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2 A PARALLEL LAGGED-FIBONACCI GENERATOR

1. Introduction.

In Knuth’s well known exposition on pseudorandom number generation [8], several
methods of generation are considered. Among these is the additive lagged-Fibonacci pseu-
dorandom number generator:

(1) Ty =Tp—k +2pn—y (mod M), 1>k

This generator is defined by the modulus, M, the register length, [, and the lag, k. When
M is prime, periods as large as M'—1 are possible. However, it is more common to consider
lagged-Fibonacci generators with M = 2™, for some m. These generators with power-of-
two moduli are considerably easier to implement than general prime moduli; however, their
periods are much smaller than in the prime-modulus case.

In Marsaglia’s empirical study of pseudorandom number generators [12], the additive
lagged-Fibonacci generator with power-of-two modulus was one among many considered.
Overall, this generator did well on all of Marsaglia’s “stringent” tests, save the “non-
overlapping birthday spacing test.” However, Marsaglia noted that by choosing a generator
with a large register length, [, improvements are seen in the “non-overlapping birthday
spacing test.”

There are several other compelling reasons to study this generator, [14]. This gener-
ator is used by Thinking Machines Corporation in their “Connection Machine Scientific
Subroutine Library” (CMSSL) as a parallel pseudorandom number generator.! In ad-
dition, Brent has recently added to the understanding of this generator in both theory
and practice, [1, 2]. Aside from clarifying the conditions for obtaining the maximum
possible period, Brent carefully analyzed the use of the additive lagged-Fibonacci integer
generator and its floating-point counterpart. In most Monte Carlo applications, uniformly
distributed floating-point numbers, not integers, are desired. The floating-point counter-
part of equation (1) is wy, = wp—k + wp—; (mod 1). Here the w, € [0,1) are floating-point
numbers. Besides being able to directly compute floating-point pseudorandom numbers,
this formulation and the integer counterpart in equation (1) are amenable to efficient vec-
torization, [1]. Thus we see that this generator in both the integer and floating-point
versions 1s very versatile indeed. There are several very good reasons for exploring the
additive lagged-Fibonacci generator with power-of-two modulus to find an effective paral-
lel implementation. These include the strong empirical evidence of pseudorandomness for
this generator, its computational simplicity, and its highly efficient implementation.

First, we must understand some of the properties that are desirable in a parallel pseudo-
random number generator. Besides efficiency and pseudorandomness, which are properties
of the generator when used in serial, we require that:

(1) the generator must be easy to parallelize (this question is the primary concern of
this paper).
(2) the generator must be reproducible in a “strong” sense.

Property 2 is very important to computational scientists. When doing Monte Carlo cal-
culations on new machines, exact agreement with previous and trusted calculations is

Tt is the careful study of their (lack of a) seeding algorithm that was the prime motivation for this
work.
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essential. This is not an easy task, as many sophisticated Monte Carlo calculations can
be quite complicated. By reproducibility in the “strong” sense we require reproducibility
both on the same machine with a different partitioning of the processing resources and
between machines. This demanding definition of reproducibility ensures the portability of
a parallel generator to any parallel machine—a rather lofty goal, but one that we show is
accessible to the additive lagged-Fibonacei generator.

The plan of the paper is as follows. In §2 we review the conditions equation (1) and
the seed for obtaining the maximal-period for these generators. We next introduce an
equivalence relationship on the set of seeds that are in a maximal-period cycle. The large
number of equivalence classes (ECs) that result is the basis for our parallelization. We then
describe an enumeration of all of the ECs for a generator. This leads to an algorithm for
the computation of a seed in a given EC. We conclude §2 with a discussion on the quality
of this generator in terms of exponential sums. Next comes a conjecture on the full-period
exponential sums in question. No proof is given, but we present empirical evidence that
supports the validity of the conjecture. In addition, we use a probabilistic interpretation
of the full-period exponential sums to conjecture on the magnitude of their associated
partial-period sums. This conjecture is also supported by empirical evidence. In §3 we use
an enumeration of the ECs as the basis for parallelization and analyze the parent-child
generators in terms of their exponential sum quality. Finally, in §4 we summarize the
results and propose directions for further study.

2. Properties of the Generator.

2.1 Cycle Structure.

Let us begin with computing the period of these generators. If M is prime, then a
period of M' —1 is possible provided that the characteristic polynomial f(z) = 2! — 2% —1
is primitive modulo M. In the case of interest, when M = 2™, the maximum possible
period is (2! — 1)2™~!. In general, a linear recurrence modulo 2™ has period (2! — 1)2m~1
if and only if the following three conditions hold:

(1) modulo 2 the sequence has period (2! — 1),

(2) modulo 2% the sequence has period (2 — 1)2,

(3) modulo 23 the sequence has period (2! — 1)22.
For a proof see [13] or exercise 11 of §3.2.2 in [8]. We are only interested in simple additive
lagged-Fibonacci generators, so our characteristic polynomial, f(z) = 2! — 2% — 1, is a
trinomial. In this case Brent recently proved, [2], that when f(z) is a trinomial, primitivity
of f(x) modulo 2 and [ > 2 suffice to give the maximum possible period of (2! — 1)2m~1,

