. In § II, we analyze the running times of
GFFP and WOS algorithms and illustrate the validity of our analysis with
the unit cube capacitance calculation. In § III we summarize our results and
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provide concluding remarks.

2 Analysis of GFFP and WOS algorithms

In this section, we analyze the running times of GFFP and WOS algorithms
and show that GFFP algorithms are more efficient than WOS when enough
accuracy is required. Also, we demonstrate the theoretical reason for the exis-
tence of an optimal δI for the GFFP algorithm, which minimizes the running
time. As an illustration, we empirically analyze the calculation of the unit
cube capacitance using both WOS and GFFP algorithms.

WOS algorithms use the uniform FP probability on a spherical FP surface
to simulate rapid Brownian trajectories in free diffusion region with a δh-
layer for capture and termination on the absorbing boundary [12] (see Fig. 1).
GFFP algorithms are refinements of these WOS algorithms that remove the δh-
layer using a set of Laplacian Green’s functions to provide exact terminal FP
probabilities. This set of Laplacian Green’s functions allows us to intersect the
absorbing boundary giving the FP probability distribution for the non-trivial
FP surface [1]. The FP surface consists of the intersected boundary surface
and the spherical FP surface outside the boundary (see Fig. 2). However in
practice and for efficiency, another layer, called the δI -layer, is introduced such
that we use WOS outside the δI-layer and GFFP inside the δI-layer.

2 Note
that a δh-layer can be used when WOS is used outside a δI-layer. This entails
a finite probability of terminating Brownian trajectories when WOS is used
outside the δI-layer (see Fig. 2).

The average number of steps required for a Brownian particle to be absorbed
in a δh-layer for the WOS algorithm is O(| ln δh|) [12]. This means that the
total running time of a WOS algorithm is proportional to | ln δh|, and as δh

goes to zero the running time goes to infinity. Fig. 3 shows the average number
of steps required for a Brownian particle to be absorbed in the δh-layer for
the WOS calculation of the unit cube capacitance. This figure confirms the
theory just cited. In GFFP algorithms, the average number of steps required
for a Brownian particle to be absorbed on the boundary is expected to be
monotonically increasing with respect to δI . This means that as δI goes to zero
the average number of steps will go to zero because the probability of being
absorbed will go to one as the Brownian particle approaches the boundary.
In Fig. 4, it is shown that in the GFFP algorithm for cube capacitance, the
average number of steps required for a Brownian particle to be absorbed on
the boundary is monotonically increasing in δI .

2 Again, we refer to both the layer and its width with δI .
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The running times for WOS and GFFP algorithms, Tw and Tg respectively,
can be expressed as

Tw = O(Nwtw)

= O(| ln δh|tw), (2)

Tg = O(N ′
wtw + Ngtg)

= O(tw[(1 + q + q2 + q3 + ...)| ln δI |] + Ngtg)

= O

(
tw(

1

1− q
)| ln δI |+ Ngtg

)

= O

(
tw(

1

p
)| ln δI |+ Ngtg

)

= O(| ln δI |tw + αtwf(δI)), (3)

where Nw and N ′
w are the average numbers of WOS steps for the WOS algo-

rithm and GFFP algorithm respectively, and tw, the CPU cost per WOS step.
Also, Ng is the average number of GFFP steps required, and tg is the CPU cost
per GFFP step. In addition, we define p to be the probability of terminating
the Brownian walk within δI-layer during a GFFP algorithm. This means that
q = (1 − p) is the probability of escaping a δI-layer without absorption after
initially entering a δI-layer. Usually 0 � p < 1 for a finite small δI . Moreover,
f(δI), the average number of GFFP steps, is assumed to be a monotonically
increasing positive function. T his assumption comes from observing many
previous numerical calculations [2–4]. It should be noted that as δI goes to
zero, p goes to one and that qj represents the probability of j consecutive
failures of terminating the same walk. In practice, j is less than 10 but it is
convenient to consider an infinite number of failures, which can be bounded
by the geometric series

∑∞
j=1 qj < 1/p. Also, we introduce a positive constant,

α > 1, such that tg = αtw since the cost of each WOS step is less than a
GFFP step.

In GFFP algorithms (see Fig. 2), WOS is used outside the δI -layer for efficiency
(the first term in Eq. 3) and GFFP inside δI -layer (the second term in Eq. 3),
because the cost per WOS step is much smaller than a GFFP step. There are
two ways of using WOS in GFFP algorithms: with or without the δh-layer (see
Fig. 2). In GFFP algorithms, there is a finite probability of being absorbed in
the δh-layer when WOS with the δh-layer is used when the Brownian particle is
outside the δI-layer. In this case, assuming that the finite probability of being
absorbed in the δh-layer is linear in δh when δh is small, we can add −kδh to
Eq. 3 with k being a positive constant.

