Quasi-Monte Carlo Methods for Some Linear Algebra Problems

Aneta Karalvanova*

First proposed by von Neumann and Ulam, Monte
Carlo methods (MCMs) for solving linear algebra
problems have been known since the middle of the
last century. They give statistical estimates for the
elements of the inverse of a matrix or for compo-
nents of the solution vector of a linear system by
performing random sampling of a certain chance
variable whose expected value is the desired solu-
tion. Perhaps the first application of MCMs in lin-
ear algebra appeared in a paper by Forsythe and
Leibler [11] in 1950. In the following years signif-
icant contributions were made, especially by Wa-
sow [20], Curtiss [5], Halton [14], Hammersley and
Handscomb [13] and Sobol’ [19]. These methods
were recognized as useful in the following situations
[21]: when obtaining a quick rough estimate of so-
lution, which will then be refined by other methods;
when the problem is too large or too intricate for
any other treatment; when just one component of
the solution vector or one element of the inverse
matrix is desired. '

There has been renewed interest in MCMs in re-
cent times, for example [1, 2, 6, 7, 8, 9, 10, 15], the
primary reason for this is the efficiency of paral-
lel MCMs in the presence of high communication
costs. The second reason for the recent interest
in MCMs is that the methods have evolved sig-
nificantly since the early days.
fort in the development of Monte Carlo methods
has been in the construction of variance reduction
techniques which speed up the computation by re-
ducing the the rate of convergence of crude MCM,
which is O(N~Y/2). An alternative approach to
acceleration is to change the type of random se-
quence, and hence improve the behavior with
N. Quasi-Monte Carlo methods {QMCMs) use
quasirandom (also known as low-discrepancy) se-
quences instead of pseudorandom sequences, with
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the resulting convergence rate for numerical inte-
gration being as good as O((logV)*N~1). The first
results of using QMCMs for linear algebra problems
were presented by Mascagni and Karaivanova (see
for example [16, 17]).

Quasi-Monte Carlo methods often include stan-
dard approaches for variance reduction. The fun-
damental feature underlying all QMCMs, however,
is the use of a quasirandom sequence. In this paper
the convergence and the complexity of quasi-Monte
Carlo methods for estimating the solution of sys-
tems of linear algebraic equations (SLAE), invert-
ing of matrices and finding extremal eigenvalues
are studied when quasirandom sequences are used.
An error bound for computing matrix-vector prod-
uct is established. Numerical experiments with
large sparse matrices are performed using differ-
ent quasirandom number (QRN) sequences. The
results indicate that for all of the considered prob-
lems improvements in both the magnitude of the
error and the convergence rate can be achieved us-
ing QRNs in place of pseudorandom numbers.

1 The Problems

Given a matrix B = {by}?,_;, B € R x R,
and a vector b = (b1,..., fa)' € R consider the

following three problems:

Problem 1. Evaluating the inner product

J(w) = (hw) = 3 byt (1)
=1

of the solution v € R™ of the linear algebraic sys-
temn Bu = b and a given vector h € R™.

After choosing a matrix M € R™ x R™ such that
MB =1-A, [3], where ] € R™ x R" is the identity
matrix, and Mb = f, f € R™, the matrix equation
Bu = b becomes

uw=Au+ f. (2)

Assumming the matrices M and A are both non-
singular, and [A(A)| < 1 for all eigenvalues A(A) of
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A, then the general stationary linear iteration
k) = Ay 4y
may be used for solving the system Bz = b.

Problem 2. Inverting matrices, i.e.; computing
the matrix
C=B"1,

where B € R" x R™ is a given real matrix.

(3)

Assumming the matrix B is non-singular and
[|A(B)] = 1] < 1 for all eigenvalues A(B) of B, we
construct the matrix A = I — B. Then the inverse
matrix C = B~! can be presented as C = 3 o, A
and the desired approximation of C is the trun-
cated series with the corresponding truncation er-
ror.

Problem 3. Evaluating extremal eigenvalues:

Au = A(A)u. (4)

It is assumed that the matrix A is non-singular
and Amin = An < A1 S < S < =
}\muJ;-

We consider the matrix A and also its resolvent
matrix Rq = [I — qA]~! € R®*™. The eigenvalues
of the matrices R, and A are thus connected by
the equation p = 1—_1;,\’ and the eigenvectors of the
two matrices coincide.

The largest eigenvalue can be obtained using the
power method applied to the matrix A [8]:

(h,Aif)
(h, A1)

or using the power method applied to the resolvent
matrix [9]:

Aoz = hmz—»oo (5)

my _ _(WI—qA™™f)
KT T = g A D fymocs

(6)

For computing the smallest eigenvalue, we use the
fact that for negative values of ¢, the largest eigen-
value, fimgs, of Ry corresponds to the smallest
eigenvalue A, of the matrix A, so we use (6) with
g<1.

1
uma:I::m fOTq>0'

2 MCMVS for Linear Algebra

To solve these problems via MCMs (see, for exam-
ple, [13, 19]) one has to construct for each problem
a random process with mean equal to the solution
of the desired problem. All of these methods are
based on computing matrix-vector product.
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Figure 1: MC and QMC: Accuracy versus number
of walks for computing (h,x), where x 1s the solu-
tion of a system with 2000 equations.

