“MONTE CARLO” METHODS FOR THE ITERATION OF LINEAR
OPERATORS

By J. H. Curmse

1. Introduction. A purely formal description of the type of problem to be
dealt with in this paper is as follows. Let ¢ = c(z) and wu, = %o(%) be real-valued
functions defined on g coordinate space R, which may be multidimensional, Let
L = L(f) be a linear transformation defined on the space of all real-valued
functions f whose arguments belong to R. Required, to caleulate the sequence
of functions w;, wu, » "+, defined by the recursion formula,

(11) Unq1 == L(UN) + c, N == O, 1, 2, “ee

This problem arises in many contexts in both pure and applied mathematics.
uch attention has recently been focused on the numerical aspects of it by the
nuclear physicists, because the recursion formula (1.1) is obtained when time-

of a novel stochastic attack suggested during the late war by von Neumann and
Ulam in connection with diffusion problems.' Their idea was to bypass the
mathematical formulation (1.1), and set up a computing procedure with various
random decisions in it which more or less closely imitated the physical phenome-
non under study.

This type of approach to distribution problems has long been known to statis-
ticians under the name of “model sampling.” The physicists have thought up
8 new name for it that seems likely to stick: the “Monte Carlo Method.”

The formal solution of (1.1) is the truncated N. eumann series

(1.2) Uy = ¢+ Lie) + L) + - .. + L") + L¥(uy), N >0,

where L* means the K-th iterate of L. Especial interest, of course, lies in the

case in which the corresponding infinite series converges. If it does, it represents
a function u which satisfies the equation

(1.3) u = L(u) + ¢.
The error estimate is then provided by
(1.4) Uy — u = Ly — y),

Equation (1.2) shows that it makes no difference in the long run how u, was
chosen, but Eq. (1.4) suggests that the nearer g is to u, the fagter the con-
vergence will be.

The stochastic approach to estimating the solution of (1.1) will now be de-
scribed in correspondingly general terms. Consider the space B over which the
functions ¢, uy , u, » **+ , are defined. Let z be g point in it at which it is desired

1 Various practical aspects of the stochastic estimation are presented in [14],
209
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: ility distribution is now set up on each of the spaces
;é), (}:l(;?lgc’e ;Nk%pio};;b. . y, where B X R denotes the Cartesian product. of
R and R. Random variables Zo, Z1, Z, --- are defined on thgse respective
product spaces. The chain of probability dlStI‘lbut102ﬂS and of random variables
18 such that the sequence of conditional mean values” () = E(Zo| Z% = u(x))
n(x) = E(Zi| Z = w(@), ) = BEZ:|Z = up(z)), -+ -, satisfles (1.1).
Since v = o, it follows that vx(z) = un(). . .

The computational problem then becomes one ’of calcu%at.mg repfaated realiza-
tions of Zx and combining them into an appropriate statistical estl.mator' of vy .

The stochastic method is particularly well adapted tf’ the case in which the
value of uy(z) or u(z) is to be estimated at only one point z. ‘ -

In the case in which the interest lies in estimating the soh.mor% of (1.3), it is
quite possible to carry the sequence Zo, Z1, Z, * -+ on to infinity and fleﬁne
a random variable Z on the infinite product-space B X R X +++ . But this h:a,s
no significance for actual practice, and curiously enough, it turns out tf) be d}s—
advantageous theoretically. That arises from the fact that mean values in statis-
tics are ordinarily defined through absolutely convergent integrals and sums.
This in turn imposes some irrelevant restrictions on L if v, is to be identified
with u, at least in the cases to be considered in this paper.’ Therefore the atti-
tude here in the “steady state” situation will be that a suitably large but finite
N will be chosen once and for all and held fixed during the sampling.

The mathematical material preceding Section 7 is in the main a rearrangement
and mathematical formulation of known procedures, presented so as to show up
their relationships. The method of error analysis proposed in Section 4 and most
of the material in Sections 7, 8, 9, and 10 are believed to be new. However, a
good deal of work on the Monte Carlo method has been “published” in pri-
vately circulated, sometimes classified, reports, and one can never be quite sure
of a priority under such circumstances.

A word of caution to the reader may be in order. The Monte Carlo method
as a computational procedure has had its chief successes in problems which had
natural stochastic bases and which were at the same time so complicated that
they were inaccessible to ordinary analytic or numerical methods. This paper
makes no pretense of putting the method into competition with the standard
numerical practices, especially for the simpler type of problem for which good
methods already exist. The idea here is merely to present some theory which
may be of some interest for itself alone, and which unifies and clarifies certain
of the Monte Carlo devices which have been proposed, and which lays the
groundwork for further numerical experimentation aimed at investigating the
limits of usefulness of the method for non-stochastic problems.

? We shall use the symbol Pr(a | b) to denote the conditional probability of the event a,
given that b has oceurred, the symbol E(Y) to denote the mean value of the random vari-
able ¥, and the symbol E(Y | b) to denote the mean value of the conditional distribution
of ¥, given that b has occurred.

