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A discrete random walk method on grids was proposed and used to solve the linearized Poisson—
Boltzmann equatioiLPBE) [R. Ettelaie, J. Chem. Phy403 3657 (1995]. Here, we present an
efficient grid-free random walk method. Based on a modified “walk on spheres” algofihr8.

Elepov and G. A. Mihailov, Sov. Math. Dokll4, 1276 (1973] for the LPBE, this Monte Carlo
algorithm uses a survival probability distribution function for the random walker in a continuous and
free diffusion region. This simulation method is illustrated by computing four analytically solvable
problems. In all cases, excellent agreement is observed20@. American Institute of Physics.
[DOI: 10.1063/1.1345817

Random walk methods have been used to solve a wido continuous random walk methods once we know the sur-
variety of parabolic and elliptic partial differential equations vival probability distribution function of a random walker in
(PDES.1~° Generally, there are two broad classes of randontontinuous space.
walk methods; one uses discrete random walks on Jréahs] In this letter, we obtain this survival probability distribu-
the other continuous random walks in free spaceOne of  tion function of a random walker in continuous space by
the widely used continuous random walk methods, theeinterpreting the weighting function in the previous modi-
“walk on spheres” (WOS) method>®® uses the first- fied WOS methott for the LPBE (see the Appendix for
passage probability distribution on a sphere to facilitate largenore details. The survival probability of a random walker in
steps in random walks(The first-passage probability, a continuous and free diffusion region is giventby
w(X;Xg), is the probability of hitting the vicinity ok on the
bounding surface when the random walker starts frgma p(d)=d«/sinh(dx), 3
point inside the bounding surfa¢elhis continuous random

walk method needs to discretize neither space nor time, NQfnered js the distance from the starting point in the diffu-
the diffusing trajectory, and so it is particularly advantageous;ion region. Figure 1 shows this probability density function.
when the geometry of the region of interest is very COmpleXye mogify the WOS method to incorporate the survival
or if the solution of the PDE is required at only a relatively yopapility to solve the LPBE via a continuous random walk
small numbgr of pomts_. ) . method. This probability density combined with the WOS

We are interested in solutions to the Dirichlet problem oihqq is used to remove a random walker during the ran-
for the linearized Poisson—Boltzmann equati&®®BE) in 451, walk by the acceptance-rejection metfdiive gener-

the domain®: ate a random numbep; in (0,1) when we perform a WOS
VZ3g(x)=k2P(x), xe, (1) 1
Pp(X)=ho(x), xedd, 2 0.9 ]
0.8 | ]
where « is called the inverse Debye lengthNotice that o7
2 7E ]

when k< is zero, the earlier problem becomes a Dirichlet
problem for the Laplace equation. The WOS method for the 06 ¢
Dirichlet problem for the Laplace equation has been widely
used®®7>910we will combine this WOS method with a
survival probability density function which incorporates the
term involving 2 in the LPBE. 03 -
In a discrete random walk methbéor the LPBE, the
corresponding Master equation relate$ to the removal
probability of the random walker on the grid. During each
step of the discrete random walk, the walker either moves to 0 ‘
one of the neighboring sites, or stays fixed, or is removed. 0

This probabilistic interpretation o&? can be also extended

FIG. 1. The survival probability density functiod;is the diffused distance
of a random walker from the starting position, arnds the inverse Debye
¥Electronic mail: chwang@csit.fsu.edu length.
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FIG. 2. The electric potential away from an charged infinite flat plate in anFIG. 3. The electric potential in an electrolyte between two infinite charged
electrolyte; the solid line is the analytic solution and the circles are theparall_el flat_plates; the splld line is the analytic solution and the circles are
simulation results with 10 random walks and the absorption layér the simulation results with £orandom walks and the absorption lay&r

—107%. Here,r is the distance to the plate andis the inverse Debye =10 *. Here,r is the distance from the mid-point of the plates ani$ the
length. inverse Debye length.

pecially with complicated geometries. For a desired point, it
takes only a few seconds to compute a solution witf 10
random walkers and= 10" * on a 550 MHz PC. However, it
is hard to compare to other methods because they compute
solutions at all grid points. We can safely say that continuous
Monte Carlo methods are more efficient when the solution is
15 required only at relatively small number of points. Second,
SN:N ;1 ¢0(Xni)- 4 the accuracy and the running time of our method depends
primarily on the number of statistical samples, and so it is
Here, N is the total number of random walkerSs is the  naturally parallel. Third, it is certain that our method is faster
number of survived-and-absorbed random walkers, Xnd  than the old modified WOS methddpecause while some of
is the final position of the walker on the boundary when it isour random walkers are removed during their random walk,
absorbed aften; WOS steps. in the old method all random walkers must complete their
In this method, like the WOS method, errors are due tarandom walks to contribute to the solution according to their
both statistical sampling and th&absorption layer which weightings. Also, in open boundary cases, like the three ex-
captures random walkers near the boundary to terminatemples except the parallel plates, it is necessary to use a
their random walk. However, the error from theabsorption  certain cutoff in the old modified W3$ to kill random
layer can always be made smaller than the statistical &fror.
For the same random walk, the estimate difference between 1.1 ‘ : .

step, and we comparg with p(d), the survival probability
at d, the radius of WOS. Ifp>p(d), the random walker is
removed at this WOS step.

