SOME METHODS OF PARALLEL PSEUDORANDOM
NUMBER GENERATION

MICHAEL MASCAGNI*

Abstract. We detail several methods used in the production of pseudorandom
numbers for scalable systems. We will focus on methods based on parameterization,
meaning that we will not consider splitting methods. We describe parameterized versions
of the following pseudorandom number generation:

1. linear congruential generators

2. linear matrix generators

3. shift-register generators

4. lagged-Fibonacci generators

5. inversive congruential generators
We briefly describe the methods, detail some advantages and disadvantages of each
method and recount results from number theory that impact our understanding of their
quality in parallel applications. Several of these methods are currently part of scalable
library for pseudorandom number generation, called the SPRNG package available at the
URL: www.ncsa.uiuc.edu/Apps/CMP/RNG.

Key words. pseudorandom number generation, parallel computing, linear congru-
ential, lagged-Fibonacci, inversive congruential, shift-register

AMS(MOS) subject classifications. 65C10, 65Y05, 68Q22

1. Introduction. Monte Carlo applications are widely perceived as
embarrassingly parallel. The truth of this notion depends, to a large ex-
tent, on the quality of the parallel random number generator used. It is
widely assumed that with N processors executing N copies of a Monte
Carlo calculation, the pooled result will achieve a variance N times smaller
than a single instance of this calculation in the same amount of time. This
is true only if the results in each processor are statistically independent.
In turn, this will be true only if the streams of random numbers generated
in each processor are independent. This paper will briefly present several
methods for parallel pseudorandom number generation and discuss pros
and cons for each method. If the reader is interested in background mate-
rial on pseudorandom number generation in general, consult the following
references: [13], [16], [34], [36].

Here we are interested, exclusively, with methods for obtaining parallel
pseudorandom number generators (PPRNGs) via parameterization. The
exact meaning of parameterization depends on the type of PRNG under dis-
cussion, but we wish to distinguish parameterization from splitting meth-
ods. We will not be considering producing parallel streams of pseudoran-
dom numbers by taking substreams from a single, long-period PRNG. For

* Program in Scientific Computing and Department of Mathematics, Southern Sta-
tion, Box 10057, University of Southern Mississippi, Hattiesburg, MS 39406-0057, e-
mail: Michael.Mascagni@usm.edu, web: www.ncsa.uiuc.edu/Apps/CMP/RNG/mascagni.
This work was partially supported by DARPA under contract DABT-63-95-C-0123.

1

2 MICHAEL MASCAGNI

readers interested in splitting methods and the consequences of using split
streams in parallel please consult: [5], [7], [8], [9], [11], [L7]. In general, we
seek to determine a parameter in the underlying recursion of the PRNG
that can be varied. Each valid value of this parameter will lead to a recur-
sion that produces a unique, full-period stream of pseudorandom numbers.
We then discuss efficient means to specify valid parameter values and con-
sider these choices in terms of the quality of the pseudorandom numbers
produced.

The plan of the paper is as follows. In §2 we present two meth-
ods for parameterizing linear congruential generators (LCGs). In §3 we
briefly present and discuss linear matrix methods for parallel pseudoran-
dom number generation. In §4 we present a parameterization of another
linear method: shift-register generators (SRGs). This parameterization is
analogous to one of the LCG parameterizations presented in §2. In §5 we
consider the parallel parameterization of so-called lagged-Fibonacci gener-
ators, and in §6 we present a parallel nonlinear random number generator
called the inversive congruential generator (ICG). Finally in §7 we discuss
open problems, alert the reader to available packages based on some of the
algorithms discussed, and provide concluding remarks.

2. Linear Congruential Generators. The most commonly used
generator for pseudorandom numbers is the linear congruential generator
(LCG). The LCG was first proposed for use by Lehmer, [18], and is referred
to as the Lehmer generator in the early literature. The linear recursion
underlying LCGs is:

(2.1) Tp =aTnp_1 +b (modm).