3 As applied to the solution of simultaneous linear equations, the methods of the pres-
ent paper were anticipated by Forsythe and Leibler [10] and Wasaw [16]. Both of these
papers deal directly with the infinite product space. See also Curtiss [4].
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We propose to stop short of describing the practical computational details.

dom could be the subject of another article at least as long as this one. If it were
well done, it might contain substantial contributions to the philosophy of prob-

ability.

besgue-Stieltjes type,
21) L) = [ e D, y),

in which k is of bounded variation and J has integrability properties which will
permit the iteration. We shall not pursue the question of generality any fur-
ther, however. Instead we shall bresent the theory for two special cases: that in
which L is an ordinary integral transform,*

(22) L(w) =k f h(z, y)uly) dy,

and that in which L is a matrix and v is a vector.

The second case is the special case of (2.1) in which k is a step-function. Most
of the exposition except for that in Section 4 will be directed toward this case.
It is the more fundamental one in numerical analysis and the majority of the
results can be carried over so readily to the continuous operator (2.2) that no
comment on the matter will be necessary.’

It is convenient to introduce nevy notation for the matrix case. The space R
will be thought of in this case as consisting of a finite diserete set; of points
L1, %, -, %, . The function 4 = u(z) will be represented by the vector

u = (ul y Uy ooy, un) = (u<x1)1 Y ”Lt(dln)).
Similarly, we write .
Uy = (uN(xl), ’LLN(%’_?), T, uN(“’“)) = (uNl s Ung, =0, uNn); N = 07 17 2: T,

and
¢ = (c(z), c(aa), - » €(@n)) = (e 2 G2yt Cp).
Finally, the funection h(z, y) is represented by the matrix
H = [h(z:, y5)] = [hs].
Equation (1.1) becomes in matrix notation
(2.3) Uny1 = Huy -+ ¢.

* The integral can be taken in either the Riemann or Lebesgue sense in the sequel.
5 See Cutkosky [5].
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The problem connected with this equation is to calculate one or more compo-

nents of the vector wy , given H, uo = (Uor, Yoz, *** » %on), and c.

The series solution (1.2) becomes
uy = ¢+ He + He + - + H' ¢ + H'ug
(2-4:) — (I—HN)(I—‘H)_IC+HN'LLQ,N= 1’27.__.

Here the symbol I stands for the unit matrix. Qf course the third member of
the equation can be written down only if I — H is non-sn.lgula,r. . N

Tt is well known that the necessary and sufficient condition for III‘I).N_.Q H =0
is that all the eigenvalues of H (that is, the roots of the determinantal qula-
tion |\ — H| = 0) must lie within the unit circle of the complex pla_ne. If
this is the case—and we shall always assume that it is whenever we are discuss-

ing the situation as N — co—then, (I — H)™" exists, and u = limyoe uy =
(I — H) ¢, which satisfies the linear equations

(2.5) u = Hu + ¢.

3. The solution of Aw = b. We digress for a moment here to note the relation-
ship between (2.3), (2.4), and (2.5), and the important problem of solving the
system of linear equations

(3.1) Au = b,

where b = (b1, -, bs) is an arbitrary vector. Choose the matrix H, and also
a new one M, so that H + MA = I, and choose ¢ = Mb. Then (2.5) reduces
to MAu = Mb. If M is non-singular, then this system is precisely equivalent
to (3.1) in the sense that each solution u of (2.5) is a solution of (3.1), and vice
versa. If there is more than one solution to (3.1), then A is singular, and in this
case it is easily checked that one of the eigenvalues of H = I — MA is unity.
This means that uy in (2.3) and (2.4) cannot converge to the solution. We shall
therefore exclude this case and assume that 4 is non-singular,

With M and 4 both non-singular, and with H having its eigenvalues all inside
the unit circle, (2.3) becomes what is known in the theory of linear algebraic
systems as a stationary linear iterative process, or Wittmeyer process, for solving
Aw = b. There are obviously an infinite number of ways of choosing M and H
so that the conditions are fulfilled. One standard method is to split up 4 into
the difference of two matrices V and W, where V is easily inverted. That is,
let A =V — W. Then take M = VNH = V'W. It is easily checked that
H + MA = I, and it is not hard to arrange things so that the eigenvalues of
H are all sufficiently small in modulus.

¢ See [13, pp. 97-98].

7 See [7, pp. 132-133]. The iterative method of Seidel takes V as a triangular matrix ob-
tained by replacing all elements of 4 above the prineipal diagonal by zeros. The iterative
method of Jacobi takes V as a principal diagonal matrix whose diagonal is that of A. The
so-called relaxation method is not a linear process. So far ag the author is aware, the ex-
tension of Monte Carle methods to non-linear processes has not yet been accomplished,
and may be impossible. For an interesting and scholarly classification of non-stochastic
methods of solving linear equations, see Forsythe [9].
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The calculation of 477, if that is the problem, can of course be accomplished
by specializing b appropriately. Alternatively, the Wittmeyer process can be
directly adapted to this problem by replacing ¢ by M vand wy, wi, we, -+, by
square matrices Uy, Uy, Uz, --- .,

The importance of these remarks in the present context is merely that they
show that with a little preliminary preparation any system Au = b with a non-
singular matrix can be solved by the Monte Carlo methods to be described here-
inafter.

