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Application of Brownian Motion to the
Equation of Kolmogorov-Petrovskii-Piskunov™

H. P. McKEAN

1. Introduction

The content of this paper is a simplified proof of the theorem of
Kolmogorov-Petrovskii-Piskunov [5] to the effect that if u=u(t x) is the
solution of!

2
1 ou_lou, o
(1) =33 +ui—u

with initial datum

o el

and if the number m is the median of ufu(t, m)=13], then
(3) ltlgl u(t, x +m)=w 5(x)

exists and is a “wave” solution of (1) travelling at speed V2, i.e., wys(x —v2 t)
solves (1), or, what is the same,

(4) 0=%W"95+\/§W{/§+W?/§—Wﬁ.

Kolmogorov-Petrovskii-Piskunov proved that m ~ V2. The estimate
(5) ‘ m=2"t-2""logt, 10,

will emerge from the present proof. The precise comportment of m is
unknown. The method of proof will make plain that if the datum u(0+,-)=f
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satisfies 0=f=1 and if, for fixed 0<b=v2,

@) lim e*[1-f(x)] = a

exists, then
(3) I}TIOIGI u(t, x +ct) = we(x)

exists and is a wave solution of (1) travelling at speed ¢=1/b+1b, ie.,
we(x —ct) solves (1), or, what is the same,

4" O=3wi+cwi+wi—w..

The gap between (3) and (3'), corresponding to data f with tails as in (2') but
for V2<b <, is left open, though it will be clear that for the analogue of (3')
to hold you will have to travel along with the solution in a style intermediate
between v2 ¢t and m, i.e., you will have to look at u(t, x +v2 t—1) with 1o
more slowly than v2 t—m. A nice problem is to confirm (3) for solutions of
(1) in case the datum (2) is modified by permitting f to increase from 0 to 1
in 0=x=1, say. This has been accomplished by Kanel [2], [3], [4] by the
method of Kolmogorov-Petrovskii-Piskunov [5] for a wide class of equations
u_1du

3t " 2axz tel)

in place of (1). The case c(u)=u(l—u)(u—e), 0<e <3, is of special interest
in neuro-physiology; see Cohen [1] and Nagasawa [6]. The present
method is easily extended (for what it is worth) to cover c(u)=
alb:u’+bsu’+- - -—u] with u>0 and 0=b,, bs, - - - summing to 1. The case
u(l—u)(u—e) with a=sg, ba=e'(1+¢), bs=—¢"' is not included.

2. Branching

The basic model employed to deal with (1) is a simple branching process,
defined as follows: At time t=0, a single particle commences a standard
Brownian motion %, starting from the origin and continuing for an exponential
holding time T independent of ¥ with P(T>t)=e™". At this moment, the
particle splits in two, the new particles continuing along independent Brown-
ian paths starting from x(T). These particles, in turn, are subject to the
same splitting rule, with the result that, after an elapsed time t >0, you have
n particles located at %, -,z with P(n=k)=e"(1—e™")*', k=1. The
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connection with (1) comes about through the formula

(6) u(t, x) =E[f(x+=) - - - f(x+x.)],

expressing the solution of (1) in terms of its datum f. The proof is easy. Let
0=f=1 to ensure the existence of the expectation, let u be defined by (6),
and let H, be the Green operator exp {3t 3°/dx*} for gu/dt =38°u/éx>. Then you
may split the expectation into two pieces, according to whether the original
particle splits at some time T =t or not, and obtain

u(t, x) = P(T>0) [ P[x()+x e dylf(y)
+ L P(Tedr) J PLx(t)+x € dyJu’(t -1, y)
=e 'H,f(x)+ 4[: e "H.u*(t—t', x) dt'.

Now an easy differentiation produces (1) after making the substitution
t'—>t—t'" in the integral. The case f=(2) of Kolmogorov-Petrovskii-
Piskunov is of special interest: by a self-evident symmetry,

@) u(t, x) =P[rin§i'{1 xi(t)+x>0]=P[ni1§%Lx xi(t)<x].