2.1 Matrix-Vector Product

Given a matrix A and vectors f, h € R™, we want
to compute hT A’ f for some i, using a Monte Carlo

method. Consider the following Markov chain
ko — ki — ... = k;, where k; = 1,2,...,n for
J = 1,...,17 are natural numbers. The rules for

constructing the chain are P(ko = o) = pao, P(k; =
Blkj_1 = @) = pap where p, is the probability that
the chain starts in state a and peg is the transition
probability from state o to state § . Probabili-
ties pag define a transition matrix P. We require
that 30 pa=1land) 5, pag=1lforanya=
1,2,...,n, and that the distribution (pi,...,p,)" is
permissible for the vector i and similarly the distri-
bution pag is permissible for A [19]. Common con-
structions are to choose po = £, pag = 1 which
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corresponds to crude Mont?e C‘arlo, or to choose
ha da

Da = -::1!“1&'; Dap = 2=llaaﬁ|’ a=1,...
corresponds to importance sampling algorithms for
matrix computations—the zero elements will never
be visited and the elements with larger magnitude
will be visited more often during the random walks
on the elements of the matrix.

) T

Now define weights for our Markov chain using the
following recursion formula:

Wo=1, W; =Wj-—1M, Jj=1,...,5. (7)
pkj_lkj
Following [19), it is easy to show that
hko i .
E|S0Wife | = (hA), i=12,... (@)
)ko

2.2 Monte Carlo estimations

To solve Problem 1, define the random variables
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h oo
oln = —= S W;fkj- (9)
It is known [19] that the mathematical expectation
of this random variable is E[#[A]] = (%, u). fred s
The partial sum corresponding t0 (9) is de g Tg
g 58 Monte Carlo
6;[h] = p—‘:;— Zj:o W; fr; - Thus the Mon ar

estimate for (h,z) is

1 Mo (h"°W~fk.)
(h7m)~ﬁ;; Dko ‘:s

where N is the number of chains and 01'[/_1]3
is the value of 6;[h] taken over the s-th cha.'m.
This estimate has a. statistical error of size
O(Var(8,)Y/2N~/2),

If we try to solve Problem 2, i.e., We want to
compute the element ¢, of the m‘a.tnx inverse to
A, then we use the following equation [19]:

Crr? :E{ Z W:i,}, (10)
ifki=r"
where (ilk; = r') means a summation only for

weights W; for which k; = r! and‘ C= {CTT'}:,r’:l'
The Monte Carlo estimate then is

>, Wi

s=1 | (jlki="") s

N
1
Crri R ==

To solve Problem 3, we use the equation (8) and
also [9]

Ey quLm_l%W,—f(zi)] = (h, [l = ¢4 ),

i=0

for m = 1,2,..., which allow us to eXpress the

estimates (5) and (6) as
P ﬂi&‘i— (11)
meE E[Wi-—lfki—l]

and

i-1vi—1 i flz;
s BT 'CimaWif @l g

ER %o quii+m—1Wif(zi)]

We use MCM for an approximate calculation of
these expected values:

TN (Wn-1fem-1)s

A‘ﬂ'l.ﬂ.I ~

TV (5 ¢C o Wirtf (@ir)])s
8= g == ,
SV ([ Clima Wil (#:)Ds

Amin &

g <1
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Figure 2: MC and QMC: Accuracy versus number
of walks for computing one component, x4, of the
solution for a system with 1024 equations.
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Figure 3: Relative errors for Apmar using: power
MCM and quasi-MCM with different number of
Markov chains for a sparse matriz 2000 x 2000.

3 QMCMs for Matrix Com-
putations

The methods presented here are based on comput-
ing hTA*f, and computing this scalar product is
equivalent to computing an (i + 1)-dimensional in-
tegral. Thus we may analyze using QRNs in this
case with bounds from numerical integration. We
do not know A* explicitly, but we do know A and
can use a random walk on the elements of the ma-
trix to compute approximately hT A*f.

Using the following procedure: G = [0,n), G; =
[i—1,4), i =1,....,n, f(x) = fi, T € Gy,i =
1,...,n, a(z,y) = aij,z € Gi,y € G4, i,j =
1,...,n, h(z) = h;, z € Gi,i = 1,...,n, we can
consider computing h7 A%y to be equivalent to com-
puting a (i + 1)-dimensional integral. Consider the

scalar product hT Af bearing in mind that the vec-

tors h, f, and the matrix A are normalized with
factors of 1/4/n and 1/n respectively and denoted
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Figure 4: Relative errors for A gy using resolvent
method with different length of Markov chains for
a sparse matriz 2000 x 2000.

by hn, AN, and fy. In this case we have
1 N
|h£A’NfN—N;h<zs)a<zs,ys) 0z, w5) £ (w5)]

< |h[T| Al f|.Dx.-

Why are we interesfed in quasi-MCMs for the
eigenvalue problem? Because the computational
complexity of QMCMs is bounded by O(IN) where
N is the number of chains, and [ is the mathe-
matical expectation of the length of the Markov
chains, both of which are independent of matrix
size n. This makes QMCMs very efficient for large,
sparse, problems, for which deterministic methods
-are not computationally efficient. Numerical tests
were performed on general sparse matrices using
PRNs and Sobol, Halton and Faure QRNs. Some
results are shown in Figures 1, 2, 3, and 4.
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