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Efficient modified ‘‘walk on spheres’’ algorithm for the linearized
Poisson–Bolzmann equation

Chi-Ok Hwanga) and Michael Mascagni
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Florida 32306-4530

~Received 27 October 2000; accepted for publication 12 December 2000!

A discrete random walk method on grids was proposed and used to solve the linearized Poisson–
Boltzmann equation~LPBE! @R. Ettelaie, J. Chem. Phys.103, 3657 ~1995!#. Here, we present an
efficient grid-free random walk method. Based on a modified ‘‘walk on spheres’’ algorithm@B. S.
Elepov and G. A. Mihailov, Sov. Math. Dokl.14, 1276 ~1973!# for the LPBE, this Monte Carlo
algorithm uses a survival probability distribution function for the random walker in a continuous and
free diffusion region. This simulation method is illustrated by computing four analytically solvable
problems. In all cases, excellent agreement is observed. ©2001 American Institute of Physics.
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Random walk methods have been used to solve a w
variety of parabolic and elliptic partial differential equatio
~PDEs!.1–5 Generally, there are two broad classes of rand
walk methods; one uses discrete random walks on grids,1 and
the other continuous random walks in free space.2–5 One of
the widely used continuous random walk methods,
‘‘walk on spheres’’ ~WOS! method,2,6–8 uses the first-
passage probability distribution on a sphere to facilitate la
steps in random walks.~The first-passage probability
w(x;x0), is the probability of hitting the vicinity ofx on the
bounding surface when the random walker starts fromx0 , a
point inside the bounding surface.! This continuous random
walk method needs to discretize neither space nor time,
the diffusing trajectory, and so it is particularly advantageo
when the geometry of the region of interest is very comp
or if the solution of the PDE is required at only a relative
small number of points.

We are interested in solutions to the Dirichlet proble
for the linearized Poisson–Boltzmann equation~LPBE! in
the domainV:

¹2c~x!5k2c~x!, xPV, ~1!

c~x!5c0~x!, xP]V, ~2!

where k is called the inverse Debye length.1 Notice that
when k2 is zero, the earlier problem becomes a Dirich
problem for the Laplace equation. The WOS method for
Dirichlet problem for the Laplace equation has been wid
used.2,6,7,3,9,10We will combine this WOS method with a
survival probability density function which incorporates t
term involvingk2 in the LPBE.

In a discrete random walk method1 for the LPBE, the
corresponding Master equation relatesk2 to the removal
probability of the random walker on the grid. During ea
step of the discrete random walk, the walker either move
one of the neighboring sites, or stays fixed, or is remov
This probabilistic interpretation ofk2 can be also extende
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to continuous random walk methods once we know the s
vival probability distribution function of a random walker i
continuous space.

In this letter, we obtain this survival probability distribu
tion function of a random walker in continuous space
reinterpreting the weighting function in the previous mod
fied WOS method11 for the LPBE ~see the Appendix for
more details!. The survival probability of a random walker i
a continuous and free diffusion region is given by11

p~d!5dk/sinh~dk!, ~3!

whered is the distance from the starting point in the diffu
sion region. Figure 1 shows this probability density functio
We modify the WOS method to incorporate the surviv
probability to solve the LPBE via a continuous random wa
method. This probability density combined with the WO
method is used to remove a random walker during the r
dom walk by the acceptance-rejection method.12 We gener-
ate a random number,h in ~0,1! when we perform a WOS

FIG. 1. The survival probability density function;d is the diffused distance
of a random walker from the starting position, andk is the inverse Debye
length.
© 2001 American Institute of Physics
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step, and we compareh with p(d), the survival probability
at d, the radius of WOS. Ifh.p(d), the random walker is
removed at this WOS step.

An estimate for the solution of the LPBE atx0 , where
random walkers start, is given bySN :

SN5
1

N (
i 51

Ns

c0~Xni
!. ~4!

Here, N is the total number of random walkers,Ns is the
number of survived-and-absorbed random walkers, andXni

is the final position of the walker on the boundary when it
absorbed afterni WOS steps.

In this method, like the WOS method, errors are due
both statistical sampling and thed-absorption layer which
captures random walkers near the boundary to termin
their random walk. However, the error from thed-absorption
layer can always be made smaller than the statistical erro6,7

For the same random walk, the estimate difference betw
using d and d/10 gives a measure of the error due to t
finite width of thed-absorption layer. By adjustingd we can
make the error from the absorption layer less than the st
tical error. This means that if we increase the number
random walkers to decrease the statistical error, consequ
we must reduced and so increase the running time.

