
ity,

PHYSICAL REVIEW E 66, 056704 ~2002!
First- and last-passage Monte Carlo algorithms for the charge density distribution
on a conducting surface
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Recent research shows that Monte Carlo diffusion methods are often the most efficient algorithms for
solving certain elliptic boundary value problems. In this paper, we extend this research by providing two
efficient algorithms based on the concept of ‘‘last-passage diffusion.’’ These algorithms are qualitatively com-
pared with each other~and with the best first-passage diffusion algorithm! in solving the classical problem of
computing the charge distribution on a conducting disk held at unit voltage. All three algorithms show detailed
agreement with the known analytic solution to this problem.
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I. INTRODUCTION

In recent times, there has been very substantial progre
the development of diffusion Monte Carlo methods for so
ing problems in the domains of materials science and b
physics @1–4#. Both these applications frequently involv
problems that require solving the Laplace equation, or
other elliptic partial differential equation, in a multiphas
domain where the phase boundary is extensive, convolu
and singular; i.e., containing corners, cusps, and edges.

A recent work has provided the most efficient algorithm
yet devised for calculating bulk parameters in such syste
the Green’s-function first-passage algorithms@1,2,4,5#. In
particular, efficient algorithms of this kind now exist for th
calculation of the permeability of packed beds, the cond
tivity of two-phase composites, and the diffusion-limited r
action rate for systems involving protein-ligand binding.

But much remains to be done. A large fraction of t
advances made in recent decades by theorists of Brow
motion have apparently not yet been incorporated into e
cient numerical algorithms. In particular, the concepts of l
passage@6#, local time, and speed measure@7#, which are of
central importance in probability, do not yet seem to be
corporated into efficient algorithms.

In this paper, we introduce the first efficient algorithm
based on the concept of last passage. These methods in
Brownian motion ‘‘reversed in time,’’ in a sense which h
been made precise@6#. In these algorithms, diffusing par
ticles leave the sites at which they are absorbed and dif
to the places where they are created. Such algorithms h
an advantage over first-passage diffusion algorithms fo
least four different types of problems:
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~1! Problems in which the detailed distribution of absor
tion sites is important. First-passage methods do provide
distribution; however, they provide the distribution of a
sorption sites according to naive importance sampling. T
distribution is estimated over the entire surface, this does
provide efficient solutions for problems in which one r
quires the detailed surface charge distribution in a locali
patch, or on a line segment, especially if the total surfa
charge density in the area of interest is small.

~2! Problems such as binding-site problems in which
absorption sites are highly localized and make up a v
small fraction of the interface. Here it is more efficient f
diffusing particles to start at the absorption sites than it is
them to search for absorption sites starting from the outs

~3! Problems in which multiple absorbing surfaces a
placed in close proximity to one another. These proble
effectively involve the calculation of a mutual capacitan
matrix. First-passage methods cannot address these p
lems.

~4! Problems in which the interface involves singularitie
i.e., folds, cusps, and corners. Absorption points collec
these singularities. Last-passage methods locate and ma
this part of the total absorption surface very efficiently.

The present paper addresses the first set of problems
scribed above. In particular, we develop and explore a
ferent set of last-passage algorithms for computing
charge distribution on a conducting surface. We apply th
to a specific exactly solvable problem, namely, the calcu
tion of the surface charge density on a circular conduct
disk held at unit potential.

This paper is organized as follows. In Sec. II, we deve
the first-passage Monte Carlo algorithm for computing
charge density on a conducting surface. In Sec. III, we
velop a class of last-passage diffusion algorithms for co
puting electrostatic properties of a conducting surface.
Sec. IV, a class of ‘‘edge-distribution’’ algorithms is deve
oped as a general method for making last-passage algori
more efficient. In Sec. V, these three classes of algorithms
surface charge density are employed to calculate the ele
©2002 The American Physical Society04-1
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static properties of a conducting circular disk. This exam
is used to exhibit the relative advantages and disadvant
of each class of algorithms. Section VI provides our conc
sions.

II. THE FIRST-PASSAGE ALGORITHM FOR THE
CHARGE DENSITY ON A CONDUCTOR

In this section, we review the isomorphism, provided
probabilistic potential theory@8,9#, between the electrostati
Dirichlet problem on a conducting surface and the cor
sponding Brownian motion expectation.

Consider the electrostatic Dirichlet problem for the ex
rior Laplace equation in a volumeV, with boundary]V. Let
f(x) be the electrostatic potential, satisfying the Lapla
equation:

Df~x!50, xPV, ~1!

with the boundary conditions,

f~x!51, xP]V, ~2!

and

f~x!50 as x→`. ~3!