4. The stochastic methods for N' = 1. The basic idea in the Monte Carlo
attack on problems (1.1) and (1.3) will now be described for the case of the
zero-th iteration of the recursion formula. To avoid dealing with a trivial prob-
lem, we present the ideas here with L tuken as the continuous operator (2.2)
rather than as a discrete operator.

The problem then is to estimate the numerical value of

w () = _/R he, Mw(y) dy + e(z).

The function ¢(x) will play no significant role in the present discussion, so we
confine ourselves to the estimation of

I(z) = fﬂ bz, Yuly) dy.

Now let functions z(z, y) and p(x, ¥) be chosen so that®
(1) zp = b,
@) 20,

®3) fR:v(m, y) dx = 1.

Then for each z, p may be regarded as a probability density on R. Let X be a
vector random variable with the probability distribution defined by p. Consider
the random variable Z = z(z, X)u(X). Clearly

E(Z) = fR 2@z, Y)uly)plx, ) dy

v

= fR Wz, muly) dy = I(z).

As an example, let R be one dimensional, and let
hz, y) = ™ yz0
Y=, ¥y <0

Then I(z) = f e u(y) dy, the Laplace transform of u(y). A natural choice
0

for p(z,y) would be the Pearson Type III density function, ¢™/z. Then
2,y) =z,and Z = zu(X).

8 The stochastic mechanism which is being arranged here has been proposed by various
writers. See Kahn [11], and also [14].
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One of the standard statistical procedures for estimating the mean of the dis-
tribution of a random variable Z is to make v independent observations on the
random variable and then take their average Z as the estimator. If the standard
deviation® & of the distribution of the random variable is finite, then the prob-
ability distribution of Z is asymptotically Gaussian, or “norm&la}l; ) wit.;h . (of
course) the same average, and a standard deviation equal to ¢/»' . (This is a
special case of the famous Central Limit Theorem; see Cramer [3, pp. 215-217].
The approximation is usually very close for » = 30.)

More than 99 per cent of a normal distribution lies within the interval: [mean
=43 X standard deviation]. From this we can easily caleulate the sample size »
theoretically necessary to achieve with this level of certainty a given statistical
accuracy in using Z as an estimator of I(z).

Let us say that we wish to be almost sure that Z will lie in the interval I 4 Al
That is, we want to arrange things so that Pr(|Z — I| < AI) = .99. This
means that AT = 3¢/»"?, from which we get

. 9% _9Var(2)
=D T T aDe

The formula shows that if Al is to be small, say 0.005, then unless Var (Z),
is also small, » will be well up in the hundreds of thousands. The two redeeming
traits of the stochastic method are that (1) the sampling error and necessary
sample size are independent of dimensionality and (2) they are independent of
how locally smooth the integrand of I(x) is. (It will be recalled that the error
terms in the standard quadrature formulas involve high-order derivatives.)

But it is clearly worth while to consider methods of reducing the sample size.
The statisticians have a number of devices for increasing the accuracy of sam-
pling surveys, and almost all of them are applicable here. In the present paper
we shall study only the procedures known as “sampling with probabilities in
proportion to size,” or “importance of sampling.”’* They take advantage of the
fact that we have an infinite number of ways to choose z and p for any given
problem, and an astute choice may decrease the variance by a surprising amount.

The variance of Z (and we henceforth assume that it is finite) is given by the
formula

(41)

o = B(Z%) — BEQ@ = jR ehu’ dy — I,

If the answer I were known in advance, and z were chosen to be I /u (p would
t-hen have to be huéI , which would mean that the integrand hu was non-nega-
tive), then clearly ¢* = 0. Thisleads usto propose the following arrangement as

® The standard deviation of ¥ is defined to be
{BI(Y — E())1) = (B(Y?) — [B(Y)]),

The square of the standard deviation is called the variance; we shall write it ag Var (Y).
1 See Deming [6 pp. 92-93].
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a guide in choosing z and p. First choose an integrable, non-negative funetion
p’ such that the function ¢ = e(z, y) defined by

(4.2) hu — 9" = p'e

is as small as possible in absolute value. The function p’ is, moreover, to be

chosen so that the integral J = f 2’ dy can be obtained numerically without
R

too much trouble. Let p = p’/J and let z = h/p = J(1 + € /u. Then it is
easily seen that z and p satisfy the conditions (1)-(3) listed above. The estima-
tor Z is given by Z = J(z)(1 + e(z, X)).

The variance of & + BY, where « and B are constants and ¥ is a random vari-
able, is simply 8° Var (¥). Thus

(4.3) o' = Var (2) = J* Var [e(z, X)].

If e(z) is the least upper bound of | e(x, %) | for ¥ on R, then it might be safe
to presume that Var (¢) < €*/2. (If the distribution of e were rectangular with
range 2¢—an unfavorable case—then Var (¢) = ¢*/3.) This appraisal gives us
the formula

(4.4) pyz20Y e

for the sample size theoretically required to achieve an accuracy of ==A7 with
at least 99 % certainty.™

It might be noted that (4.3) and (4.4) are quite independent of whether or
not | e | remains small for all y. If it does, then there is an implication that Au
cannot go very far in the negative direction, since p’ cannot be negative. These
restrictions on the usefulness of the arrangement (4.2) can be circumvented to
some extent, but we shall not go onto the matter here.