There is a conceptual benefit from working modulo a power-of-two: a qualitative de-
scription of the cycle structure is possible. Let us assume that we have a lagged-Fibonacci
generator with the maximum possible period of (2! — 1)2™~! ie. equation (1) satisfies
Brent’s conditions. Taken modulo 2, equation (1) defines a shift-register sequence. With
f(z) primitive modulo 2, we obtain a maximal-period shift-register sequence of period
2! 1, [6, 17]. Tt is well known that this sequence cycles over all possible nonzero contents
of its I-bit state. Next consider equation (1) taken modulo 4. The least-significant bits of
the register are just the maximal-period shift-register sequence from the modulo 2 case.
The most-significant bits are the superposition of two sequences: (a), the maximal-period
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shift-register sequence from the initial values of the most-significant bits, and (b), the
impulse response of the carries from the least-significant bits.? Sequence (a) cycles with
period 2! — 1 if it is nonzero and adds bit-wise to sequence (b). Thus, without loss of
generality we can assume (a) is zero and concentrate on (b) to analyze the cycle struc-
ture. Sequence (b) is the superposition of impulse responses forced by carries from the
least-significant bit. This impulse response has period 2! — 1. Since we have the maximum-
possible period, the carries must also have period 2! — 1. Thus a particular carry will force
a period 2! — 1 impulse response, after which the periodic repeat of the first carry will zero
the impulse response. Thus each carry will produce a period (2! — 1)2 response made up
of a 2! — 1 length maximal-period sequence followed by 2! — 1 zeros. Because we obtain the
maximum possible period, the superposition of these sequences also has period (2 —1)2.
This explains the doubling of the period when a new most-significant bit is added and
gives an understanding of the cycle structure of the additive lagged-Fibonacci generator.

We now understand how each new most-significant bit doubles the period of this gen-
erator; however, this adds [ bits of seed to the generator, not just one. The maximum
possible period of these generators is extremely short, given the size of the seed. In the
prime modulus case, the maximum possible period is equal to the number of nonzero fills in
the register. With M = 2™ the maximum possible period of (2! — 1)2™~! is considerably
smaller than the number of nonzero fills, 2™ — 1. Where has all this state gone?

The answer to this question comes by considering the condition on the seed for obtaining
the maximum possible period. Since we see that the lesser significant bits perturb the
more significant bits through period-doubling carries, starting the generator with an all
zero least-significant bit must reduce the period. In fact, the only condition to obtain the
maximum possible period is that the seed must not all be zeros in the least-significant
bit. In terms of residues modulo 2™, this means that the seed cannot all be even. It
is easy to calculate that the number of seeds that give the maximum possible period is
(2! — 1)21(’”_1). Since each of these seeds is in a maximum possible period cycle, there
must be

3 l _ ¢ l m—l) .
(2) b= (?21 152(171—1 = 2(=Dm=D

cycles with maximum possible period. If we define an equivalence relationship among seeds
as being in the same cycle, then we see that these generators have E distinct ECs.

2.2 Equivalence Class Canonical Form.

The use of these ECs will be the key to parallelizing this generator. Thus we must
be able to enumerate the ECs and to calculate a seed from each of the ECs given this
enumeration. To derive an explicit enumeration, we must decide on one seed from the full
period to serve as the representative for the given EC. We call this representative seed the
EC’s canonical form. Since the least-significant bit of this generator is a maximal-period
shift-register sequence, we can choose some given nonzero fill for the least-significant bits
of the canonical form. To transform an arbitrary seed into a seed with the canonical form’s

2Recall that the impulse response in a shift-register is the sequence obtained by starting from the “unit”
fill [1,0,0,...,0], e.g. see [6].
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least-significant bits, one need only advance the seed at most 2! — 2 times to match the
least-significant bits.?

Now that we have placed the least-significant bits of a seed in canonical form, we must
decide what to do with the more-significant bits. Given that we want simultaneously to fix
the least-significant bits and remain in the same EC, we must leap ahead in the generator’s
cycle some multiple of 2! — 1, the period of the least-significant bits.