The x,’s are integer residues modulo m, and a uniform pseudorandom
number in [0,1] is produced via z, = z,/m. The constants of the LCG in
2.1 are referred to as the modulus, m, the multiplier, a, and the additive
constant, ¢. The initial value of the LCG, zq, is often called the seed.

The most important parameter of an LCG is the modulus, m. Its size
constrains the period, and for implementational reasons it is always chosen
to be either prime or a power-of-two. Based on which type of modulus is
chosen, there is a different parameterization method. When m is prime,
a method based on using the multiplier, a, as the parameter has been
proposed. The rationale for this choice is outlined in, [27], and leads to
several interesting computational problems.

2.1. Prime Modulus. Given we wish to parameterize a when m is
prime we must determine first the family of permissible a’s. A condition
on a when m is prime to obtain the maximal period (of length m — 1 in
this case) is that a must be a primitive element modulo m, [13].! Given

1 An integer, a, is primitive modulo m if the set of integers {a’ (mod m)|1 < i <
m — 1} equals the set {1 <¢<m —1}.

PARALLEL PSEUDORANDOM NUMBER GENERATION 3

primitivity, one can use the following fact: if a and « are primitive elements
modulo m then a = a® (mod m) for some i relatively prime to ¢(m). Note
that when m is prime that ¢(m) = m—1. Thus a single, reference, primitive
element, a, and an explicit enumeration of the integers relatively prime to
m — 1 furnish an explicit parameterization for the jth primitive element,
aj as a; = a% (mod m) where ¢; is the jth integer relatively prime to
m — 1. Given an explicit factorization of m — 1, [3], efficient algorithms
for computing ¢; can be found in a recent work of the author, [27]. An
interesting open question in this regard is whether the overall efficiency
of this PPRNG is minimized by choosing the prime modulus to minimize
the cost of computing £; or to minimize the cost of modular multiplication
modulo m.

Given this scheme there are some positive and negative features to be
mentioned. A motivation for this scheme is that a common theoretical
measure of the correlation among parallel streams predicts little correla-
tion. This measure is based on exponential sums. Exponential sums are of
interest in many areas of number theory. We define the exponential sum
for the sequence of residues modulo m, {mn}fb;é, as:

2mi

k—1
(2.2) C(k) =) emn.
n=0

If the z, are periodic and k is the period, then 2.2 is called a full-period
exponential sum. If z,, is periodic and k is less than the full period, then
2.2 is a partial-period exponential sum. Examining 2.2 shows it to be a sum
of k quantities on the unit circle. A trivial upper bound is thus |C(k)| < k.
If the sequence {z,} is indeed uniformly distributed, then we would expect
|C(k)| = O(Vk), [14]. Thus the desire is to show that exponential sums of
interest are neither too big nor too small to reassure us that the sequence
in question is theoretically equidistributed.

Since we are interested in studying sequences for use in parallel, we
must consider the cross-correlations among the sequences to be used on
different processors. If {z,} and {y,} are two sequences of interest then
their exponential sum cross-correlation is given by:

k—1
(2.3) Cliyj, k) = Y e @itnvien),
n=0

Here the sum has k terms and begin with z; and y;.

In a previous work we only considered full-period exponential sum
cross-correlation for studying these issues for a different recursion, [3§].
We will take the same approach here. Suppose we have j full-period LCGs
defined by z3, = abirg,_, (modm), 0 < k < j. All of the pairwise
full-period exponential sum cross-correlations are known to satisfy, [39]:

(2.4 Cn)| < (|maxee] ~1) vim

4 MICHAEL MASCAGNI

The choice of the exponents, ¢, that minimizes 2.4 is that ¢; is made
the jth integer relatively prime to m — 1. This necessitates an algorithms
to compute this jth integer relatively prime to an integer with known fac-
torization, m — 1. This is discussed at great length in [27]; however, two
important open questions remain: (1) is it more efficient overall to choose
m to be amenable to fast modular multiplication or fast calculation of the
jth integer relatively prime to m—1, and (2) does the good interstream cor-
relation of 2.4 also ensure good intrastream independence via the spectral
test? The first of these questions is of practical interest to performance,
the second; however, if answered negatively, makes such techniques less
attractive for parallel pseudorandom number generation.