We have been carrying the somewhat superfluous parameter z throughout
the above discussion mainly to emphasize the link between quadrature and
other problems. The usual quadrature problem would of course be presented
with h(z, y) = h(y), w(y) = 1. But it is perhaps worthwhile to observe that if
there is a parameter z in the problem, then by choosing p so that it is dependent
only on z — y, a set of determinations of X can be gotten once and for all, from
which the statistics for Z can be computed over and over again for as many dif-
ferent values of « as may be desired.

One final remark which applies to all the remaining sections of this paper as
well as to the present section is this: The statistical error was the only kind of
error under consideration here, but of course there would be many other possible
Sources of error in the actual numerical applications. For example, there would
be possible round-off errors, mistakes, and systematic errors of one kind or
another. In accordance with the resolution expressed at the end of the Intro-
duction, none of these non-statistical errors will be discussed.

" In any case, certainly Var (e) S e2.
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5. The case N > 1. Suppose that the method of the preceding section had
been applied to the trivial problem of estimating

un(zs) = 2ope1 h(@i, 3)u@s) = D hahiju; = Huls,

for some fixed 4, where the notation is that of Section 2. The procedure would
have been to select numbers z;; = 2(x;, z;) and pi; = p(x;, x;) such that

(1) ziypi; = hes, 1,7, =1, ,n,
2) pi; =0, i, =1, ,m,

(3) Zipi:i=17 T =15"'3n;

then to let X be a vector random variable with the probability distribution given
by Pr(X = ®;) = pij, and to form the random variable Z = z(z;, X)u(X) as
before. Its mean value would be

E(Z) = 2 i@, z)ul@)p(@:, 5) = us.

‘We shall now show how to extend this stochastic scheme to the iterations of H.

We continue to define z;; and p;; as above. Consider a random walk on B de-
fined as follows: the starting point X, is a random variable with a probability
distribution given by p; = p(z:), where p; > 0, > :p; = 1, but p: is otherwise
arbitrary.”® Thereafter the successive positions or states visited by the random
walk are random variables X, X, - -+, whose distributions are given by the
formula PT(Xk+1 = Tj ‘ X = x,) = Pij, Z,] = 1, R (%

These directions have the effect of unambiguously specifying a probability

distribution on the product space B X R X --- X R for each N. The typical
point is assigned the probability pipijp;,isPisis - Ps,_.; . The chain of random
variables Xo , X1, X, - -+ so defined is a simple Markov chain.**

Now define a new chain of random variables as follows:

Zy = Zo[u] = u(Xy)
Zy = Zifu, 2] = 2(X,, X1)u(Xy)
Zy = Zz[‘u, z] = Z(Xg y Xl)Z(X1 y Xz)’LL(Xz)

Zn = Zylu, 2] = 2(Xy, Xy) - - 2( Xy, X)u(Xy).

12 By.b],- 5 where b is a vector, we mean the 7-th component of b.
18 This distribution does not play an intrinsic role in our discussion and is introduced
only for logical completeness.
) u S:f:‘e Feller [8_, Ch_a,p. 15]. Actually our specification uniquely assigns a probability dis-
tribution to the infinite product space B X B X ... (see [12, pp. 28-33]), but we shall not
make use of this distribution,
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We shall call Zy , Z,, Z,, -+, an m-chain (m for multiplicative).
Let the vectors o, v, - -+ , b, defined as follows:
v = vz ; u) = u(zs),
Ui = on(@i 5%, 2) = E(Zx[u, 2] | Xo = z)), N = 1,2, .-
Consider now a typical path of the random walk represented by the sequence
of random variables Xo, Xy, -, Xx. Let this path be z;, x;,, zj,, -+,
Zjx-1» %i. The conditional probability that the random walk actually takes
this path is p.p5,5, - -+ pjy_,; . Therefore by the definition of the concept, of
mean value in the theory of probability,
ONE = Dt Dl Dot D Bteni, - Zin-1iUiDiiPiris *** Digori

= 2l Dt e Dok Bijhjigs =+« hiy_iiu; = HYJ; .

Thus
(51&) Uy = I.{v_v, N = 0, 1, 2, e,
(5.1b) w = H", N=012- ...

The question of estimating uy in the recursion relation (2.3) can now be re-
solved rather easily. It is clear that

uvi = (¢ + He + -+ + H' % 4 H));

= (@, ¢) + ulwise, 2) + -+ vyya $62) + oz w, 2)
Bl + Zile, 2] + -+ + Zvaile, ] + Zalw, 2] | Xy = g,
= BE(Zvale, 2l + Zuluo, 2] | Xy = z),

where Zylu, 2] = Zi[u] + Zi[u, 2] + - - + Zy[u, z]. This shows that if we define
vectors wo, wi, wa, +++ , by

I

Woi = wo(Ts 5 u) = u(a,),

Wyi = wy(:; ¢, u, 2) = E(Sy_4e, 2l + Zvu, 2] | Xo = z;), N = 1,2 ...,
then with 4 = w,, these vectors satisfy the relations

(5.2a) Wy = Hwy + ¢, N=012".-,
(5.2b) wy =T —HYI - H) + H%, N= 1,2, -+,

Furthermore, if we assume that the eigenvalues of H are in modulus all less
than unity, then the vector W, = Limy.e wy exists and is the solution of the
system u = Huy + ¢.