At this point we must define some notation to simplify the subsequent discussion. Let
us first recast equation (1) into a matrix recursion modulo 2™. First we write x, =

[Ty ety - l’n_H_l]T for the contents of the register at the nth step. We may then write
equation (1) as x, = Ax,—; (mod 2™) with the [ x [ matrix A defined by:
k 14
/0 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 O
0 1 0 0 0 0 0 0 O
0 0 1 0 0 0 0 0 O
(3) A = 0 0 0 1 0 0 0 0 O
0 0 0 0 1 0 0 0 O
0 0 0 0 1 0 0 O
O 00 ...0O00 O ... 1T 00
O 00 ...000O0 ... 010

Let us also define an alternative notation for x, so that we can refer to a particular set

of bits across its [ elements. Thus let x,, = [55:11, 65312, cee b(()n)] be a column vector with
b(()n) holding x,,’s least-significant bits and 65311 its most-significant bits.*

With the above notation we can say that since A is a recursion matrix for a maximum
possible period additive lagged-Fibonacci generator, A1 =1 (mod 2). Let us call J =
A21_1, so we may write J = I (mod 2) and J* =T (mod 4). Thus applying J to x,, leaves
the least-significant bits fixed, while J? leaves the two least-significant bits fixed. If we
assume that we have changed a given seed’s least-significant bits into the canonical form,
application of J yields two possible b;’s, call them b; and b3. We choose one of these to
be the b; for our EC representative. An unambiguous choice is to choose the smallest of
by and b) viewed as [-bit integers. Note that b; and b7 can never be equal as that would
contradict achieving the maximum possible period. Next we use J? in a similar manner to
choose between by and bgz. This procedure continues until we have our EC representative.
By construction this algorithm produces the same seed for an EC when given any seed in
the same EC. Additionally, application of this procedure to seeds from different ECs will
produce different canonical form seeds.

3 A table of size j of least-significant bits spaced equally around the cycle will reduce this to no more

than f2l],_2 ] steps.

4*We will usually not use the superscript in subsequent discussion as we rarely need to refer to the bits

from one time step to another.
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Using this algorithm, we can produce a single seed that is the representative for its EC
and is in a canonical form. How do we now enumerate the different ECs? The number
of bits in the seed is I x m, while the number of ECs is E = 20=D0m=1) Thus a set of
(I — 1)(m — 1) bits specifies a unique EC. Our canonical form has already specified the
[ least-significant bits, so it could be hoped that the canonical form gives the following
explicit enumeration:

m.s.b l.s.b.
bn—1 bm—2 ... b bo
O O e O bOl—l Tl
(4) O O e O 601_2 T2
O O e O bOl I
0 0 Ce 0 bOO o

This enumeration leaves exactly (I — 1)(m — 1) bits to be specified in the canonical form
and yields exactly E = 2(:=D0n=1) different possibilities.

The remarkable thing is that this is the case! To prove it we first will have to understand
the relationship between the bit vectors b; and &) from our explicit construction of the
EC representative. Recall that the bit vector b; is modified into b7 by the application of
J. The mechanism for this modification is the superposition of the carries from by and the
evolution of b; viewed as a shift-register. However, since J = A2~ and the period of the
shift-register is 2! — 1, &Y is only a function of by though the carries. Thus it follows that
W =00 C1(by), where C1(bg) is a bit-vector valued function that when vectorially added
modulo 2 to by transforms it to b via the cumulative superposition of the carries. Such
a transformation exists for any linear functional on bit-vectors. One consequence of this
representation is that Cq(by) must be the value of b'1] when b; 1s all zeros. Since b; and b'1]
are not equal, it must be that Cy(bg) is nonzero and hence has a most-significant one bit,
when viewing Ci(by) as an [-bit integer. This most-significant one indicates that its bit
position changes from b; to b'lj. Above we chose the smallest of b; and b'1] viewed as [-bit
integers in part of our canonical form. By choosing this position to be a zero, we ensure
that choice among all by, by pairs and are free to fill in the remaining [ — 1 as we choose.

This procedure can be repeated for by and 6'2]2 via the calculation of Cy(-), and we
can continue to repeat this procedure for each successive b; to produce the following EC

tableau:
m.s.b l.s.b.
b—1 bm—2 ... b bo
O O Ce 0 bOl—l Ti—1
(5) 0 O e O 601_2 Ti—2
] 0 Ce ] bOl I
|:| D [ D bOO o
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The location of the zeros in each x,, is the location of the most-significant one in the C(+)
bit-vector. It turns out this bit-vector is only a function of the least-significant bit, by. We
next give a simple proof of this fact.

For simplicity, let us consider C3(-). Obviously, this bit-vector can be at most a function
of by and by, so we write C3(bg, by ). We have defined C3(bg, by ) as the most-significant bit of
the image under J? when by = 0 = [0,0,...,0]7. We may think of Cy(by,b;) as the most-
significant bit of J?[bg, by, 0]. By linearity we have C(bg,b1) = Ca(bg,0) & C2(0,b;) where
Cs(bo,0) is the most-significant bit of J*[bg,0,0] and C3(0,b;,0) is the most-significant
bit of J2[0,51,0]. The most interesting of these is C2(0,b;). The period of the seed
[0,;,0] in a modulo 2% additive lagged-Fibonacci sequence will not be (2! — 1)4. Instead
it will be (2! —1)2. A seed with by = 0 will always have by = 0, so its top two bits can be
thought of as a modulus 22 additive lagged-Fibonacci sequence. Recall that J? = AR -2
Thus J?[0,51,0] = [0,8;,0], and hence C3(0,5;) = 0. This implies that Cy(bg,b1) =
C2(by,0) & C2(0,b1) = Ca(by,0) &0 = Cy(by,0). This proves that Cy(-) is a function only
of the least-significant bit, by.