3. Wave Solutions

The facts as regards solutions of (4') are presented in Kolmogorov-
Petrovskii-Piskunov [5]; (4') may be presented in the phase plane of w=¢,
w'=m by

§'=m,
n'=2¢(1—§)—2cm,

and you have a saddle point at £ =m =0, with an out-solution issuing into the
first quadrant, and an attractive singular point at £ =1, n =0 about which the
solution spirals if 0=c¢ <+/2 but not if c=+v2. You require solutions of (4')
with ¢=0, w(—»)=0, w(+»)=1, and 0<w<1 between, so the spiralling
rules out ¢ <+/2, but it is found that the out-solution meets all requirements
for any ¢ =+2, providing a bona fide wave solution travelling at that speed;
see Figure 1. The latter is unique up to a translation; it is denoted by w..
The right-hand tail of w. will be wanted later on. The fact is that w. satisfies
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Figure 1

(2') with b=c—+c*=2 for any ¢=+2, as you will easily check. Notice that
this relation of b to ¢ is inverted by ¢ =1/b +1b, and that as ¢ runs from v2
to o, b runs from V2 to 0.

4. Lemma of Kolmogorov-Petrovskii-Piskunoy

The main lemma used to prove (3) is as follows. Let u be the solution of
(1) with datum f=(2), let 0<s¢ <1 be fixed, and let ¥ be chosen as a function
of 1>0 so as to make u(t, %) =e. It is plain from (6) that % is unique. The
lemma states that u'(t, X) decreases with time. For the proof, fix t,>0 and
a>0, and let v(t,x)=u(t+a, x+b)—u(s, x) with b= %(to+a)—x(t,). Then

ov_19°
PR
with
k=u(t+a,x+b)+u(t,x)—1,
and, by (2),

. >0 if x<0,
v(0+, x){<o it x>0,
Besides, v(to,x0)=0 for x,= X(to). It is to be proved that v(to, x)=0 for
X>Xo. Then you will have v'(t,, X0) =0, and the lemma will follow from that.
Suppose, contrariwise, that v(to, x1)>0 for some x,>x,. Then (to, x1) must
be connected to (¢ =0) x (x < 0) by a continuous curve C along which v >0, as in
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+ toXo hx,

0] V<0

v>0 X
' Figure 2

Figure 2. This is proved by writing v(t,, x) by means of Kac’s formula:

v(to, x) = E exp {'[lok[to— t, x(1)] dt}v[to—t, x(1)].

Here, x is a standard Brownian motion starting at t(0)=x running down-
wards as in Figure 2, and 0=t=t, is any Brownian stopping time. The
desired contradiction is now obtained by assuming that the curve C of Figure
2 fails to exist. Fix x =x;. Then, looking backwards from f, the first root
t=to of v[to—t, x(t)]=0 defines a stopping time, and with that choice of t, the
expectation vanishes, contradicting v(t, x;)>0. Now fix such a curve C and
use the formula with x=x, and t=the passage time to C. Then the
expectation is positive, while the left-hand side vanishes, and the only way
out is to admit that v(to, x1) >0 cannot be maintained. The proof is finished.

5. Proof of (3)

The proof of (3) now follows Kolmogorov-Petrovskii-Piskunov [5]
with small improvements. By Section 4, u'(t, X) decreases with time, so from

w(Lx+m) dE
JVI

2 u,(ta x)
with m =% for & =3, you see that

I}Trg u(t, x+m)=w(x)
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exists; in fact, 0= w=1 is increasing with x, w(0) =3, and the tendency of

u(t, x + m) to w(x) is by decrease (increase) if x >0 (x <0). The only point at
issue is the identification of w as the wave solution for speed V2.