Thus the conditional mean values of the chain of random variables Zy_, - Zy ,
N = 1,2, .. provide a solution to our basic problem. The actual computation
would consist in making a large number of realizations of the vector random
variable (Xo, X, .-+, X x), caleulating Zy_; + Zy for each realization, and
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averaging the results, or otherwise combining them into a statistical estimator

of the mean value.

Several remarks are now in order.
(1) This method of solving linear equations was proposed by Wasow [16].

He considered only the infinite product space B X B X -+, and was thereby
forced to use the restriction that the matrix of the a.bsoh.lte values of tl,le ele-
ments of H had its eigenvalues in the unit circle. The pe'dlgr_ee of Wasow’s sug-
gestion goes back to a well-known paper of Qourant, Frled.rlch.s, 'a,nd_.Lewy [.1],
in which the Green’s function of an elliptic difference equation 1is 1dfant1ﬁed with
the mean number of visits to the points of the lattice made by a particle perform-
ing a certain random walk on the lattice. (See the remark .(3.) below.) ‘

(2) Wasow and other writers describe the process of realizing .Z N 88 8 we.lghted
random walk in which the particle starts at z; with a “mass” unity, which is then
multiplied by the factor z(z;, z;), then multiplied by z(z;, , z;,), and so fortl-l.
He deals in [16] with matrix inversion and chooses u = O, 50 h%s
c= (Buj,j=1,2,---,n), where &;; = 1,7 = k, &; = 0, j = k. With this
specialization, Zy then becomes in Wasow’s words the total amount of mass
carried through the point z; during the N steps of the random walk.

(3) If in the function Zxlec, 2] we take z;; = 1, ¢ = (8;), then Zy is the total
number of visits to z; made by the N-step random walk starting at ; , counting
in one visit for the starting point if ¢ = k; and wyi1(z; ; (8x5), 0, 1) is the mean
number of visits to 2, . (In making this observation we are of course no longer
tying ourselves down to the requirement that z;;p;; = hi; where h;; is given in
advance, but instead we are assuming that the p;; are given a priori.)

(4) The chain Z,, Z1, Z., --- represents a type of branching process. It is
a Markov chain which may be of any order from one to infinity, depending on
the choice of the 2’s. Such chains have been studied by Montroll [15], together
with the companion type obtained by replacing multiplications by additions.
They have numerous applications to theoretical physics and physical chemistry.

(5) In the solution of w = Hu + ¢, or in the problem of inverting of I — H,
it should be notéd that once a large set of realizations of (X, , X1, Xa, -+ -, Xx)
has been obtained with all the random walks starting from some fixed z; , then
by proper bookkeeping procedure they can be used a number of times. Not only
can they be used to get the statistics for & number of different vectors c—say,
all the columns of the identity matrix I, which would be the procedure for in-
verting I — H—but also, by considering a visit to z;, j = 1, as starting a new
random walk, they can be used to find components of wuy; y N' < N, or of u,
other than the ¢-th component. Nevertheless a peculiarity of the stochastic
method here presented is that it seems to appear to the best advantage in com-
parison with the standard deterministic methods when the problem is to find
only one component of uy or of u, or one row of (I — H)™. This fact has al-
ready been commented upon once before, in the Introduction.

(6) A final remark of minor importance is that the estimator used in the quad-
rature problem of Section 4 was analogous to the Zy in the present section, not
to Zo . Thus to achieve strict parallelism between the two sections, we should
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have assigned an appropriate distribution to B X R in Section 4 rather than
just to B, and then considered a conditional distribution in R X R under a
hypothesis relating to E.

6. The m-chain method. The development of the preceding section can easily
be modified so that an m-chain does the work of the random sequence ¥, -+
Zy, Zy -+ Za, --- . To accomplish this, we adjoin n additional points Tyt

Tatzs 0, %o to I, and set up the 2n X 2n partitioned matrix
h*(x; , x;)
Y H!I
H*=lj=1,-+- ,2n]=|--4--
0 r
=1, ,2n
Also, we let (uopic) = (uy, uo » 775 Uom,y €1y Coy v vy Ca), With ¢ = ¢(z) =

¢(Tign), ¢ = 1, - -+, n. It is to be noticed that
H' ' I+ H+H 4 ... 4 g¥1
(6.1) H¥ = + =T — NI — I~

Now let 2¥; and p¥ be chosen so that 2ipY = b, 0% 2 0, 1, Y = 1.