By similar arguments one can show that C;(-) is a function of only the least-significant

bit, by. Write
(6) Ci(bo, by,..., bi—l) = Ci(bo,o, . ,0) ) Ci(O, by,..., bi—l)-

Ci(0,b1,...,bi—1) is the most-significant bit of Jzi[O, by, ..., bi_1]. 3% = A(zl_l)y_l, and
the seed [0, by, ..., b;_;] has period at most (2! —1)2°=!. Thus C;(0,b;,...,b;—;) = 0 and

(7) Ci(bo,bl,...,bi_l) = Ci(bo,o,...,O) B0= C’i(bo,O,...,O).

The fact that C;(-) is a function only of by has a profound effect in computing a seed in
a given EC. Once we have settled on the by for our EC canonical form we can precompute
all of the Ci(by). This lets us precompute the location of the fixed zeros in the EC repre-
sentative. Thus we have reduced the problem of producing a seed in a given equivalence
class to some precomputation and the translation of a (I — 1)(m — 1) bit equivalence class
number into (I — 1)(m — 1) open bit locations in seed tableau!

Another consequence of C;(+)’s dependence on by alone is that we may try several by’s to
find one that gives an EC canonical form like equation (4). Proof that there always exists
a by such that equation (4) is possible is an open question. However, we have implemented
a seeding scheme based on these explicit EC computations for the case of the additive
lagged-Fibonacci used in Thinking Machine’s CMSSL. Here the recurrence is:

(8) Ty = Tg_5 + Tp—17 (mod 232).

With very little work a particular by was found so that the tableau in (4) could be used.
In fact, for all primitive trinomials of degree up to 255, a special by was found that gave a
canonical form as in equation (4).

2.3 Quality Issues.
An important issue in pseudorandom number generation is the quality of the numbers
produced by a given recursion. There are many desirable randomness properties that a
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sequence should possess, and it is important that it does well on empirical tests of statistical
randomness. However, empirical testing has practical as well as theoretical limitations, [8].
Thus the inclusion of qualitative theoretical results that impact on pseudorandomness is
always important.

A very powerful tool for the theoretical exploration of the quality of pseudorandomness is
the exponential sum. Most importantly, the exponential sum is related to the discrepancy
through upper and lower bounds, [11, 10, 15]. In turn, the discrepancy appears explicitly
in the Koksma-Hlawka bound on integration error. This is very important since numerical
integration is the fundamental Monte Carlo application.

The exponential sums for a modulo M sequence, {z, }, are defined as:

1—1

- 203/ =T (g
©) Clig) = Y e,

n=0

When ¢ = Per(z,,), the period length, these are called full-period exponential sums, other-
wise they are called partial-period exponential sums. The manipulation of these sums in
order to calculate or bound them is fundamental to many areas of number theory, [9].
When z, is defined by equation (1) we have Per(z,) = (2" — 1)2™~!. However, recur-
rences modulo a power-of-two often defy calculation of exponential sums based on them.
This appears to be the case for additive lagged-Fibonacci sequences modulo a power-of-two.
However, empirical observation indicates the maximal values of the full-period exponen-
tial sums given in equation (9) are well behaved. In fact, our empirical observations have
led us to the conjecture that |C(Per(z,), )| = O(y/Per(z,)). Another motivation for our
full-period exponential sums comes through probabilistic reasoning. Each term of the sum
in (9) is a complex number on the unit circle. In fact, it is one of 2™ possible values on

/=T

the unit circle. Let us assume that each of ¢~ 2 7,5 =0,...,2™ —11is equally probable, a
modest desire for a pseudorandom sequence.’ Viewing each term as a random variable, a
certain scaling of equation (9) will have a limiting normal distribution. The complex num-
ber Rebr +1/—13e | with 6,, = 27 (;—,:;), can be viewed as the point in R?, (cos 8, sinf,,).
Under the assumption of equiprobability, the two-dimensional distribution of these points
has means p, = ¢y = 0 and covariance matrix

(10) C = (g 2)

Under the further assumption that the x,’s are independent, equation (9) is sum of ¢
independent, identically distributed random variables. Thus by the multidimensional Lin-

deberg Central Limit Theorem, [5], the sum Ci;;j)’ viewed as a point in R2, will have
a limiting two-dimensional normal distribution with means p, = p, = 0 and covariance
matrix equal to C in equation (10).

