SOURCEBOOK
OF PARALLEL
COMPUTING

JACK DONGARRA

University of Tennessee

IAN FOSTER
Argonne National Laboratory

GEOFFREY FOX

Indiana University

WILLIAM GROPP
Argonne National Laboratory

KEN KENNEDY
Rice University

LINDA TORCZON
Rice University

ANDY WHITE
Los Alamos National Laboratory

®
M <

MORGAN KAUFMANN PUBLISHERS




8.9

—

Deterministic Monte Carlo Methods and Parallelism
Michael Mascagni

Monte Carlo methods (MCMs) have been, and continue to be, very popular algo-
rithms for solving a wide variety of problems in science, engineering, and technol-
ogy. However, they are generally methods of last resort. As Mark Kéc, a probability
and Monte Carlo pioneer, put it, “You use Monte Carlo methods until you under-
stand the problem.” Yet there are clearly large classes of problems that remain poorly
understood in the sense of Mark Kéc. This is because MCMs remain the best ap-
proaches to certain classes of problems. While it is impossible to clearly identify the
problem classes where MCMs are most effective, one can generally say that most
problems that rely on MCMs for their solution either live in high dimensions or
have extremely complicated geometries.

Given that MCMs will continue to dominate numerical approaches in certain
application areas, it behooves MCM practitioners to optimize their computational
methods as much as possible. This is especially evident when one considers that
the U.S. Department of Energy (DoE) has claimed that MCMs have consistently
consumed up to a half of their high-performance computing cycles since the be-
ginning of DoE'’s supercomputing activities. A generic problem with MCMs is their
slow convergence with respect to statistical error. Since MCMs are based on statis-
tical sampling, a quantity of interest is known only within a statistically defined
confidence interval. The width of such confidence intervals generically decreases as



250

8.9.1

Chapter 8 Application Overviews

O(N~V2) with N random samples. Clearly, a modest improvement in this stochastic
convergence rate would have a significant impact on scientific computing.

A generic approach to the acceleration of Monte Carlo convergence is through
the use of so-called quasi-random numbers (QRNs). These are numbers that are
highly uniformly distributed and thus preferred in MCMs where an even sampling
of the computational space is more important than randomness. The classical MCM,
numerical integration, is an example of an application that in reality requires uni-
formity, not randomness. With pseudorandom numbers (PRNs), N samples reduce
the stochastic errors by O(N -1/2y while quasi-Monte Carlo methods can produce de-
terministic errors as small as ©(N~1) in numerical integration. QRNs have also been
used to accelerate the Monte Carlo convergence of other applications, and so they
are sought after by computational scientists.

The purpose of this section is twofold. Primarily, it is to acquaint the reader with
QRNs and the advances being made with quasi-MCMs in a variety of application
areas. Secondarily we describe some of the problems inherent with applying QRNs
to parallel computations and provide the reader with empirical evidence that quasi-
MCMs are being applied to a broad spectrum of parallel Monte Carlo applications
with some success. We begin with a standard introduction to QRNs via the numerical
quadrature application. This introduces the discrepancy, a measure of the deviation
of a point set from uniformity, and provides us with an understanding of how
well QRNs can perform. This also gives us a clear demonstration of a Monte Carlo
algorithm that in reality needs uniformity rather than randomness for optimal
performance. Next, a problem associated with splitting QRN sequences for use on
different problems (processors) is discussed. This shows that in this particular case,
the ability to combine two or more results to obtain greater accuracy is equivalent to
the problem of creating a parallel QRN generator. This is a special set of circumstances
where the parallelization is required to advance capabilities for serial computation
as well. We then review methods of quasi-random number generation and point
out the deficiencies in currently available, free QRN software. Finally, we briefly
present the results of a Markov chain computation for solving a problem in linear
algebra via an MCM. Here we show (1) that one can parallelize the quasi~-Monte
Carlo approach to the problem, (2) that the parallel efficiency of the regular Monte
Carlo approach is maintained by the quasi-Monte Carlo method, and (3) that the
accelerated convergence of QRNs is maintained in this parallel context.