2.2. Power-of-two Modulus. An alternative way to use LCGs to
make a PPRNG is to parameterize the additive constant in equation 2.1
when the modulus is a power-of-two, i.e., to m = 2F for some integer k > 1.
This is a technique first proposed by Percus and Kalos, [37], to provide a
PPRNG for the NYU Ultracomputer. It has some interesting advantages
over parameterizing the multiplier; however, there are some considerable
disadvantages in using power-of-two modulus LCGs.

The parameterization chooses a set of additive constants {b;} that are
pairwise relatively prime, i.e. ged(b;, b;) = 1 when ¢ # j. A prudent choice
is to let b; be the jth prime. This both ensures the pairwise relative primal-
ity and is the largest set of such residues. With this choice certain favorable
interstream properties can be theoretically derived from the spectral test,
[37]. However, this choice necessitates a method for the difficult problem of
computing the jth prime. In their paper, Percus and Kalos do not discuss
this aspect of their generator in detail, partly due to the fact that they
expect to provide only a small number of PRNGs. When a large number
of PPRNGs are to be provided with this method, one can use fast algo-
rithms for the computation of 7(z), the number of primes less than z, [6],
[15] . This is the inverse of the function which is desired, so we designate
771(j) as the jth prime. The details of such an implementation need to
be specified, but a very related computation for computing the jth integer
relatively prime to a given set of integers is given in, [27]. It is believed
that the issues for computing 7! (j) are similar.

One important advantage of this parameterization is that there is an
interstream correlation measure based on the spectral test that suggests
that there will be good interstream independence. Given that the spectral
test for LCGs essentially measures the quality of the multiplier, this sort
of result is to be expected. A disadvantage of this parameterization is that
to provide a large number of streams, computing 7—1(j) will be necessary.
Regardless of the efficiency of implementation, this is known to be a difficult
computation with regards to its computational complexity. Finally, one of
the biggest disadvantages to using a power-of-two modulus is the fact the
least significant bits of the integers produced by these LCGs have extremely

PARALLEL PSEUDORANDOM NUMBER GENERATION 5

short periods. If {z,,} are the residues of the LCG modulo 2*, with properly
chosen parameters, {z,} will have period 2¥. However, {z, (mod 27)}
will have period 27 for all integers 0 < j < k, [13]. In particular, this
means the the least-significant bit of the LCG with alternate between 0
and 1. This is such a major short coming, that it motivated us to consider
parameterizations of prime modulus LCGs as discussed in §2.1.

3. Linear Matrix Generators. Recent trends in computer archi-
tecture have motivated researchers to study methods of generating pseu-
dorandom vectors, [32], [33]. These techniques are appropriate to vector
architectures, but are not well suited to parallel machines due to the algo-
rithm’s lack of data locality. Linear matrix generators (LMGs) are given
by the following equation:

(3.1) x, = Ax, 1 (mod m).

Here the matrix A is k x k and the vector x,, is k-dimensional. One obtains
a uniform pseudorandom vector by forming z,, = x,/m. When m is prime,
the maximal period for the LMG is m* — 1 if and only if A has a charac-
teristic polynomial that is primitive modulo m, [34]. In this situation the
k-tuples produced by equation 3.1 will pass the k-dimensional equidistri-
bution test as well as an LCG passed the one-dimensional equidistribution
test. This is to be expected as the full-period of the LMG produces all pos-
sible k-tuples modulo m. For dimensions larger than k&, behavior analogous
to the LCG in two or more dimensions is seen.