51t is known empirically that the residues are equiprobable in additive lagged-Fibonacci sequences
suitable for use in a pseudorandom number generator, [12]. The empirical test for this is called the
equidistribution test, [8].
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There are several inferences that we can make from this limiting behavior. The first
is that the real and imaginary parts of the sum in equation (9) are independent with
distributions:

Lim P[w < ,8] = lim P[w

(11) e Nes

< 8] L /ﬁ —2*/2 g
= e xZ.
l V2T J oo

This further motivates our conjecture that the full-period exponential sums in equation

T— 00 T— 0

(9) should be O(4/Per(z,)), as the real and imaginary parts of equation (9) are normal

with zero means and standard deviations of O(y/Per(z,)). Another consequence of the
asymptotic independent normality of the real and imaginary parts of equation (9) is that

LN 2
€D will have a limiting distribution that is y?(2), i.e., chi-squared with two degrees of
freedom, [7]. In fact, full-period exponential sums formed with other putative pseudoran-
dom sequences should have a similar limiting behavior. This forms the basis for another

empirical test of pseudorandomness by checking for agreement between the distribution of

|C @)
L
We now present empirical evidence to support our conjecture on full-period exponential

sums. We begin with qualitative examples and then provide quantitative evidence obtained
through extensive computation. Figures 1, 2, 3, and 4 show the running sum in equation
(9) as it marches over a full period. The figures are all for the same recursion, namely
Ty = Tp—2 + Tp—s (mod 2™) where m = 2 in figure 1, m = 3 in figure 2, m = 4 in figure
3 and m = 8 in figure 4. The circles in the figures have radii that are integer multiples
of \/Per(z,). We see that at all times these sums remain smaller than 2 x /Per(x,).
In Table 1 we have more numerical evidence to confirm our conjecture. Here we have
computed the scaled full-period exponential sum, |C(Per(z,,),-)|/+/Per(zy), over different
ECs. This rectangular table has rows that are indexed by m and columns that are indexed
by [ as defined in equation (1). Alongside the rows, we have written the (k,[) pair used
to define the lagged-Fibonacci recurrence used for that value of . In the table, bold-faced
entries indicate that all ECs of that generator were searched, and the number shown is
the maximum full-period exponential sum. Roman-faced entries are the maxima over 1000
ECs; italic entries are the maxima over 100 ECs. Table 2 is identical to Table 1 in format
except the quantity tabulated is the maximal value of |C(¢,7)|/+v/Per(z,) encountered in
the generator’s full period.

and x?(2) among different full-period cycles.

Two remarkable facts evident from the tables are that the largest entry in each table is
smaller than five and that corresponding values from Table 1 and Table 2 are very close.
This supports our conjecture. In addition it motivates us to conjecture on the maximal
values of the partial-period exponential sums. What we have computed for Table 2 are
scaled maxima of partial-period exponential sums. However, we have started at a single
initial seed and have not explored all initial seeds. This is not a substantial omission as
the triangle inequality tells us that our tabulated partial-period exponential sums can be
at most half of the largest partial-period exponential sum obtainable with any initial seed.

For other linear recurrences, when the full-period exponential sum is known, standard
theory allows one to bound the partial-period sums based on the full-period values, [11, 15].
Thus if we conjecture that the full-period sum is |C(Per(zy,), )| = O(1/Per(z,)), then this
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FIGURE 1. Exponential sums, C(7,j), j = 1 to Per(z,) for z, =
Tp—2 + Tp_s (mod 22). Circles have radii that are integer multiples of

Per(x,).

theory would state that the partial-period sums are |C(¢,7)| = O(y/Per(z,,)log Per(x

However, the tables indicate that this is an overestimation. Using plobablhstlc 1easonmg7
the Central Limit Theorem behavior of the real and imaginary parts of equation (9), we
may conclude that the real and imaginary parts of equation (9) behave like independent
one-dimensional Brownian motions. Thus the law of the iterated logarithm for Brownian
motion motivates a bound on the partial-period exponential sums, [4], i.e., |C(i,j)] =

0 <\/Pel )log log Per(z )) This is slightly better than expected from upper estimates

that follow from our original conjecture. In fact, it appears that the full-period and partial-
period exponential sums are of the same magnitude.
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FIGURE 2. Exponential sums, C(7,j), j = 1 to Per(z,) for z, =
Tp—2 + Tp_s (mod 23). Circles have radii that are integer multiples of

v/ Per(zy,).

An important use of exponential sums in the case of parallel pseudorandom number
generation is to use them as a measure of the exponential sum cross-correlation among
different parallel pseudorandom number sequences. Suppose we have two modulo M pseu-
dorandom sequences, {z,} and {y,}. Their exponential sum cross-correlation is given
by:

1—1
(12) Clij) =Y ™ (en=vni),

n=0

In our case we are interested in sequences that are both generated by (1) and have seeds
in different ECs. Since C(¢,7) is a sum over the difference of sequences at a fixed offset,
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FIGURE 3. Exponential sums, C(7,j), j = 1 to Per(z,) for z, =
Tp—2 + Tp_s (mod 24). Circles have radii that are integer multiples of

v/ Per(zy,).

J, we can compute it by considering it as an exponential sum of the same recurrence in a
potentially different EC. This is because the difference of two sequences obeying a given
recursion will itself obey the recursion. Thus equation (12) gives us a qualitative tool to
explore relationships between related ECs. This approach is discussed in §3.2.