Set up the random walk X7, X¥ , ... son thelatticeay , « -+ , 2y, 20yy, -+ - s Tan ,
using the transition probabilities P37 . Then construct the new m~-chain
w(X§) X =ay, -,z
7y = Z¥[(uic)] ={ e
C(XO): Xﬂ = Tngly * 00y Topo
u(-X;.k) X;k = Ty, v Ty
7t = Z[(uic), 2% = 2*(X¥, X¥) X [ -
: C(}x1>, Xl = Dpgyy *0 0, Lag
Zy = Z¥[(uic), 2¥]
w(XH Xy=2, .2
= 2*X¥,X¥) ... 2*( Xy, X%) X { : ’ : ' S
C(XN)} XN = Lngty 0" 5 Lon |
Let the vectors o3 , vf', - -, be defined as follows:
Uiyt = 1,2, -+ n,
wi =i wie)) =1 ’
Cinyt =0+ 1,042 ... 27
vvs = ox(e:; (uic), 2%) = E(Z5(uic), ¥ | XF = z), N = 1,2, -

Then according to (5.1) these vectors satisfy the relations

(6.2a) Vs = H*) N=012--
(6.2b) vy = H*(ulc), N=012---.

The components of these vectors for § = n 4+ 1, -, 2n deserve some atten-
tion. From the definition of v ) Vi = Ci, 4 = 1, «++, n. As for of , it will be
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. . *
seen by looking at H* that 25pl; = 6:5,% > n,j > n. This means that v{,,; =

v;k,n-}-fi:"’=v;“;.n+i=ci7i=]—y".5n‘ . .
Using (6.1) to (6.2) and these facts, we obtain, letting v =
. Ugi i=1,---,n,
(6.3&) Vo; = . i=n+1’n+2,..-’2n,
Hv:’]i_l-c’i) 7;=1:"’:n _
(6.3b) Vit1yi = ' N =0,1,.-
Cien, i=n-4+1.-,2n
o [t @~ EY - B
Uni =

Cimny

(6.3¢) iml e

N =12, .
i=n41, -, 2n

(In forming the product of the non-conformable factors' H and vk, only the
first n components of vy are to be used.)

These relations show that the first n components of v} satisfy the recursion
relation (2.3) with the initial vector u, . If HY — 0, then v = Limiy.. 2% exists
and its first » components satisfy the linear equations (2.5).

Although the vectors wy of the preceding section and v} of this section must
be identical, they are based on quite different stochastic processes. For one
thing, in the previous section it was understood that P pi; always equaled
unity, which implied that the random walk remained forever on Ty e, T,
whereas now the corresponding sum of probabilities must be less than unity,
and the random walk will not necessarily remain forever on the first = points
of the lattice.

In fact, if we choose p}; = 6&; for ¢ > n, then the new points ..,
Tni2, *** , Ton Decome trap states or absorbing states for the random walk X7,
X{, -+ . It is now a random walk with absorbing barriers.

To increase the comparability of the processes of this section and of the pre-
ceding one for solving (2.3) and (2.5) we can set up the solution of the pre-
ceding section with H* replacing H, 2* replacing 2, p* replacing p, (u:0) =
(Uor, ez, -+, Upn, 0, - - - , 0) replacing u , and

(ci0) = (61,02,---,0"’0,...’0)

replacing ¢. The vectors (1,:0) and (c:0) have the effect of annulling the right-
hand blocks of H*'. Then the process hlei0), %] + Zy[(40:0), 2¥], where
Vo= Z8 4+ 2% » Will have the same conditional mean values for
X{ =2,,i<n as Z3[(uo}c), 2*]. The random variable S+ 7% is identically
equal to zero if the random walk ever visits the new part of the lattice (that is,
the point-set @n41, Zoys, - - - » %24) in the course of the first N steps.

The m-chain method of inverting matrices was first proposed by Forsythe




ITERATION OF LINEAR OPERATORS 221

and Leibler [10], following a suggestion of von Neumann. They considered only
the infinite product space 2 X R X --- and thus had to make a restriction on
H similar to that which Wasow used.

7. Variances. The variance of the random variable Z ~lu, 2] of section 5 is
easily derived. Let K = [z;; h,;] = UZ«%J‘/T)@;]. Then by the argument which led
to our fundamental equations (5.1), we find that

(7.1) Wrs = wn(@i 5 % 2) = B{(Zy[u, 2))° | Xo =2 = BN,

where u’ means the vector (uf , u}, - - - , 43). (We shall frequently use this ex-
ponential notation to represent the operation of squaring the components of s
vector.)

The conditional variance of Zy , given that Xo = a1, Is of course the vector
WN — D]%] .

Turning to the random variable Zyale, 2] + Zalu, 2], we first find by using
the method that led to (5.1) that for s =t

E(Zje, 2)Zu, 2] | Xy = ;) = K'CH""),,

where C is a principal diagonal matrix whose diagonal elements are e,
C2y "', Ca. We apply this relation and (7.1) to the expansion of the square in
the last member of

Wri = 2wn(T; ; ¢, U, 2) = B Zyle, 2] + Zxlu, 2])2 | Xo = 2;}
= E{(Zilc] + Zic,2] + --- + Zy-ale, 2] + Zafu, 2))* | Xy = zi}.

By going through some matrix algebra, the following rather formidable (but
equivalent) formulas can be reached:

awy = (I — K)7'* + K" — (I — K)™Y
+2(I — K)7CU — BT — H)'He — Syoac] + 28y Hu,
wy = KV + KM + (1 — EYI — K*Yeed ~ H) % — c’]
—(CH"™ + Sy_o)(I — H) " He + 28y Hu,

where Sy = KCH + K"'CH* + . + K*CH™ + KCHY.