For understanding the Brownian motion expectation, it
convenient to think in terms of a diffusion problem,
Brownian motion is the microscopic manifestation of diff
sion. Thus the isomorphic diffusion problem is described
follows: define the functionf̄(x) to be the probability den-
sity associated with a diffusing~Brownian! particle initiating
at point x and diffusing indefinitely far away without eve
making contact with the surface]V. The function f̄(x)
obeys the sphere averaging property; thus it is a harm
function. In addition, it obeys the boundary conditions

f̄~x!50, xP]V, ~4!

and

f̄~x!51 as x→`. ~5!

The uniqueness of solutions to the Laplace equation t
implies that

f̄~x!512f~x!. ~6!

A different isomorphism between an electrostatic probl
and a diffusion problem provides a practical first-pass
algorithm for the surface charge distribution on a conduc
held at a nonzero potential with respect to the point at in
ity @3#. The principle of inversion with respect to a sphere
electrostatic problems shows that such a potential is equ
lent to a large point charge~or equivalently, a source o
Brownian or diffusing particles! placed far away from the
conducting object. Brownian particles leaving such a po
source will make first-passage at a set of uniformly spa
positions on a sphere~usually termed a ‘‘launch sphere,’’ se
Fig. 1! surrounding the conducting/absorbing object.~Note
05670
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that this fact is independent of the placement of the lau
sphere; in particular, of the position of its center.! Thus one
can efficiently simulate the equivalent diffusion problem
initiating Brownian particles at uniformly distributed firs
passage positions on the launch sphere. These Brownian
ticles will ultimately either make first passage on the abso
ing object or diffuse to infinity in a way that is well defined
The location of the first-passage positions of the Brown
particles will thus have a distribution identical to that of th
surface charge density in the above electrostatic problem

III. A LAST-PASSAGE ALGORITHM FOR SURFACE
CHARGE DENSITY

In this section, we introduce a last-passage algorithm
allows one to efficiently calculate the charge density a
general point on a conducting surface by using the Brown
~diffusing! paths that initiate at that point.

One can utilize the first isomorphism developed in S
VI section between electrostatic problems and diffus
problems to obtain a formula for the electrostatic poten
V(x1e), very near the pointx on the conducting surface
@10#:

V~x1e!5E
]Vy

d2yg~x1e,y!p~y,`!. ~7!

Here,g(x1e,y) is the Laplacian Green’s function associat
with Dirichlet boundary conditions on the region]Vy ~see
Fig. 2!. In particular,g(x1e,y) is the probability density
associated with a diffusing particle initiating at the pointx
1e and making first passage on the surface]Vy at the point
y. Also, p(y,`) is the probability density associated with
diffusing particle initiating at the pointy on the upper first-

FIG. 1. A schematic view that illustrates an absorbed series
first-passage jumps in a circular disk of radiusa using ‘‘walk on
spheres’’~WOS! @10,13–16#. In WOS, the boundary is thickened b
dh . When a Brownian particle is initiated with uniform probabilit
from the launching sphereL of radiusb, and enters thisdh absorp-
tion layer, the Brownian trajectory is terminated.
4-2
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FIRST- AND LAST-PASSAGE MONTE CARLO . . . PHYSICAL REVIEW E66, 056704 ~2002!
passage surface and diffusing to infinity without ever retu
ing to the lower first-passage surface.

Thus, Eq.~7! represents the electrostatic potentialV(x
1e) as the probability density associated with a diffusi
particle initiating at the pointx1e near a conducting surface
and diffusing without ever contacting the conducting surfa
This is consistent with the first isomorphism presented
Sec. II. We note an essential fact about the integrand in
~7!; the first factor is analytically simple, but it depends
the quantitye; the second factor is very complicated, but it
independent ofe.

Gauss’ law gives the surface charge densitys(x) on a
conductor in terms of the formula@11#

s~x!52
1

4p

d

de U
e50

V~x1e!. ~8!

Inserting Eq.~7! for V(x1e), this becomes

s~x!5
1

4pE]Vy

d2yG~x,y!p~y,`!, ~9!

where

G~x,y!5
d

de U
e50

g~x1e,y!. ~10!

The functionG(x,y) is the Laplacian Green’s function for
point dipole centered on the conducting surface at poinx
and normal to the surface~see Fig. 3!.

For a flat conducting surface, this dipole Green’s funct
is readily shown to be given by

G~x,y!5
3

2p

cosu

a3
, ~11!

whereu is the angle between the vectorsx andy, anda is the
radius of the absorbing sphere. Substituting Eq.~11! into Eq.
~9! gives the formula

s~x!5
3

8p2E]Vy

dS
cosu

a3
p~y,`!. ~12!