3. Parallel Considerations.

3.1 Equivalence Classes for Parallelism.

With this huge number of ECs, parallel implementation is easy. The key is to asso-
ciate each independent parallel process in the computation with a unique parallel process
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FIGURE 4. Exponential sums, C(7,j), j = 1 to Per(z,) for z, =
Tp—2 + Tp_s (mod 28). Circles have radii that are integer multiples of

v/ Per(zy,).

identifier, K. This K is then used to select the Kth EC for this process.®

This procedure works without difficulty provided the parameters for the generator are
chosen so that no K is required in the computation that exceeds 20=1(m=1) _ 1

One of the most demanding applications for pseudorandom generators is transport
Monte Carlo, [16]. Here the path of a particle is followed and modified via sampling.
Particles are emitted, absorbed, and created along a trajectory based on the parameters of
the problem and the outcome of the pseudorandom number generator. The overall solu-
tion is then the average over many different particle trajectories. The partitioning of this

5In practical implementations, the Kth parallel process obtains the f(K)th EC, where f(-) is an
appropriately chosen function.
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m
(Lk) 1 2 3 4 5 6 7 8 9
(21) | 577 | .817 | 817 | 817 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15
(31) | .378 | 1.20 | 1.45 | 1.90 | 2.08 | 2.66 | 2.36 | 2.61 | 3.03
32) | .378 | 1.20 | 1.71 | 2.06 | 2.21 | 2.22 | 2.83 | 2.65 | 2.84
(41) | 258 | 1.32 | 1.84 | 2.70 | 3.21 | 3.25 | 4.05 | 2.69 | 2.99
(43) | 258 | 1.32 | 2.16 | 2.66 | 2.96 | 3.35 | 3.95 | 3.46 | 3.60
(52) | 180 | 1.63 | 2.46 | 2.92 | 3.49 | 4.01 | 4.57 | 2.70 | 3.03
(53) | .180 | 1.63 | 2.54 | 2.95 | 3.55 | 3.99 | 4.80 | 3.12 | 3.62
(6,1) | 126 | 1.14 | 2.76 | 4.02 | 3.82 | 2.96 | 2.65 | 2.66 | 3.04
(6,5) | .126 | 1.14 | 2.86 | 4.00 | 3.81 | 2.99 | 3.90 | 3.03 | 3.05
(7,1) | .089 | 1.51 | 2.89 | 3.43 | 2.99 | 2,93 | 2.75 | 2.87 | 2.61
(73) | .089 | 1.51 | 3.13 | 3.86 | 2.54 | 2.36 | 2.69 | 2.70 | 2.86
(74) | .089 | 1.51 | 2.71 | 3.66 | 2.74 | 3.04 | 2.85 | 2.63 | 2.81
(7.6) | .089 | 1.51 | 3.00 | 3.60 | 2.90 | 2.69 | 3.06 | 2.73 | 2.55
(9,4) | .044 | 1.46 | 3.27 | 264 | 253 | 2.81 | 323 | 2.85 | 2.85
(95) | .044 | 1.46 | 3.74 | 2.76 | 3.02 | 2.63 | 2.74 | 2.83 | 2.68
(10,3) | .031 | 1.03 | 3.99 | 261 | 267 | 233 | 2.70 | 2.82 | 2.87
(10,7) | .031 | 1.03 | 3.91 | 253 | 2.60 | 2.42 | 3.53 | 2.62 | 2.33
(11,2) | .022 | 1.44 | 317 | 252 | 2.61 | 2.67 | 2.55 | 2.66 | 2.66
(11,9) | .022 | 1.44 | 273 | 2.90 | 2.67 | 2.99 | 2.55 | 2.90 | 2.59
(15,1) | .006 | 1.42 | 270 | 269 | 2.84 | 2.76 | s.60 | 2.98 | 2.00
(15,4) | .006 | 1.42 | 282 | 262 | 2.62 | 2.99 | 2.29 | 1.8% | 2.05
(15,7) | .006 | 1.42 | 314 | 316 | 239 | 277 | 2.02 | 2.08 | 1.78
(15,8) | .006 | 1.42 | 2.80 | 256 | 235 | 2.35 | 2.91 | 2.13 | 2.62
(15,11) | .006 | 1.42 | 3.10 | 3.03 | 2.63 | 2.69 | 2.19 | 2.20 | 2.24
(15,14) | .006 | 1.42 | 314 | 279 | 269 | 253 | 2.92 | 2.98 | 2.17
(173) | .002 | 1.42 | 277 | 263 | 2.21 | 2.21 | 2.04 | 2.21 | 2.96
(17,5) | .002 | 1.42 | 315 | 265 | 2.28 | 2.20 | 2.08 | 2.71 | 2.50
(17,6) | 002 | 1.42 | 271 | 270 | 2.67 | 238 | 271 | 1.94 | 2.28
(17,11) | 002 | 1.42 | 324 | 262 | 242 | 2.34 | 2.28 | 1.9 | 2.58
(17,12) | 002 | 1.42 | 286 | 253 | 1.99 | 2.77 | 2.39 | 241 | 2.00
(17,14) | .002 | 1.42 | 255 | 273 | 1.91 | 2.29 | 2.19 | 2.20 | 2.99