4. Shift-Register Generators. Shift register generators (SRGs)
are linear recursions modulo 2, [12], [19], [40], of the form:

k-1

(4.1) Tk = Z ka;xnyi (mod 2),
i=0

where the a;’s are either 0 or 1. An alternative way to describe this recur-
sion is to specify the kth degree binary characteristic polynomial, [20]:

k—1

(4.2) fl@)=2"+> aiz’ (mod 2).

i=0

To obtain the maximal period of 2¥ — 1, a sufficient condition is that f(x)
be a primitive kth degree polynomial modulo 2. If only a few of the a;’s
are 1, then 4.1 is very cheap to evaluate. Thus people often use known
primitive trinomials to specify SRG recursions. This leads to very efficient,
two-term, recursions.

There are two ways to make pseudorandom integers out of the bits
produced by 4.1. The first, called the digital multistep method, takes suc-
cessive bits from 4.1 to form an integer of desired length. Thus, with the

6 MICHAEL MASCAGNI

digital multistep method, it requires n iterations of 4.1 to produce a new
n-bit pseudorandom integer. The second method, called the generalized
feedback shift-register, creates a new n-bit pseudorandom integer for every
iteration of 4.1. This is done by constructing the n-bit word from z, g
and n — 1 other bits from the k bits of SRG state. While these two meth-
ods seem different, they are very related, and theoretical results for one
always hold for the other. Reader’s interested in more general information
on SRGs should consult the references: [12], [19], [40]. One way to param-
eterize SRGs is analogous to the LCG parameterization discussed in §2.1.
There we took the object that made the LCG full-period, the primitive root
multiplier, and found a representation for all of them. Using this analogy
we identify the primitive polynomial in the SRG as the object to parame-
terize. We begin with a known primitive polynomial of degree k, p(z). It
is known that only certain decimations of the output of a maximal-period
shift register are themselves maximal and unique with respect to cyclic
reordering, [20]. We seek to identify those. The number of decimations

that are both maximal-period and unique when p(z) is primitive modulo

. . kf . . o, .
2 and k is a Mersenne exponent is % If a is a primitive root modulo

the prime 2% — 1, then the residues a’ (mod 2¥ — 1) for i = 1 to Q’CT’2
form a set of all the unique, maximal-period decimations. Thus we have a
parameterization of the maximal-period sequences of length 2% — 1 arising

from primitive degree k binary polynomials through decimations.

The entire parameterization goes as follows. Assume the kth stream
is required, compute dy, = a* (mod 2* — 1) and take the djth decimation
of the reference sequence produced by the reference primitive polynomial,
p(x). This can be done quickly with polynomial algebra. Given a deci-
mation of length 2k + 1, this can be used as input the Berlekamp-Massey
algorithm to recover the primitive polynomial corresponding to this dec-
imation. The Berlekamp-Massey algorithm finds the minimal polynomial
that generates a given sequence, [30] in time linear in k.

This parameterization is relatively efficient when the binary polynomial
algebra is implemented correctly. However, there is one major drawback to
using such a parameterization. While the reference primitive polynomial,
p(x), may be sparse, the new polynomials need not be. By a sparse poly-
nomial we mean that most of the a;’s in 4.1 are zero. The cost of stepping
4.1 once is proportional to the number of non-zero a;’s in 4.1. Thus we
can significantly increase the bit-operational complexity of a SRG in this
manner.

The fact that the parameterization methods for prime modulus LCGs
and SRGs is no accident. Both are based on maximal period linear recur-
sions over a finite field. Thus the discrepancy and exponential sum results
for both the types of generators are similar, [34]. However, a result for
SRGs analogous to that in 2.4 is not known. It is open whether or not such
a cross-correlation result holds for SRGs, but it is widely thought to.