Motivation for Using Quasi-Random Numbers

MCMs are based on mathematical processes that utilize random numbers. The com-
putational requirement for random numbers in Monte Carlo applications has been
satisfied with two types of computational random numbers: PRNs and QRNs. PRNs
mimic the behavior of “real” random numbers in theoretical and empirical tests,
whereas QRNs provide very uniformly distributed sets of numbers that may, in fact,
perform pootly on tests of randomness. However, QRNs are more effective than PRNs
in situations where the uniform distribution of points is important. Such applica-




8.9 Deterministic Monte Carlo Methods and Parallelism 251

NG

tions include the canonical Monte Carlo application, the numerical evaluation of
integrals. It is the case that many nonquadrature Monte Carlo computations can be
mathematically viewed as numerical quadrature, and so many other types of Monte
Carlo applications have seen performance improvement when PRNs have been care-
fully replaced with QRNSs. In fact, many application areas that do not at face value
seem to be anything like quadrature have been favorably impacted by the use of
QRNs. These include simulations with random walkers in application areas as diverse
as heat conduction [687], rarefied gas dynamics [165}, particle transport [{892], nu-
merical linear algebra [650], and financial-instrument evaluation [166]. In addition,
QRNs promise to improve the convergence of applications in quantum mechanics,
materials science, biochemistry, and environmental remediation. J

The mathematical motivation for QRNs can be found in the classic Monte Carlo 4
application of numerical integration. For simplicity, we detail this for 1-D integra- i ;
tion. Let us assume that we are interested in the numerical value of I = fol f(x)dx, ‘
and we seek to optimize approximations of the form S

1 N
I~ ﬁ'gf(xn)

]
i

A solution to the optimization of the integration nodes, {x,,}f‘,;l, comes from the

famous Koksma-Hlawka inequality. Let us define the star-discrepancy of a 1-D point
set, {X,,}ﬁ;l, by

Dy =Dy(xy, ..., xN) = sup
O<u<l

1 N
5 2 Xiow () — U
n=1

where x[o,) is the characteristic function of the half-open interval [0, u). The
term }:2’=1 X{o)(Xxn) counts the number of x,’s in the interval [0, ), and thus

I}%, Zﬁ;l Xjo,u)Xn) — ul measures the difference between the actual distribution of
points in the interval [0, u) and the uniform distribution on [0, u). By taking the
supremum, we are characterizing the distribution of the {x,,}f=l through its maxi-
mal deviation from uniformity. We thus have the remarkable theorem due to Koksma
and Hlawka [571]: If f (x) has bounded variation, V(f), on [0, 1),and x4, ..., x5 € [0, 1]
have star-discrepancy Dj;, then

N 1
’%Zf(xn)— / Fodx | < V(P D
n=1 0

This simple bound on the integration error is a product of V(f), the total variation !
of the integrand in the sense of Hardy and Krause, and Dy, the star-discrepancy
of the integration points. A major area of research in Monte Carlo is variance I
reduction, which indirectly deals with minimizing V(f). QRN generation deals with !
minimization of the other term. i




252

8.9.2

Chapter 8 Application Overviews

Mathematically, QRNs produce point sets and sequences that have low discrep-
ancy. Discrepancy is a quantitative measure of the uniformity of a point set. The star-
discrepancy, introduced above, is merely one of many discrepancies that are used to
measure uniformity of discrete measures [706]. For example, the star-discrepancy of
a point set of N “real” random numbers in one dimension is O(N~V2(log log N)1/2),
while the discrepancy of N QRNs can be as low as WN1H.2Ins>3 dimensions, it
is rigorously known that the discrepancy of a point set with N elements can be
no smaller than a constant depending only on s times N~!(log N)S~1/2, This re-
markable result of Roth [810] has motivated mathematicians to seek point sets and
sequences with discrepancies as close to this lower bound as possible. Since Roth's
results, there have been many constructions of low discrepancy point sets that have
achieved star-discrepancies as small as O(N ‘1(log N)*=Y. Most notably, there are the
constructions of Hammersley, Halton [431], Sobol [139, 881}, Faure [321, 351}, and
Niederreiter [140, 706].

While QRNs do improve the convergence of some applications, it is by no means
trivial to enhance the convergence of all MCMs. Even in the case of numerical
integration, enhanced convergence is by no means assured in all situations with
the naive use of QRNs. This fact was demonstrated through studies of the efficacy
of QRNs in numerical integration [165, 166, 688, 691,] by carefully investigating
the impact of dimensionality and smoothness of the integrand on convergence.
In a nutshell, their results showed that at high dimensions (s ~> 40), quasi-Monte
Carlo integration ceases to be an improvement over regular Monte Carlo integration.
Perhaps more startling was that a considerable fraction of the enhanced convergence
is lost in quasi-Monte Carlo integration when the integrand is discontinuous. In fact,
even in two dimensions one can lose the approximately O(N~1) quasi-Monte Carlo
convergence for an integrand that is discontinuous on a curve such as a circle. In
the best cases, the convergence drops to O(N~2/3), which is only slightly better than
regular Monte Carlo integration.