The last-passage method obtains the charge density on
circular plate at the pointx as follows.N diffusing particles

FIG. 2. A conducting surface is shown edge on;g(x1e,y) is the
probability density associated with a Brownian particle initiating
the pointx1e and making first-passage on the surface]Vy at the
point y.
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are initiated at points selected randomly with dens
cosu dS on the surface of a hemisphere surrounding
point x. They diffuse until they either hit the conducting dis
or diffuse far away. The surface charge density at the poinx
is then given by

s~x!5
3

16a

N1

N
, ~13!

whereN1 is the number of diffusing particles that diffuse
infinity.

IV. ON THE USE OF EDGE DISTRIBUTIONS IN THE
IMPLEMENTATION OF LAST-PASSAGE ALGORITHMS

In this section, we provide an introduction to the conce
of ‘‘edge distribution.’’ We explain the use of this concept
the context of last-passage distributions.

The benefits of last-passage distribution have alre
been explained in the Introduction. Nonetheless, algorith
based on the first-passage distribution have one natura
vantage; they incorporate importance sampling, i.e., t
take into account the fact that corners and edges accum
charge. Indeed, they support charge singularities. For a l
class of important problems, one can divide the surface
the absorbing object into two subsets:

~a! The corners and edges.
~b! The remainder of the surface, assumed smooth

singularity free. The edge distribution method provides
Metropolis-like method, i.e., an approximate importan
sampling method with correction, for this class of problem
In particular, problems in which the absorbing surface co
sists of a number of polygonal faces, either flat or curv
joined together at their corners and edges, can be treate
this manner.

First, points are chosen according to an approximate pr
ability density defined as follows: Each polygonal face
assumed to have constant and equal charge density on
portion of it that is away from all edges. The charge dens
in a strip adjoining each edge is taken to have a form c
taining an~integrable! singularity @11#

t

FIG. 3. The Green’s function for a point dipole oriented no
mally to an absorbing surface is a generating function for Brown
trajectories that leave the absorbing surface and never return.
effect of trajectories that leave and do return is zero; they cance
in pairs.
4-3
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GIVEN, HWANG, AND MASCAGNI PHYSICAL REVIEW E 66, 056704 ~2002!
s5CF d

d0
G12p/a

. ~14!

Here,d is the distance from the center of the polygonal fa
and a is the angle between the two faces that meet at
edge nearest to the sample point. The constantsC andd0 are
chosen to make the charge densities at the center of
polygon equal. Specifically, this strip is sampled with a lo
density given by

s~x,d!5dp/a21se~x!. ~15!

The edge distributionse(x) for an edge of the conductor ca
be determined by calculating the charge distribution fo
single curve parallel to the edge, but near to it, by using
last-passage method, and then using the above scaling
Once the edge distribution for a given edge is determine
allows rapid estimation of the surface charge density at
point close to that edge, again, by using the scaling law.
additional Monte Carlo simulation is needed for such estim
tions.

The edge distribution has a natural probabilistic interp
tation. It is the~rescaled! probability density that a diffusing
particle makes last passage on the edge pointx. This distri-
bution can be calculated either by simulation or by appli
tion of the general formula from Eq.~15!. The point is that
this one-dimensional distribution needs to be calculated o
once for each edge on each absorbing object in a prob
An extension of Eq.~9! for s(x) gives a formula for the edge
distribution:

se~x!5
1

4p
lim
d→0

d12p/aE
yP]Vy

d2yG~x,y!p~y,`!. ~16!

Here ]Vy is a cylindrical surface that intersects the pair
absorbing surfaces meeting at anglea ~as an example, for a
cube, see Fig. 4!.

The power of the edge distribution method is twofo
First, it provides an~approximate! importance sampling
technique that is free of the singularities associated w
edges and corners. Second, the edge distribution method
place most of its sample points very near the edges due to

FIG. 4. A three-quarter cylinder of radiusa and lengthL on the
edge of a cube is shown. Here]Vy is a chopped cylindrical surfac
that intersects the pair of absorbing surfaces meeting at anglea.
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fact that this is where surface charge collects. The cha
distribution at these points can be calculated from Eq.~15!
without any additional Monte Carlo simulation.

In this paper, we only study a single problem; one
which the edge distribution reduces to a constant. But e
this problem will serve to demonstrate the computational
vantages of this method.