PARALLEL PSEUDORANDOM NUMBER GENERATION 7

5. Lagged-Fibonacci Generators. In the previous sections we have
discussed generators that can be parallelized by varying a parameter in
the underlying recursion. In this section we discuss the additive lagged-
Fibonacci generator (ALFQG): a generator that can be parameterized through
its initial values. The ALFG can be written as:

(5.1) Ty = Tp—j + Tp_p (mod 2™), j<k.

In recent years the ALFG has become a popular generator for serial as well
as scalable parallel machines, [21]. In fact, the generator with j = 5, k = 17,
and m = 32 was the standard PPRNG in Thinking Machines Connection
Machine Scientific Subroutine Library. This generator has become popular
for a variety of reasons: (1) it is easy to implement, (2) it is cheap to
compute using 5.1, and (3) the ALFG does well on standard statistical
tests, [24].

An important property of the ALFG is that the maximal period is
(2% — 1)2™~1. This occurs for very specific circumstances, [2], [25], from
which one can infer that this generator has 2(¢~1x(m—1) (different full-
period cycles, [29]. This means that the state space of the ALFG is toroidal,
with equation 5.1 providing the algorithm for movement in one of the torus
dimension. It is clear that finding the algorithm for movement in the other
dimension is the basis of a very interesting parameterization. Since 5.1
cycles over the full period of the ALFG, one must find a seed that is not
in a given full-period cycle to move in the second dimension. The key to
moving in this second dimension is to find an algorithm for computing seeds
in any given full-period cycle.

A very elegant algorithm for movement in this second dimension is
based on a simple enumeration as follows. One can prove that the ini-

tial seed, {zg,®1,...,Zr-1}, can be bit-wise initialized using the following
template:
m.s.b l.s.b.
bm,1 bm72 fe bl bO
O O ... 0 0 Tk—1
(5_2) 0 O ... O 0 Tk—2
O 0 ... g 0 T
0 o ... 0Ol 1 | 2

Here each square is a bit location to be assigned. Each unique assignment
gives a seed in a provably distinct full-period cycle, [29]. Note that here
the least-significant bits, by are specified to be a fixed, non-zero, pattern. If
one allows an O(k?) precomputation to find a particular least-significant-bit

8 MICHAEL MASCAGNI

pattern then the template is particularly simple:

m.s.b l.s.b.
b1 bmz ... bi| bo
O O ... O bOk—l Tk—1
(53) O O ..o g bOk—2 TE—2
O O ... d b01 1

Given the elegance of this explicit parameterization, one may ask about
the exponential sum correlations between these parameterized sequences.
It is known that certain sequences are more correlated than others as a
function of the similarity in the least-significant bits in the template for
parameterization, [26]. However, it is easy to avoid all but the most uncor-
related pairs in a computation, [38]. In this case there is extensive empirical
evidence that the full-period exponential sum correlation between streams
is O(y/(2% — 1)2m-1), the square root of the full-period. This is essentially
optimal. Unfortunately, there is no analytic proof of this result, and im-
provement of the best known analytic result, [26], is an important open
problem in the theory of ALFGs.

Another advantage of the ALFG is that one can implement these gener-
ators directly with floating-point numbers to avoid the constant conversion
from integer to floating-point that accompanies the use of other generators.
This is a distinct speed improvement when only floating-point numbers are
required in the Monte Carlo computation. However, care must be taken to
maintain the identity of the corresponding integer recursion when using the
floating-point ALFG in parallel to maintain the uniqueness of the parallel
streams. A discussion of how to ensure fidelity with the integer streams
can be found in [1].

An interesting cousin of the ALFG is the multiplicative lagged-Fibonacci
generator (MLFQG). It is defined by:

(5.4) Ty =Tp_j X Tn_p (mod 2™), j<k.

While this generator has a maximal-period of (2¥ —1)2™~3, which is a quar-
ter the length of the corresponding ALFG, [25], it has empirical properties
considered to be superior to ALFGs, [24]. Of interest for parallel comput-
ing is that a parameterization analogous to that of the ALFG exists for the
MLFG, [28].