Methods of Quasi-Random Number Generation

Perhaps the best way to illustrate the difference between QRNs and PRNs is with a
picture. In Figure 8.13, we plot 4096 tuples produced by successive elements from
a 64-bit PRN generator from the SPRNG library [651]. These tuples are distributed in
a manner consistent with real random tuples. In Figure 8.14, we see 4096 quasi-
random tuples formed by taking the second and third dimensions from the Soboi
sequence. It is clear that the two figures look very different and that Figure 8.14
is much more uniformly distributed. Both plots have the same number of points,
and the largest “hole” in Figure 8.13 is much larger than that in Figure 8.14. This
illustrates quite effectively the qualitative meaning of low discrepancy.

2 Of course, the N optimal quasi-random points in [0, 1) are the obvious: T T -




8.9

Deterministic Monte Carlo Methods and Parallelism

0506070809 1
x()

AR

01020304

Figure 8.13 Tuples produced by successive elements from a SPRNG pseudorandom number
generator.

The first QRN sequence was proposed by Halton [431] and is based on the Van der
Corput sequence, with different prime bases for each dimension. The jth element of
the Van der Corput sequence with base b is defined as ¢,(j — 1), where ¢,(:) is the
radical inverse function and is computed by writing j - 1as an integer in base b, and
then flipping the digits about the ordinal (decimal) point. Thus, ifj —1=4,... aq
in base b, then ¢,(j — 1) =0.4g ... a,. As an illustration, in base b =2, the first
elements of the Van der Corput sequence are %, ;1{, %, é, g, g, § ; while with b =3, the
sequence begins with 1, %, 4, §, 3, %, 3, §. With b=2, the Van der Corput sequence
methodically breaks the unit interval into halves in a manner that never leaves a
gap that is too big. With b =3, the Van der Corput sequence continues with its
methodical ways, but instead recursively divides intervals into thirds.

Another way to think of the Van der Corput sequence (with b = 2} is to think of
taking the bits in j — 1 and associating with the ith bit the number v;. Every time the
ith bit is one, perform an exclusive-or in v;, called the ith direction number. For the
Van der Corput sequence, v; is just a bit sequence with all zeroes except a one in the
ith location counting from the left. Perhaps the most popular QRN sequence, the
Sobol sequence, can be thought of in these terms. Sobol [881) found a clever way to
define more complicated direction numbers than the “unit vectors” that define the



254

Chapter 8 Application Overviews

g o

4096 points of Sobol sequence

My

0.9

0.8

0.7

Dimension

0 010203040506070809 1
Dimension 2

Figure 8.14 Tuples produced by the second and third dimension of the Soboi sequence.

Van der Corput sequence. Besides producing very good quality QRNS, the reliance
on direction numbers means that the Sobol sequence is both easy to implement and
very computationally efficient.

Since this initial work, Faure et al. [321], Niederreiter [705], and Sobol [881]
chose alternate methods based on another sort of finite field arithmetic that utilizes
primitive polynomials with coefficients in some prime Galois field. All of these
constructions of quasi-random sequences have discrepancies that are O(N ~1log N)%)
[705]). What distinguishes them is the asymptotic constant in the discrepancy and the
computational requirements for implementation. However, practice has shown that
the provable size of the asymptotic constant in the discrepancy is a poor predictor of
the actual computational discrepancy displayed by a concrete implementation of any
of these QRN generators. There are existing implementations of the Halton, Faure,
Niederreiter and Sobol sequences {139, 140, 351] that are computationally efficient.
Each of these sequences is initialized to produce quasi-random s-tuples, and each
one of these requires the initialization of s 1-D quasi-random streams. However, in
practice the Sobol sequence has shown itself superior in quality and efficiency to
these other methods. Thus, we will restrict our discussion to the Sobol generator.




8.9 Deterministic Monte Carlo Methods and Parallelism 255

8.9.3

8.9.4

A Fundamental Problem with Quasi-Random Numbers

QRNs are finely crafted mathematical objects that are hyperuniform. Recall the
definition of the star-discrepancy of a set of points above. It is defined as the
supremum of the difference between an empirical distribution of the set of points
and the ideal uniform distribution. Clearly, a single misplaced point can lead to a
serious degradation in this estimate. Thus, one should think of point sets (sets with
N fixed numbers in them) of QRN as sets that have completely filled all the holes in
space at a given spatial scale. Similarly, sequences (sets with an extensible number
of points) of QRNs are constructed so that the areas with the largest holes in space
are exactly the next areas where points are to be placed.