The variance is of course to be obtained by subtracting the vector wy from
the vector ywy .

The limiting forms of these formulas will now be derived, under the hypothe-
sis that the eigenvalues of both K and & lie inside the unit cirele in the complex
plane. For this we need the following simple result.

Lemma. If 4 1s any n X n matriz with complex elements, and with the property
that oll of 4ts eigenvalues lie 4n the wnit circle, then there ewist constanis
m = m(A) > 0andr = r(4) > 1 which are independent of N, and are such that
Lal | < m/r 4§ = 1, 20, N o= 1,2, -+ where al 4s the element in
the i-th row and the j-th column of A,

(7.2a)

(7.2b)

i




229 J. H. CURTISS

For the proof, we first observe that the eigenvalues of rA, where r is now any
scalar, » 5 0, are those of A multiplied by 7, because if y is an eigenvector for
the eigenvalue ), then the equations Ay = y and rdy = r\y are equivalent,
This means that if A4 satisfies the hypothesis of the Lemma, then a real number
rexists, r > 1, such that the eigenvalues of r4 are still less than unity in modulus.
Therefore Limyoe (fA)" = 0. Therefore there is a positive number m, inde-
pendent of N, such that for all N, [77al’ | < m. The result follows at once

from this.
We now apply the Lemma to Sy . Let ¢ = max; | ¢;| . Then®

| (K°0)ii | < m(E)e/[r(K)T,
and
| (KCH™™")i5| < nm(K)m(H)s/[r(K)I'r(E)]" 7,0 £ s < N.
With 7% = max [m(K), m(H)], # = min [r(K), r(H)], this becomes
| (K*CH"™™).5| < mim's/F .
From this we get the fact that 4f the eigenvalues of K and H are all less than

unity in modulus, then there exist numbers m = m(K, H, C) > 0 and
7 = 7(K, H) > 1 independent of N such that
(73) |(SN)le<nNm/fN7 1,J=1,,m; N = 1: 2?“"

(This estimate could be refined so that it is independent of n, using for ex-
ample the methods described in [2, p. 16 (footnote)], but it is sufficiently precise
as it stands for present purposes.)

The inequality (7.3) implies, of course, that Limxy.. Sy = 0.

Therefore the limit of the vector swy , which we shall denote by sw,, , is given
by the formulas

(7.4a) w, = (I — K)7¢ + 20 — K)™C( — H)He,
(7.4b) w, = (I — K)720(I — H) e — ¢,

It is of interest to specialize the m-chain variance given through (7.1) to the
augmented 2n X 2n matrix H* discussed in Section 6. Let 2%; and p¥; be chosen
as previously, but with the proviso now that p¥; = 0 whenever A¥; = 0
i=12-,nj=n+1n+2 -, 20, and also that pl; = 5,5, 4 > n
4 > n. Then the matrix K* = [z};h};] has the appearance ’ ,

i hij :1 1/pf 0
o _ i=1,--nl 1/p%
[Z’-‘.‘.E;‘,Lﬁ_? __________ 1/p
0 ! I

18 We are using the notation By; for the i,j-th element of the matrix B.

t
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where ¥ = 1 — 3%, 9% . It follows as in the derivation of (6.2) that if we
define

o = Cin, t=n-41 ... on
wvi = B{(ZX(uic), )| X¥ = oy}, N=12-...,

then letting u =

[K@®+ Qcls, i=1,... 4

2 .
b3 {u“’ 1':1’.-‘!",

7.54 D = N = 0,1 s
@oe) o letn, i=n+1, ..., 2 ’
« Kl + (= BN — )™ Q.
(7.5b) Whi = T \
Ci—-n,
t=1,.-.,n
N=12 ...
t=n-4+1 ... , 2n

Here @ denotes the principal diagonal matrix in the upper right-hand corner of
K* and K means the n X n matrix® [2%,,].
The limiting form of (7.5) is

(7.6a) Wai = K5 + Qc, t=1,n
(7.6b) we: = (I — K)'QcYs, t=1,,m
It was noted in section 6 that the process
Znal(e:0), 2] + Z¥[(u}0), 24

has the same conditional mean value as Z¥[(uic), 2% for X¥ = Ti, 1 = n. With
K redefined as above to mean Zhi; , (7.2a) (7.2b), (7.4a), and (7.4b) give the
components for ¢ < 7 of the second moment of the random variable Z}_; + 7%
exactly as they stand now. The components with z > n are all zero.

Several remarks will now be made.

(1) The formula (7.6b) was derived by Forsythe and Leibler [16] as the
second moment of the conditional distribution of the random variable Z¥% de-
fined on the infinite product-space R X B X --- .