6. Inversive Congruential Generators. An important new type of
PRNG that, as yet, has not found any widely distributed implementation
is the inversive congruential generator (ICG). This generator comes in two
versions, the recursive ICG, [10], [31], and the explicit ICG, [35] . The
formula for the recursive ICG is:

(6.1) ZTp =aTp—1+b (mod m),

PARALLEL PSEUDORANDOM NUMBER GENERATION 9

while the explicit ICG has formula:
(6.2) Tpn=an+b (mod m).

In both the above equations ¢ denotes the multiplicative inverse modulo m
in the sense that cc =1 (mod m) when ¢ # 0, and 0 = 0.

An advantage of ICGs over LCGs are that tuples made from ICGs do
not fall in hyperplanes, [22], [23]. The quantification of this is the lattice
test. We say that a generator passes the k-dimensional lattice test if vectors
made up of k-tuples from the generator span the k-dimensional vector space
taken modulo m. ICGs have optimal behavior for the lattice test in that
they pass for k¥ < m — 1. Another advantage of ICGs is that they are not
nearly as uniformly distributed over their full period as generators from
linear recursions. They behave more like truly random numbers, [34].

An interesting fact about the (non)lattice structure of tuples from ex-
plicit ICGs has ramifications for PPRNGs via parameterization. Consider
the parameterized explicit ICG: z, = agn +br, (mod m), 0 < k < s. If
the residues modulo m, agbo, .. .,as—1bs—1, are all distinct, then set of all
the s-tuples (zo,;,21;,-.-,%s-1,), § = 0 to m — 1, appear to be extremely
well distributed as follows. Take any s-dimensional hyperplane passing
through the origin, it will intersect at most s — 1 of these points.

While ICGs have some very compelling equidistribution properties,
they remain out of the mainstream random number packages. This is due
to both the fact that ICGs are relatively unknown outside of the mathe-
matical random number generation community and that the cost of doing
modular inversion is quite considerable. If we consider the cost of modular
multiplication to be the cost unit, then modular inversion is O(log, m).
For certain applications, this extra cost may be worth it, but in most ap-
plications that involve parallel computers computational efficiency is an
important factor. Thus the author expects to see ICGs available in some
serial random number packages; however, he doubts if ICGs will be imple-
mented for parallel machines soon.

7. Conclusions and Open Problems. The parallelization of the
ALFG is the basis for the default generator in the Scalable Parallel Random
Number Generation (SPRNG) library available from URL:
www.ncsa.uiuc.edu/Apps/CMP/RNG. In addition, the SPRNG library in-
cludes (or will soon include) the two parameterized LCGs described above
and the parameterized SRG. In the SPRNG library the same technique is
used to implement the parallelization via parameterization using a mapping
of the generators (as indexed by parameter) onto the binary tree. This is a
convenient canonical mapping that provides each generator with a subtree
of successors that are disjoint from subtrees rooted at other generators.
This allows the operation of this PPRNG in a MIMD execution environ-
ment with PRNG spawning. In application, such as neutronics, one often
needs to dynamically generate new generators. The disjoint subtrees of

10 MICHAEL MASCAGNI

processors allows generators to be assigned uniquely and reproducibly.

While care has been taken in constructing generators for the SPRNG
package, the designers realize that there is no such thing as a PRNG that
behaves flawless for every application. This is even more true when one
considers using scalable platforms for Monte Carlo. The underlying recur-
sions that are used are for PRNGs are simple, and so they inevitably have
regular structure. This deterministic regularity permits analysis of the se-
quences and is the PRNG’s Achilles heel. Thus any large Monte Carlo
calculation must be viewed with suspicion as an unfortunate interplay be-
tween the application and PRNG may result in spurious results. The only
way to prevent this is to treat each new Monte Carlo derived result as an
experiment that must be controlled. The tools required to control prob-
lems with the PRNG include the ablility to use another PRNG in the same
calculation. In addition, one must be able to use new PRNGs as well.
These capabilities as well as parallel and serial tests of randomness, [4],
are components that make the SPRNG package unique among tools for
parallel Monte Carlo.