The very highly structured nature of QRNs leads to an interesting problem.
Let us perform a calculation with N QRNs from a given quasi-random sequence
with given parameters and given initial values. Let’s say we obtain the estimate
g for some quantity of interest, Q. Theory tells us that in the best circumstances
[g—Ql=0NN ‘l(log N)k), for some k. However, the only practical way to continue
this calculation is to continue with the (N + 1)st QRN from the same sequence. If we
choose another QRN sequence, or even the same sequence starting with other than
the next unused point, we will get no guarantee of continued accelerated Monte Carlo
convergence. In fact, using incompatible QRNs can lead to circumstances where
convergence to the correct answer may no longer hold.

Clearly, this problem is equivalent to the problem of finding parallel streams of
QRNs that can collectively be used togetherin a complementéry fashion. Work in this
area has shown that the gist of the above paragraph seems to be true, that is, at present
one can do no better than to break up a single QRN sequence into nonoverlapping
blocks for use in parallel. Schmid and Uhl [837] investigated the consequences of
blocking QRN sequences versus using a leapfrog technique.3 They determined that
blocking from the same sequence led to acceptable results, whereas the leapfrog
technique often caused problems with the subsequences. Clearly, more flexibility
than this will be required if QRNs are to be used in calculations that terminate with
a stochastic convergence condition.

State-of-the-Art Quasi-Random Number Generators

A serious problem with using QRN in both serial and parallel Monte Carlo appli-
cations is the lack of good quality, widely available QRN generation software. At
present, good implementations of the Soboi, Faure, and Halton sequences exist, but
there is no software that provides the facilities necessary for simple parallel use of
such generators. In addition, generators with certain desirable properties are not
freely available. One of the most popular application areas for QRN is currently in

3 Suppose we have k QRN subsequences of length N we wish to create. In blocking, the first subsequence consists
of the first N numbers, the second subsequence of the next N numbers, and so on. When using the leapfrog
technique, the ith subsequence is {x;, X; N, Xiy2n, -+ - , Xip(N—1N}-



256 Chapter 8 Application Overviews

Table 8.2 Implementation using MPI of the power Monte Carlo algorithm (PMC) and power
quasi-Monte Carlo algorithm (PQMC) for calculating the dominant eigenvalue of a matrix of
size 2000 using PRNs and Sobol QRNs.

Number of processors

1 2 3 4 5

Time (s) 168 84 56 42 33
PMC Efficiency 1 1 1 1.01
Anax 62.48 61.76 63.76 61.3151 61.39

Time (s) 177 87 70 57 44
POMC Efficiency 1.01 0.84 0.77 0.80
Amax 64.01 64.01 64.01 64.01 64.01

Note: The number of Markov chains (realizations) used is 100, 000, and the exact value is A g, = 64.00.

financial mathematics. However, some of the canonical problems are often set in
very high-dimensional spaces. For example, the pricing of a mortgage-backed se-
curity made up of 30-year home mortgages is a 360-dimensional problem [689].%
At present, there is no high-quality QRN software that produces sequences in such
high dimensions. In fact, to our knowledge the only publicly available Sobol QRN
generation software allows for sequences up to dimension 41.

8.9.5 A Parallel Quasi-Monte Carlo Application

Given this brief introduction to QRNs, we wish to illustrate their utility on a parallel
application. We present our results for an MCM for the computation of the extremal
eigenvalue of a sparse, square matrix [27 1]. The method we employ is a stochastic
version of the well-known power method. It is based on the repeated application of
the matrix, which is ideal for Markov-chain-based MCMs. A good description of both
the MCM and the application of QRN to this problem can be found elsewhere [648,
649, 650]. The computations presented here were implemented in parallel using MPI
on an IBM SP-2 located at the Florida State University’s School of Computational
Science and Information Technology.