TABLE 1. Full-period exponential sums, |C(Per(z,),)|/+/Per(z, ), for
various additive lagged-Fibonacci sequences of the form z,, = z,_; +
Tn—; (mod 2™). Rows are indexed by [ and columns by m. See text for

further details.

problem among different processors is conceptually trivial via the independent trajectories.
However, ensuring the reproducibility of this computation on an asynchronous MIMD ma-
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m
(Lk) 1 2 3 4 5 6 7 8 9
(2,1) 0.58 | 0.91 1.03 1.09 1.48 1.44 1.83 1.75 1.94
(3,1) 0.76 1.20 1.49 1.90 | 2.11 2.66 | 2.61 2.69 3.06
(3,2) 0.76 1.20 1.71 2.06 | 2.21 2.22 | 3.05 2.76 2.87
(4,1) 1.03 1.32 1.84 | 2.70 | 3.38 | 3.39 | 4.05 2.73 3.05
(4,3) 1.29 1.39 | 2.16 | 2.66 | 2.96 | 3.39 | 3.97 | 3.54 3.83
(5,2) 0.90 1.63 | 2.55 2.92 | 3.49 | 4.05 | 4.57 | 2.72 3.04
(5,3) 0.54 1.63 | 2.63 | 2.95 | 3.58 | 4.05 | 4.82 3.12 3.62
(6,1) 0.88 1.64 | 2.76 | 4.02 | 3.90 3.01 2.65 2.70 3.06
(6,5) 1.01 1.53 | 2.92 | 4.06 | 4.00 3.04 3.91 3.08 3.05
(7,1) 1.06 | 1.64 | 2.98 | 3.52 | 3.04 | 3.03 2.82 | 2.87 | 2.67
(7,3) 0.89 | 1.74 | 3.13 | 3.93 | 2.63 2.41 2.79 | 2.88 | 2.95
(74) | 0.80 | 1.65 | 2.86 | 3.78 | 2.78 | 3.20 | 2.88 | 2.77 | 2.95
(7,6) 0.71 | 2.02 | 3.02 | 3.60 | 3.03 2.69 3.06 | 2.85 | 2.82
(9,4) 0.84 | 2.16 | 3.46 | 2.72 2.64 | 2.84 3.39 | 291 | 2.85
(9,5) 0.75 | 1.95 | 3.79 | 2.83 3.08 3.05 2.83 | 291 | 295
(10,3) 1.31 | 1.85 | 4.05 | 2.75 3.04 | 2.67 294 | 3.06 | 2.93
(10,7) 1.06 | 2.02 | 3.94 | 2.67 2.86 2.57 3.55 | 2.81 | 248
(11,2) 1.06 | 2.07 | 3.28 2.73 2.66 2.72 2.82 | 2.68 | 2.94
(11,9) 0.86 | 2.02 | 2.98 2.99 2.68 3.00 2.83 | 3.01 | 3.07
(15,1) 1.35 | 2.10 2.86 2.75 2.89 2.90 3.71 | 2.62 | 2.12
(15,4) 1.11 | 2.10 3.25 2.76 2.65 3.08 247 | 1.94 | 2.18
(15,7) 0.87 | 1.99 3.15 3.35 2.62 2.99 2.06 | 2.06 | 2.18
(15,8) 0.77 | 2.19 2.89 2.59 2.65 2.46 2.56 | 2.89 | 2.76

(15,11) | 1.03 | 2.17 3.33 3.07 2.71 2.78 2,49 | 2.2% | 2.55

(15,14) | 1.28 | 2.16 3.19 2.91 2.77 | 2.67 2.84 | 2.49 | 2.45
(17,3) 1.36 | 2.19 2.83 2.70 2.28 | 2.29 | 2.21 | 2.28 | 2.599
(17,5) 0.75 | 2.16 3.23 2.77 2.87 | 2.80 | 2.42 | 2.72 | 2.57
(17,6) 0.61 | 2.15 2.81 2.73 .10 | 2.87 | 2.72 | 2.28 | 2.593

(17,11) | 0.65 | 2.45 3.33 2.82 2,49 | 2.87 | 2.54 | 1.99 | 2.64

(17,12) | 0.71 | 2.20 3.10 2.73 2,10 | 2.8% | 2.52 | 2.48 | 2.06

(17,14) | 1.32 | 2.13 2.55 2.90 2.28 | 2.27 | 2.50 | 2.54 | 2.64

TABLE 2. Extremal values of exponential sums, _ M,
0<j<Per(zn) 4/Per(zy,)

for various additive lagged-Fibonacci sequences of the form z,, = x,_; +
Zn—; (mod 2™). Rows are indexed by [ and columns by m. See text for

further details.