V. THE CHARGE DISTRIBUTION ON A CONDUCTING
CIRCULAR PLATE

In this section, we use a classical problem of electros
ics, the problem of the circular conducting plate held at u
potential, as a laboratory to explore the relative efficienc
of the three algorithms discussed in this paper. We exp
both the problem of calculating the charge distribution in
localized region and the problem of calculating the to
charge on the conducting plate, i.e., the capacitance.

The conductor we consider is a thin two-dimensional c
cular disk lying in thex-y plane in three dimensions. Whe
the potential of the disk is unity with respect to infinity, th
charge density is given analytically@12# by

s~r !5
1

4pa2

1

A12r 2/a2
, ~17!

wherea is the radius of the disk andr is the radial distance
from the center of the disk.

One can assess the quality of the charge density distr
tion obtained by using the first-passage algorithm by stu
ing the radial cumulative charge density distribution. In F
5, the cumulative charge density atr from the center of a unit
two-dimensional disk in three dimensions is shown. For
convergence of the cumulative charge density, Fig. 6 sh
the relative error of cumulative charge density atr, from the
center of a unit two-dimensional disk in three dimensio
Also, Fig. 7 shows the averaged relative errors of the cum
lative charge density along the radial direction with resp

FIG. 5. Cumulative charge density atr from the center of a unit
two-dimensional disk in three dimensions.
4-4
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to the number of random walks. In Fig. 8, it is shown that t
smaller launch sphere size is the better. The reason is
when the launch sphere radius is smaller, the probability
making contact of the disk is higher, so that we have m
samplings. Figure 9 shows that the launch sphere cente
cation does not matter, provided that the launch sphere
closes the conducting object completely. These results
port the derivation of the first-passage algorithm presente
Sec. II.

The last-passage algorithm is used to calculate the ch
density on the conducting disk by performing a simulati

FIG. 6. Relative error of the cumulative charge density atr from
the center of a unit two-dimensional disk in three dimensions. T
shows the convergence of the cumulative charge density. Herentr j

is the number of Brownian trajectories andb the radius of the
launch sphere.

FIG. 7. The averaged relative error of the cumulative cha
density along the radial direction with respect to the number
random walks. This shows the convergence of the cumula
charge density. The slope~convergence rate! shows the usual con
vergence rate of Monte Carlo simulations, about 0.5. Here,ntr j is
the number of Brownian trajectories.
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based on Eq.~12!. To calculate the charge density at a po
r, starting points are chosen at random positions,y, on a
hemisphere centered at the pointr ~see Fig. 10!. Each point
is weighted by the quantityG(r ,y). The path of a Brownian
particle is simulated until it either touches the sphere ag
or diffuses to infinity. The charge density at pointr, s(r ), is
given as the average of the quantityG(r ,y) over the set of
paths thatdo not return to the disk.

In this illustrative circular disk problem, we know th
analytic potential at a distance from the disk so that we
use this analytic potential function as the probability of goi
back to the disk. In a simulation with 106 Brownian trajec-
tories of Fig. 11, we use the analytic potential function

is

e
f
e

FIG. 8. The relative error of cumulative charge density atr from
the center of a unit two-dimensional disk in three dimensions. T
shows that the smaller launch sphere size, the better it is. Herentr j

is the number of Brownian trajectories andb is the radius of the
launch sphere.

FIG. 9. The relative error of cumulative charge density atr from
the center of a unit two-dimensional disk in three dimensions. T
shows that the launch sphere center location does not matter.
center of the disk is (1, 0.5, 0.75). Here,ntr j is the number of
Brownian trajectories andb the radius of the launch sphere.
4-5
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GIVEN, HWANG, AND MASCAGNI PHYSICAL REVIEW E 66, 056704 ~2002!
decide whether the Brownian particle goes back to the d
or not. s0 is the charge density at the center of the di
Second, in Fig. 12 we use another simulation to get
charge density at distancer from the center. We use a ‘‘walk

FIG. 10. A schematic top view and side view of a tw
dimensional circular disk of radiusb in three dimensions. This il-
lustrates the charge density calculation atr; for a last passage poin
y, a hemisphere of radiusa is drawn.

FIG. 11. The charge density atr from the center of a unit two-
dimensional disk in three dimensions.s0 is the charge density a
the center of the disk. We use the analytic potential function
decide whether the Brownian particle goes back to the disk or
05670
k
.
e

on spheres’’~WOS! simulation@10,13–16# to decide whether
the Brownian particle goes back to the disk or not. In ge
eral, there will be no known analytic potential so that we w
rely on WOS ~see Fig. 1!. In Table I, we show that it is
possible to estimate the charge density accurately at po
very close to the edge singularity.

We use a Monte Carlo integration method for computi
the total charge on the disk, with the importance samplin

E
0

1

2A~12r ! f ~r !d~2A12r !. ~18!