Step 1 is to prove (5): m=2"*%-2""logt for t}w. By (7),
1—u(t,~x)=P[n_1:inxi(t)<x]

= E[the number of i=n for which x(t) <x]

=e'P[x(t) <x]

J-x e—ylet

=e' dy,

e V271t y

as you may verify by use of (6) with f=1+¢ (the indicator of y=x) upon
differentiating with regard to ¢ and putting e =0. Now a routine estimation
confirms that

e-—x/«/f

1—u(t, x+2"t—=2"logt)=[1+0(1
( gt)=[ (1] W

for t 1, and step 1 follows from the ensuing under-estimate

u(,2"t—-2""logt) = 1———1——0(1) >% )

2

Step 2 is to verify that w is non-trivial, i.e., w#3. For x<0, v=

u(t, x + m) satisfies dv/ot=0. Now

v 13 o -
8 — e — '..._+ —
(8) at 2o Mo VY

SO

0
0=30'(t, o)+%m'—J v(l1—0v) dx,

and w#1 follows from the fact that 0<v'(t, 0) is decreasing, lim m*=+?2, and
v 1w for x<O0:

; ‘
(9) J wl—w)dx=3limv'(t, 0)+limim* <o

—c0 tToo, tToo
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Step 3. Equation (8) implies that, for t {1 and any —®<x <=,
_ ‘rttl , x £ 1820 . av ) ]
0(1)—‘[ dt J’ong‘o dn[z an2+m an-l-v v

=3w(x)—3+xw'(0)

+[m(t+1)—m(1)]X U:(w ) d§+0(1)]

+Lxd§J:(w2—-w) dn+o(1).

The third line is justified by the mean-value theorem, keeping in mind that
m-=0, as is plain from (6). Fix x so as to make J(w—%) dé#0. You
0

see at once that lim..[m(t+1)—m(t)]=c exists, and it requires only two
differentiations with regard to x to obtain (4'), proving that w is a (non-
trivial) wave-form. Now c is necessarily at least «/5., and to finish the proof,
you have only to notice from (9) that

Q0
r/%zli_r_n_%m‘z L w(l—w) dx—3w'(0),
and‘ from (4') that

0

o=%w'(0)+%c—j wl—w) dx,

whence ¢ =+v2. g
A little variation of the proof confirms that

lllgl T 'mit+T)—m(t)=c

for any T, i.e., ¥2t—m(t) is slowly varying. More information about m
would be desirable. It is easy to check from (7) that if M =maXi=n Xi (t), then

£

EM)=m+ J_ xw'5(x) dx +o(1)

if wy;(0)=3% E(M) should be computable, though I do not know how to do
it.
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6. Proof of (3')

The proof of (3') is very easy: w(x—ct) is a solution of (1) only if
wx)=E[w(x-+x+ct) - wx+x+ct)].
Now if f satisfies (5), then with a suitable translate of w., you have
welx(1-8)]=f(x) S we[x(1+8)]

for 8 >0 and x 1 «. But by (3), (5), and (7),
P[rn<inaei(t)+ct>%log t]zl—o(l)

for t1e, ¢ being at least +/2, so, with overwhelming probability, all the
variables under the expectation sign in (6) are far to the right where f is
comparable to w.. The upshot is that
we[x(1—8)]+o(1)=u(t, x +ct) = w[x(1+8)]+0(1)
for t 1. The proof is finished.
7. A Martingale

The martingale

) |
HN=et Y e trm-b22
(=" 2,

is closely related to Section 6. Fix ¢ =1/b+3b. Then the expectation
u= E[e_"’(t)]=E[6—b(x‘(t)+a e e—b(In(t)+ct)]
is of the form (6) with x=0 and f=exp {~e™}, and if b=+2, you have

1‘11133 u=w.(0).

But also lim,;.3(t) exists by the martingale convergence theorem, and this
fact gives rise to an integral formula for the wave-form:

w.(x)=E exp {—Iim 5(t)e*"’°} = J’ e ™ dP[lim 3(1) < a} .
lT L3 0 tfeo
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For b >\/_ the limit also exists, but now lim,;. u=1, i.e., P[limt“ 5(1) =0]=
1, since, in the opposite case, w(x)=E exp{— hm,wg(t)e *} would be a
* wave-form with tail 1—w(x)=o0[e ?], and no such wave-form exists.
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