MCMs are “naturally parallel.”S They allow us to compute with minimal commu-
nication. In our case, we need only pass the nonzero elements of the sparse matrix
A to every processor (Table 8.2). Then we compute a total of N Monte Carlo realiza-
tions on p processors. Each processor gets N/p realizations, and we collect the results
at the end. The only communication here is at the beginning and at the end of the

4 Thirty-year mortgages are paid monthly, giving 360 payment periods during the mortgage’s life. This accounts
for the 360-dimensionality of the mortgage-backed security problem.
S This distinction of MCMs as “naturally parallel” was first used by Malvin Kalos.




8.9 Deterministic Monte Carlo Methods and Parallelism 257

é
§

0.08 -+ T r -

O——© Relative error using Sobol QRNs

0.06 E—¢l Relative error using PRNs

0.04 |

0.02}

0 L — -
0 50000 Te+ 05 1.5¢+05 2e +05

Figure 8,15 Relative errors in computing the dominant eigenvalue for a sparse matrix of size
2000x2000. Markov chains are realized using PRNs and Sobol QRNs.

program execution; this provides a very efficient parallel implementation. Note that
in our empirical analysis, we use the standard definition of parallel efficiency, E.

Figure 8.15 presents the relative errors of the power MC algorithm and power
quasi-Monte Carlo algorithm (using the Sobol sequence) for computing the domi-
nant eigenvalue for a sparse square matrix of size 2000. Note that with 20, 000 points
from our Sobol sequence, we achieve an accuracy that would require 100, 000 or more
PRNs. The fact that QRNs can achieve accuracy similar to PRNs for this kind of cal-
culation, while using only a fraction of the time, is the significant reason for using
QRN:E.

In this computation, we knew beforehand how many QRNs would be used in the
entire calculation, and we neatly broke the sequences into same-sized subsequences.
Clearly, it is not expected that this information will be known beforehand. Providing
QRNs that can help extend calculations easily remains the major challenge to
widespread parallel use of QRNs.

We have shown that one can parallelize the quasi-Monte Carlo approach to the
calculation of the extremal eigenvalue of a matrix. We have also shown that the




258

8.9.6

8.10

Chapter 8 Application Overviews

parallel efficiency of the regular Monte Carlo approach is maintained by the quasi-
Monte Carlo method; however, there is some slight degradation. Finally, perhaps
the most important fact is that the accelerated convergence of QRNs is maintained
in this parallel context,

State of the Art

We have introduced the reader to the concept of quasi-MCMs and QRNs. These
are powerful techniques for accelerating the convergence of ubiquitous MCM:s.
However, even though quasi-MCMs can often be made to converge much faster
than ordinary MCMs, the ability to improve the accuracy of quasi-MCMs as readily
as ordinary MCMs is not here yet. Nonetheless, for certain applications it is possible
to accelerate the convergence of Monte Carlo applications with QRNs and to take
advantage of their natural parallelism. At present, there are a variety of Monte
Carlo applications that benefit from QRN acceleration. Most notable, perhaps, is the
calculation of financial derivatives {303]. In the future, we expect to see considerable
benefits to other Monte Carlo applications, and hence to scientific computing.

Quasi-Real Time Microtomography Experiments
at Photon Sources
Gregor von Laszewski, Mei-Hui Su, Joseph Insley, lan Foster, and Carl Kesselman

Computed microtomography (CMT) is a powerful tool for obtaining nondestruc-
tively a 3-D view of the internal structure of opaque objects [421]. In contrast to the
widespread use of this technique in the millimeter scale as part of diagnostic proce-
dures in hospitals, we are interested in the investigation of objects on the micrometer
scale.

One application of this method is quality control during the production of 3-D
semiconductor wafers. Being able to visualize the details of chip wafers in all three
dimensions allows engineers to improve the chip design before production. Other
examples can be found in the field of earth science, where common tasks include
investigation of the interior of very small meteorites and study of the enclosures
of very tiny materials in opaque diamonds formed 100,000 years ago, in order to
determine more about the origin and development of the Earth.

The energy and the infrastructure necessary to conduct such experiments can be
provided by using x-ray beams at synchrotrons. The use of x-rays for investigating
the internal structure of materials at the micron scale has grown rapidly over the
past decade as a result of the availability of synchrotron radiation sources. One such
facility is the Advanced Photon Source (APS) at Argonne National Laboratory.

A typical computed microtomography experiment at the APS proceeds as follows.
A sample is mounted in the experiment station, parameters are adjusted, and the
sample is illuminated by a collimated beam of x-rays. Data are collected for multiple
sample orientations by using a charge-coupled device. A time-consuming reconstruc-
tion process is then used to obtain a 3-D representation of the raw data with spatial