REFERENCES

[1] R. P. BRENT, Uniform Random Number Generators for Supercomputers in Pro-
ceedings Fifth Australian Supercomputer Conference, SASC Organizing Com-
mittee, pp. 95-104, 1992.

[2] R. P. BRENT, On the periods of generalized Fibonacci recurrences, Mathematics
of Computation, 1994, 63: 389-401.

[3] J. BRILLHART, D. H. LEHMER, J. L. SELFRIDGE, B. TUCKERMAN AND
S. S. WAGSTAFF, JR., Factorizations of b £ 1 b = 2,3,5,7,10,11,12 up to
high powers, Contemporary Mathematics Volume 22, Second Edition, Ameri-
can Mathematical Society, Providence, Rhode Island, 1988.

[4] S. A. Cuccaro, M. MASCAGNI AND D. V. PRYOR, Techniques for testing the
quality of parallel pseudorandom number generators, in Proceedings of the
Seventh SIAM Conference on Parallel Processing for Scientific Computing,
SIAM, Philadelphia, Pennsylvania, pp. 279284, 1995.

(5] 1. DEAK, Uniform random number generators for parallel computers, Parallel Com-

puting, 1990, 15: 155-164.
. DELEGLISE AND J. RivaTr, Computing w(z): the Meissel, Lehmer, Lagarias,
Miller, Odlyzko method, Mathematics of Computation, 1996, 65: 235—245.
. DE MATTEIS AND S. PAGNUTTI, Parallelization of random number generators
and long-range correlations, Parallel Computing, 1990, 15: 155-164.
. DE MATTEIS AND S. PAGNUTTI, A class of parallel random number generators,
Parallel Computing, 1990, 13: 193-198.
. DE MATTEIS AND S. PAGNUTTI, Long-range correlations in linear and non-linear
random number generators, Parallel Computing, 1990, 14: 207-210.
[10] J. EICHENAUER AND J. LEHN, A nonlinear congruential pseudorandom number
generator, Statist. Hefte, 1986, 37: 315-326.
[11] P. FREDERICKSON, R. HIROMOTO, T. L. JORDAN, B. SMITH AND T. WARNOCK,
Pseudo-random trees in Monte Carlo, Parallel Computing, 1984, 1: 175-180.
[12] S. W. GoLoMB, Shift Register Sequences, Revised Edition, Aegean Park Press,
Laguna Hills, California, 1982.
[13] D. E. KNUTH, Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
Second edition, Addison-Wesley, Reading, Massachusetts, 1981.

=
> > > 2

(14]
(15]
(16]
(17]

(18]

(19]
(20]

(21]

PARALLEL PSEUDORANDOM NUMBER GENERATION 11

L. KuipERS AND H. NIEDERREITER, Uniform distribution of sequences, John Wiley
and Sons: New York, 1974.

J. C. LAGARIAS, V. S. MILLER AND A. M. ODLYZKO, Computing 7(z): The Meissel-
Lehmer method, Mathematics of Computation, 1985, 55: 537-560.

P. L’ECUYER, Random numbers for simulation, Communications of the ACM,
1990, 33: 85-97.

P. L’ECUYER AND S. COTE, Implementing a random number package with splitting
facilities, ACM Trans. on Mathematical Software, 1991, 17: 98-111.

D. H. LEHMER, Mathematical methods in large-scale computing units, in Proc. 2nd
Symposium on LargeScale Digital Calculating Machinery, Harvard University
Press: Cambridge, Massachusetts, 1949, pp. 141-146.