In the following, we compare our simulation results wi
the analytic results for four problems, which were used
examples for the discrete random walk method.1 In all cases,
the results are given as those normalized by the boun
condition c0 , which is assumed sufficiently small for th
LPBE to be valid. The number of random walks used for
solution at a point is 105, and the absorption layer thicknes
is d51024. The analytic results1 are shown with solid lines
in Figs. 2–5 and our simulation results with circles. For t
all four cases, our simulation results show excellent agr
ment. Our method has several features. First, it is easie
implement and will be faster than the other discretized me
ods, such as the discrete random walk method,1 the finite
difference method,13 and the boundary-element method,14 es-

FIG. 2. The electric potential away from an charged infinite flat plate in
electrolyte; the solid line is the analytic solution and the circles are
simulation results with 105 random walks and the absorption layerd
51024. Here, r is the distance to the plate andk is the inverse Debye
length.
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pecially with complicated geometries. For a desired point
takes only a few seconds to compute a solution with 15

random walkers andd51024 on a 550 MHz PC. However, i
is hard to compare to other methods because they com
solutions at all grid points. We can safely say that continuo
Monte Carlo methods are more efficient when the solution
required only at relatively small number of points. Secon
the accuracy and the running time of our method depe
primarily on the number of statistical samples, and so it
naturally parallel. Third, it is certain that our method is fas
than the old modified WOS method,11 because while some o
our random walkers are removed during their random wa
in the old method all random walkers must complete th
random walks to contribute to the solution according to th
weightings. Also, in open boundary cases, like the three
amples except the parallel plates, it is necessary to us
certain cutoff in the old modified WOS11 to kill random

n
e
FIG. 3. The electric potential in an electrolyte between two infinite charg
parallel flat plates; the solid line is the analytic solution and the circles
the simulation results with 105 random walks and the absorption layerd
51024. Here,r is the distance from the mid-point of the plates andk is the
inverse Debye length.

FIG. 4. The electric potential away from an infinitely long charged cylind
in an electrolyte; the solid line is the analytic solution and the circles are
simulation results with 105 random walks and the absorption layerd
51024. Here, r is the distance from the surface of the cylinder with un
radius andk is the inverse Debye length.
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walkers, which will bias the results. As an example, in Ta
I in the case of the parallel plates, we compare our met
with the old modified WOS method.11 We use the customar
comparison method for Monte Carlo methods, the time c
sumption~or laboriousness!:15 tDI j, wheret is the CPU time
expended in calculating a single estimate andDI j is the vari-
ance of the estimates. The less laborious the algorithm,
more efficient it is. In Table I, the time consumption~or
laboriousness! of our algorithm is better than that of the o
modified WOS method. Finally, our method is easy to exte
to solve the LPBE with source terms.11 That will be the
subject of our upcoming research with biochemical appli
tions.

FIG. 5. The electric potential away from the surface of a charged sphe
an electrolyte; the solid line is the analytic solution and the circles are
simulation results with 105 random walks and the absorption layerd
51024. Here, r is the distance from the surface of the sphere with u
radius andk is the inverse Debye length.

TABLE I. Time consumption comparison of our algorithm with the o
modified WOS in the case of parallel plates at the midpoint; the varian
are obtained from 100 independent runs, the number of random walks
run is 105 and the absorption layer,d51024.

Method
CPU time per run

~s!
Variance
(1027)

Time consumption
(1026)

Old method 13.47 4.63 6.24
Our method 2.97 19.8 5.88
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In this appendix, we show how the weighting function
the old modified WOS method11 can be interpreted as th
survival probability distribution function. For simplicity
consider the LPBE in the old modified WOS method.11 The
solution atx0 in the domain can be expressed as follows:11

u~x0!5
1

N (
i 51

N

Qi
nic0~Xni

!, ~A1!

where

Qi
051, Qi

ni5Qi
ni21

di
ni21k

sinh~di
ni21k!

, di
ni5d~Pi

ni !.

~A2!

Here,N is the total number of diffusing random walkers,i
refers toi th random walker,Xni

is the position where thei th
random walker is absorbed in thed-absorption layer afterni

WOS steps, anddi
ni the radius ofni th WOS of thei th ran-

dom walker.
If we interpretQi

ni as a survival probability ofi th ran-

dom walker,( i 51
N Qi

ni is the total number of survived-and
absorbed random walkers. Furthermore, due to the prop
of probabilistic random sampling from the total rando
walkers, only the survived-and-absorbed random walkers
be regarded as contributors to the solution. This reinterp
tation of the weighting function as the survival probabili
distribution function is a kind of the fractional samplin
method, i.e., ‘‘Russian Roullete,’’12 which has been used ex
tensively in neutron transport and similar problems.
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