An estimate for the solution of the LPBE #r§, where
random walkers start, is given I8 :

using 6 and 6/10 gives a measure of the error due to the 1 ]
finite width of the 5-absorption layer. By adjusting we can 0 \ i
make the error from the absorption layer less than the statis-

tical error. This means that if we increase the number of 98 2 E

random walkers to decrease the statistical error, consequently 0.7 © ]
we must reduced and so increase the running time. .06 @ ]
In the following, we compare our simulation results with §
the analytic results for four problems, which were used as
examples for the discrete random walk metfidd .all cases, 04 ¢
the results are given as those normalized by the boundary 03¢
condition ¢q, which is assumed sufficiently small for the

0.2 F ]
LPBE to be valid. The number of random walks used for the

solution at a point is 1) and the absorption layer thickness 1
. _ — 4 H H H H L 1 1 1 |

is 5_— 107%. The analyt|.c resqlﬂsare shown. wnh solid lines % o5 ] s S Y 3 iy 4
in Figs. 2-5 and our simulation results with circles. For the ¢ (in units of k)

all four cases, our simulation results show excellent agree-
ment. Our method has several features. First, it is easier tG. 4. The electric potential away from an infinitely long charged cylinder

implement and will be faster than the other discretized meth'—n an eI_ectronte; the §o||d line is the analytic solution and the _C|rcles are the
simulation results with 10 random walks and the absorption layér

ods, such as the discrete random walk mefhdub finite =10"%. Here,r is the distance from the surface of the cylinder with unit

difference method? and the boundary-element methtdds-  radius andx is the inverse Debye length.
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1.1 : ; : In this appendix, we show how the weighting function in
] the old modified WOS methddt can be interpreted as the
survival probability distribution function. For simplicity,
0-9 consider the LPBE in the old modified WOS metHdd he
0.8 solution atx, in the domain can be expressed as folldws:
0.7 1 N
<08 u(xo) =5 2 Q"o(Xn), (A1)
205 -
' where
0.4
ni—lK
0.3 0 n; ni—1 i n; n;
Q=1 Q'=Q' "———F—r—, d;'=d(P").
02 ' " sinhd! ) e
0.1 (A2)
o Here, N is the total number of diffusing random walkers,
0 0.5 1 15 2 25 3 refers toith random Walker}(ni is the position where thigh

r (in units of ") random walker is absorbed in tieabsorption layer aften,

n: . .
FIG. 5. The electric potential away from the surface of a charged sphere i¥VOS steps, and;' the radius ofn;th WOS of theith ran-
an electrolyte; the solid line is the analytic solution and the circles are thedom walker.

simulation results with 10 random walks and the absorption layér If ; n; ; A
. . : we Interpret as a s -
=10"*. Here,r is the distance from the surface of the sphere with unit P Q urvival pmbablhty ofth ran

radius and is the inverse Debye length. dom walker, EN 1Q " is the total number of survived-and-

absorbed random walkers. Furthermore, due to the property
walkers, which will bias the results. As an example, in Tableof probabilistic random sampling from the total random
| in the case of the parallel plates, we compare our methoavalkers, only the survived-and-absorbed random walkers can
with the old modified WOS metholt.We use the customary be regarded as contributors to the solution. This reinterpre-
comparison method for Monte Carlo methods, the time contation of the weighting function as the survival probability
sumption(or laboriousnegs'® tD ¢, wheret is the CPU time  distribution function is a kind of the fractional sampling
expended in calculating a single estimate arglis the vari-  method, i.e., “Russian Roullete!? which has been used ex-
ance of the estimates. The less laborious the algorithm, thiensively in neutron transport and similar problems.
more efficient it is. In Table I, the tim nsumptidar
Iaborioeusri:Qsof ojr algoraittf)wa i:5 tbeetter tﬁailothsz; ofptt?g old ;R' Etielaie, J. Chem. Phy303 3657 (1995.
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modified WOS method. Finally, our method is easy to extend3L. H. zheng and Y. C. Chiew, J. Chem. Ph@22, 322(1989.
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