T. G. LEwis AND W. H. PAYNE, Generalized feedback shift register pseudorandom
number algorithms, Journal of the ACM, 1973, 20: 456—-468.

R. LipL AND H. NIEDERREITER, Introduction to finite fields and their applications,
Cambridge University Press: Cambridge, London, New York, 1986.

J. MAKINO, Lagged-Fibonacci random number generator on parallel computers,
Parallel Computing, 1994, 20: 1357-1367.

G. MARSAGLIA, Random numbers fall mainly in the planes, Proc. Nat. Acad. Sci.
U.S.A., 1968, 62: 25-28.

G. MARSAGLIA, The structure of linear congruential sequences, in Applications of
Number Theory to Numerical Analysis, S. K. Zaremba, Ed., Academic Press,
New York, 1972, pp. 249-285.

G. MARSAGLIA, A current view of random number generators, in Computing Sci-
ence and Statistics: Proceedings of the XVIth Symposium on the Interface,
1985, pp. 3-10.

G. MARSAGLIA AND L.-H. TsAy, Matrices and the structure of random number
sequences, Linear Alg. and Applic., 1985 , 67: 147-156.

M. Mascagni, M. L. RoBINSON, D. V. PrRYOR AND S. A. CUCCARO, Parallel
pseudorandom number generation using additive lagged-Fibonacci recursions,
Springer Verlag Lecture Notes in Statistics, 1995, 106: 263-277.

M. MASCAGNI, Parallel linear congruential generators with prime moduli, 1997,
IMA Preprint #1470 and submitted.

M. MASCAGNI, A parallel non-linear Fibonacci pseudorandom number generator,
1997, abstract, 45th SIAM Annual Meeting.

M. MASCAGNI, S. A. CUCCARO, D. V. PRYOR AND M. L. ROBINSON, A fast, high-
quality, and reproducible lagged-Fibonacci pseudorandom number generator,
Journal of Computational Physics, 1995, 15: 211-219.

J. L. MASSEY, Shift-register synthesis and BCH decoding, IEEE Trans. Information
Theory, 1969, IT-15: 122-127.

H. NIEDERREITER, Statistical independence of nonlinear congruential pseudoran-
dom numbers, Montash. Math., 1988, 106: 149-159.

H. NIEDERREITER, Statistical independence properties of pseudorandom vectors
produced by matrix generators, J. Comput. and Appl. Math., 1990, 31: 139-
151.

H. NIEDERREITER, Recent trends in random number and random vector generation,
Ann. Operations Research, 1991, 31: 323-346.

H. NIEDERREITER, Random number generation and quasi-Monte Carlo methods,
SIAM: Philadelphia, Pennsylvania, 1992.

H. NIEDERREITER, On a new class of pseudorandom numbers for simulation meth-
ods, J. Comput. Appl. Math., 1994, 65: 159-167.

S. K. PARK AND K. W. MILLER, Random number generators: good ones are hard
to find, Communications of the ACM, 1988, 31: 1192-1201.

O. E. PERcUSs AND M. H. KALoS, Random number generators for MIMD parallel
processors, J. of Par. Distr. Comput., 1989, 6: 477-497.

D. V. PrRYOR, S. A. CUCCARO, M. MASCAGNI AND M. L. ROBINSON, IMPLEMEN-
TATION AND USAGE OF A PORTABLE AND REPRODUCIBLE PARALLEL PSEUDORAN-

12 MICHAEL MASCAGNI

DOM NUMBER GENERATOR, in Proceedings of Supercomputing ’94, IEEE, 1994,
pp. 311-319.

[39] W. ScuMIDT, Equations over Finite Fields: An Elementary Approach, Lecture
Notes in Mathematics #536, Springer-Verlag: Berlin, Heidelberg, New York,
1976.

[40] R. C. TAUSWORTHE, Random numbers generated by linear recurrence modulo two,
Mathematics of Computation, 1965, 19: 201-209.