From the running times, it can be noted that for a finite δI there exists a δh
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such that the running time of a GFFP algorithm is always less than that of
WOS:

O(| ln δh|)− O(| ln δI |) > αf(δI). (4)

Recall that | ln δh| goes to infinity as δh goes to zero. Also for Tg it can be
readily shown from the last equation of Eq. 3 that for every positive α and γ
there exists an optimal choice for δI assuming that f(δI) obeys a power law,
f(δI) = δγ

I :

δI =

(
1

αγ

)1/γ

. (5)

This assumption of a power law comes from many observations of previous
numerical calculations [2–4] (see Fig. 4). Even though the CPU time of a
GFFP step is greater than that of a WOS step, there is an optimal distance
for δI for which the overall running time of a GFFP algorithm is smaller than
that of the corresponding WOS algorithm!

Fig. 5 shows the overall running times required to calculate the capacitance
of the unit cube, to a fixed tolerance, using the GFFP algorithm. The figure
shows that, for each value of δh, there is a non-zero optimal value for δI . In
this example, δI is about 0.035, γ about 0.3 and α about 9. Also, this figure
suggests that WOS with a δh-layer outside the δI-layer and GFFP inside the
δI-layer is better than just using WOS without the δh-layer outside the δI-layer
and GFFP inside the δI-layer if we can control the error from the absorbing
boundary layer. There is a finite probability of being absorbed in the δh-layer
when WOS with a δh-layer is used outside the δI-layer. This error from the
δh-layer, in general, can always be made smaller than the statistical sampling
error [9,18]. A technique for empirically estimating this δh-layer error uses a
single Brownian trajectory to both estimate the δh and the δh/10 error. The
difference between these two correlated estimates gives a measure of the δh

behavior of the error due to the finite width of the δh-layer. By adjusting δh,
one can make this error less than that arising from the statistical sampling
error. Thus if one increases the number of Brownian trajectories in order to
decrease the statistical error, one must also reduce δh in order to reduce the
δh-layer error to be less than the statistical sampling error. Another way is
to use the error analysis in [19]. The δh-layer error is linear in δh for small
δh so that we can make this error smaller than the statistical error. However,
in this case we need to perform the δh-error analysis prior to applying GFFP
algorithms.

In our current GFFP algorithms, there are only two intersecting geometries
in relation to optimization: a sphere that intersects a flat absorbing boundary
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and a sphere that intersects an absorbing spherical boundary. Here, there are
two geometric parameters in both intersecting geometries: δI and the radius of
the intersecting sphere. However, in regard to optimization there is only one
geometric parameter, δI . For a fixed δI , the radius of the intersecting sphere
should be as large as possible because it will increase the probability of being
absorbed on the boundary. Therefore, in the case of the unit cube capacitance
calculation, the radius of the intersecting sphere is taken as the distance to
the nearest cube edge.

For different geometries, the optimal choices will be different as the numbers
of WOS and GFFP steps depend on the geometry [3]. So, for each GFFP
algorithm we could and should find the corresponding optimal value.

3 Summary and Conclusions

This paper analyzes the running times of GFFP and WOS algorithms and
shows that GFFP algorithms are more efficient than WOS when enough ac-
curacy is required. Even though running time cost per GFFP step is greater
than time cost per WOS step, the average number of WOS steps required for
a Brownian trajectory to be absorbed in the δh-layer is O(| ln δh|), so that as
δh goes to zero the running time of WOS algorithms goes to infinity. Also, it
is shown that in any GFFP algorithm there is always an optimal choice for
δI , the distance from the surface of the absorbing boundary within which a
FP surface can intersect the boundary. These analyses are illustrated within
the calculation of capacitance of the unit cube. The existence of the optimal
choice for δI for the calculation of the unit cube capacitance was mentioned
in the paper of Given et al. [1].

The optimal choice for δI depends on the particular application because the
numbers of WOS and GFFP steps depend on the geometry. So, for each GFFP
algorithm we could and should find the corresponding optimal value.
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Fig. 1. A schematic side view that illustrates an absorbed series of FP jumps in
WOS. In WOS, the boundary is thickened by δh, and when a Brownian particle
is initiated with uniform probability from the launching sphere, L of radius b, and
enters this δh-absorption layer the Brownian trajectory is terminated.
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Fig. 2. A schematic side view that illustrates an absorbed series of FP jumps in
GFFP with δh-layer. In this illustration, δI -boundary layer usage is shown; when a
Brownian particle is initiated with uniform probability from the launching sphere,
L of radius b, and reaches inside the δI -boundary layer, it begins to intersect the
cube.
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Fig. 3. Average number of steps for WOS on the calculation of the capacitance of
the unit cube: δh is the absorption layer thickness and it shows the usual relation
of the running time for WOS algorithms, O(| ln δh|).
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Fig. 4. Average number of steps for GFFP: δI is the distance within which the FP
surface that intersects the surface of the cube can be used. The power law regression
shows that the average number of steps is O(δ0.3

I ).
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Fig. 5. Running times required to calculate the capacitance of the unit cube, to
a fixed tolerance, using the GFFP method. The δh and δI are the distances from
the surface of the cube within which a Brownian particle is declared, to be a ”hit”,
i.e., an absorption event has occurred, and to use a FP surface that intersects the
surface of the cube respectively. The figure shows that, for each value of δh, there
is a non-zero optimal value for δI . The WOS method is given by δI = 0.
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