chine is not nearly as easy. Since a particle may create new particles, this leads to new
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trajectories to be followed. It is common practice to place the information from a particle
creation into a computational queue. The queued particles are then processed when a
free processor becomes available. Reproducibility requires that particles are put into the
queue with information sufficient for the pseudorandom number generator to produce the
same stream of pseudorandom numbers regardless of what processor or in what order the
particle is processed. When using the additive lagged-Fibonacci generator, one need only
provide a unique K for each particle to ensure reproducibility in this very general sense.
In general, if one is computing on an arbitrary asynchronous MIMD machine, it is
desirable to be able to produce a child process identifier, K, that is guaranteed to be
distinct from others created elsewhere in the computation. In addition, the assignment
of K should be a local computation based only on the parent’s process identifier. This
is easily accomplished by associating the parallel processes with a binary tree. When the
process for node K is required to create n children, it does so by assigning the n nodes
closest and below it on the binary tree. This assures a local computation. In particular, if
the process assigned to node K has two children, they receive nodes 2K + 1 and 4K + 2.
This procedure does not totally solve the problem of the reuse of ECs in an asynchronous
MIMD computation. It is possible to have each particle in a computation create one child
particle and hence rapidly descend down the (I — 1)(m — 1) + 1 levels of the process binary
tree. However, this seems to be a very unlikely situation, as even the relatively small

CMSSL generator has 497 levels!

3.2 Equivalence Classes and Exponential Sums.

We now turn to the analysis of exponential sum cross-correlations among ECs. If
{z,} and {y,} come from different ECs, we know we can find an offset, j, so that x,
and y,4; agree in their least-significant bit. In fact, if x, and y, are their respective
EC representatives, they already agree in their least-significant bit. Now assume that
we are working with recurrences from equation (1), i.e., M = 2™, and we have the full-
period exponential sum as a function of m, i.e., C(Per(x,),-) = F(m). The difference,
Zn = Tn — Yn—j is even and may be written as Z, = 2z,, where 2z, is a maximum possible
period additive lagged-Fibonacci sequence modulo 2™~ 1. Thus

Per(z,)—1 Per(z,)—1
I ST S e
n=0 n=0

Per(z,)—1 ' 2Per(z,)—1 '
(13) Z eTmoTIn = Z eTmoTn =

n=0 n=0
Per(z,)—1 .
2 Z et on =2F(m —1).

n=0

From above we conjectured that F(m) = O(2™/?), so that if x,, and y,1; agree in their r
least-significant bits, then the full-period exponential sum cross-correlation, equation (12),
is 27/? times bigger that the full-period exponential sum, equation (9).

This gives us a clear understanding of how different ECs are related, since one way to
see how many least-significant bits of overlap there are between {z, } and {y,} is to place
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them in canonical form. Because of the periods of the different bits, {z,} and {y,} can
be made to agree in their r least-significant bits if and only if their EC representatives
agree in their r least-significant bits. This means that a local scheme of computing child
process numbers based on the mapping of parallel processes onto the binary tree will always
produce children with cross-correlations as small as possible. In fact, this analysis allows
us to modify the assignment of process numbers in appropriate ways to avoid large cross-
correlations if a particular computation chooses related ECs poorly in this respect. In
our implementation of this generator, we did not use this assignment procedure for child
processes for the reason of correlations in lesser-significant bits in sequences all started
from the EC representatives. One solution is to apply some pseudorandom power of A to
a given seed, but in our implementation we believe we have a more elegant solution, [3].

4. Discussion and Conclusions.

We have provided the theoretical background for the use of a two-term additive lagged-
Fibonacci pseudorandom number generator in the most general parallel setting. The algo-
rithms are based on the realization that equation (1) produces a vast number of full-period
cycles. These cycles can be explicitly chosen through the calculation of an appropriate seed.
We have also provided a simple and general local computation to produce child ECs from
parents. In addition, we have analyzed the theoretical quality of these sequences and have
understood the exponential sum cross-correlations among different ECs.

Still open is a proof that the canonical form given in equation (4) is always attainable
through a judicious choice of the least-significant bits. We also have only conjectured as
to the value of the principle full-period exponential sum. A proof would be much more
satisfying.

In addition to this work, we have provided an implementation of these ideas, [3]. This
implementation is very similar to the ideas presented here except that certain compromises
between access to all of the ECs and speed of seeding were made. This implementation
is based directly on the integer recursion in (1) and produces [0, 1) random variables by
Up = /M. A more direct approach is to work directly with floating-point numbers and
take equation (1) modulo 1. This can be done while still ensuring absolute EC integrity
by providing zero valued guard bits in the mantissa. For our simple three term recursions
with £1 coefficients, a mantissa of length s bits can hold floating-point values in the top
s — 1 bits without risking an operation that changes the EC.
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