To remove the singularity at the edges@11#, we introduce the
termA(12r ). Here,f (r ) is the radial charge distribution o
the unit circular disk including the charge singularity ter
1/A12r , and r the radial distance from its center. Rando
positions are chosen via the random variable 12h2, where
h is uniform in @0,1).

This method gives the result 0.500 94 for the total cha
on one side of the disk, when 104 sampling positions are

o
t.

FIG. 12. The charge density atr from the center of a unit two-
dimensional disk in three dimensions.s0 is the charge density a
the center of the disk. We use a WOS simulation to decide whe
the Brownian particle goes back to the disk or not.

TABLE I. The charge density at points very close to the edge
the circular disk. The values ofr 50.99, 108 Brownian trajectories,
and a 1027 unit-wide absorption layer are used with 109 trajecto-
ries, and a 10212 unit-wide absorption layer is used forr 50.999.
Here, r is the radial distance from the center of a unit tw
dimensional disk in three dimensions. This is how one can estim
the charge density at points very close to a singularity using l
passage methods.

Position (r ) Analytic Simulation

0.99 0.5641 0.5638
0.999 1.7799 1.7820
4-6
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FIRST- AND LAST-PASSAGE MONTE CARLO . . . PHYSICAL REVIEW E66, 056704 ~2002!
used, with 104 Brownian trajectories for each sampling p
sition. Here the first-passage method is much faster
easier to implement than this last-passage algorithm.

For the circular plate, the edge distributionse(x) is con-
stant because the edge singularity is the same at each
near the edge of the disk, by symmetry. Is is known that
charge density on a circular disk is given analytically by E
~17!. Letting r 5a2x andz5r /a,

s~z!5
1

4pa2

1

A2z
~12z/2!21/2, ~19!

after Taylor expansion,

se5
1

4A2pa2
, ~20!

and the first correction term will be

1

16A2pa2
z1/2. ~21!

In Table II, we show that it is possible to estimate t
charge density very close to a singularity using the e
distribution concept. The third column shows charge den
computed using edge distribution, and the fourth colu

TABLE II. The charge density at points very close to the edge
the circular disk using the edge distribution. Here,r is the radial
distance from the center of a unit two-dimensional disk in th
dimensions. The third column shows charge density computed
ing edge distribution, and the fourth column shows this with
first correction term.

Position (r ) Analytic
Edge

distribution

Edge distribution
with first
correction

0.9 0.18256324 0.177940636 0.182389152
0.99 0.564109739 0.562697698 0.564104442
0.999 1.77985138 1.77940636 1.77985121
0.9999 5.62711766 5.62697698 5.62711765
0.99999 17.7941081 17.7940636 17.7941081
0.999999 56.2697838 56.2697698 56.2697838
0.9999999 177.940640 177.940636 177.940640
0.99999999 562.697698 562.697696 562.697698
0.999999999 1779.40638 1779.40638 1779.40638
ys

.
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with the first correction term. In general, the edge distrib
tion will not be constant; however, using the natural prob
bilistic interpretation, we can obtain the edge distributi
along finite-sized edges. We intend to publish these result
a follow-on paper.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have presented three Monte Carlo m
ods for computing the charge density on a conductor w
the conductor is held at a potentialV0 with respect to infinity.
The first method has extended the first-passage algorithm
the capacitance calculation of an arbitrarily shaped cond
ing object. It turns out that the probability distribution of th
absorption locations of the first-passage capacitance calc
tion give the charge distribution on the conducting obje
regardless of the centers and sizes of the launch sphere
launch sphere encloses the conducting object comple
The second Monte Carlo method utilizes the last-pass
concept. The last-passage method stems from the iso
phism between the electrostatic potential and the probab
of a Brownian path going to infinity without returning to th
conductor. The third method also uses the last-passage
cept, enhanced by using the edge distribution to provide
proximate importance sampling. This allows fast calculat
of charge density near the edges of a conductor.

Each method has advantages and disadvantages. The
passage method is good for calculating the capacitance o
conducting object, for obtaining the global charge dens
distribution on a conducting object, or for the total char
density on a surface region of a conducting object. Using
first-passage algorithm to estimate the charge density
specific point, we need postprocessing. We must calcu
the derivative of the charge distribution at the point. Th
postprocessing is rapid for symmetric objects such as the
disk, but for objects of general shape, it is more problema
Therefore, to estimate the charge density at a specific p
not too close to the edges or corners of a conducting obj
the basic last-passage method is more suitable. For po
very close to edges or corners of a conducting object,
edge distribution method will provide the most accurate
timates.
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