(2) The formulas for the second moments suggest that to keep down the
variances, the numbers z,; and p;; or 2t; and p}; should be chosen so that on
the average (speaking intuitively) the elements of the matrix K should be as
small in absolute value as possible. One way not to achieve this end is by letting
Pi; or i be positive when hy; = 0 or 1Y = 0, because the unnecessary positive
values of the p’s in a given row could be apportioned out to the other elements
of K or K* in that row so as to make the elements A7,;/p:; or BIF/p% s little

1 To use K in this way is slightly inconsistent with the previous definition of K; per-
haps K** should be used.
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smaller. (We have anticipated this remark to some extent by choosing p:; = 0
when h;; = 0 for j > n.) ) ‘ ) )
(8) A corollary of our results of some slight interest for matrix thgory is this.
If [hi;] is a real n X m matriz with all of its ezgenvalues inside the unst circle, and
if there exists a set of positive numbers pi; , 1,7 = 1, < -+, n such that Z:‘ pi; = 1,
i=1,---,n and the eigenvalues of [hi;/p:;] are all inside the unit circle, then the
diagonal elements of (I — H)™ are all greater than 4. This follows from (7.4b)

with ¢ specialized toc = (6s;,7 =1,+--,n), k=1, n .

(4) The natural statistical estimators of the mean values vy, Wy, Uy , ave of
course the arithmetic averages of many determinations of the respective ran-
dom variables of which these are the theoretical mean values. Clearly the vari-
ances of these estimators always exist for finite matrices and finite values of N,
no matter where the eigenvalues of H or H* lie. Therefore in particular, the for-
mula (4.1) for the number of random walks which must be performed to attain
a given theoretical accuracy is here valid, with AI replaced by Avy , Awy , ete.,
as the case may be.

8. Comparison of the two methods of inverting matrices. We shall now use
the formulas of the preceding section to effect a comparison of the statistical
error of the m-chain method of inverting matrices (Forsythe-Leibler) to that
of the method based on Zy— + Zy (Wasow) given in Section 5.

It will be impossible to compare these methods unless the 2’s and p’s are
chosen comparably. Therefore for both methods we shall suppose that the ar-
rangement described in Section 6 has been set up; that is, the one which uses
H* 2, pi;, Xx, and Zy . The comparison will be made by comparing only
the limits of the variances as N — oo, as the finite case seems to be rather
intractible.

With K = [¢f5hi;, 4,7 = 1, -+, n], and Q defined as for (7.5), the formulas
to compare are

w, = (I — K)720(I — H) % — ¢}
and
e = (I - K)7Qc

The spef:ia,liza,tion to the case of matrix inversion is accomplished by letting
¢ = (&;,J =1, -+, n); then if the random walks start from © = x;, we shall
be estimating (I — H)7 . We then have

1) e = (I = K)ERI — H)a — 1, b= (I — K)it/pt .

The ratio of these second moments is

'ww.;
(82) :v:i = pi2(I — Byt — 1]

Since (I — H)z isﬁxed by the terms of the problem, we have at our disposal
only the numbers pi in this formula. It is clear that for a given H these can al-
ways be chosen so that the m-chain method (Forsythe-Leibler) is poorer than
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the other method (Wasow). And for an H such that the diagonal elements of
(I — H)™ are small, the Wasow method might have a smaller variance than the
other method, no matter how the random walk was set up.

These negative observations come far from telling the whole story. If the
pi’s are adjusted so as to be quite large, in an attempt to make the m-chain
method show up favorably in (8.2), then the numbers Pi, 1 = m, J = n, will
be small and the factors z}; will have to be proportionately larger. This will
make the elements of K*" and (I — K)™ large, and the values of both s, and
20, Will be large, which of course is undesirable. On the other hand, if the p¥’s
are chosen so that the values of Dy are small, then the mean duration of the
random walk becomes very long (see Section 9 below), and this is perhaps more
undesirable for the Wasow method than for the m-chain method because the
former requires a little more computing per step in the random. walk.

The question of an optimum method from the point of view of minimizing
computing has not as yet been settled. Probably there is no such thing, be-
cause as in the case N = 1 treated in Section 4, it will turn out that the more
one knows about the solution, the better one can do. This phenomenon will
again be in evidence in Section 10.

9. The duration of the random walk. We shall now apply the formulas of the
preceding section to obtain theoretical mean-values and dispersions in two
classical problems connected with random walks, which have g bearing on the
usefulness of the Monte Carlo methods discussed in this paper.

We shall be considering the random walk Xy, x¥ y ', on the lattice
1y "ty Xny Tnga, *0 -, Ten, Section 6, However, in considering the associated

matrices H* = [of;p%] and K* = (%7 p%), (the latter was introduced in Section

7), the point of view will be that the transition probabilities p¥; and the factors
2%y are chosen first, and the values of hi; are determined thereby, instead of
the other way around. We suppose that p¥; = 05,8 > m,7 > n.

In each of the problems to be considered, z;; = 1. This means that K* = H* =
[p5], K = H = [p% »%J = 1,---, n]. The first of these matrices is a sto-
chastic matrix. We denote the second one by P,

The first problem is that of determining the mean value and variance of the
number of visits to z, if the random walk starts at z; . In accordance with re-
mark (3), in Section 5, the total number of visits to 2 in an N -step random
walk starting at x; is

2e), 1] = 8u(XY) + 8u(XF) + (XE) + -+ 8(X),

where 6x(z;) = by, 5 = 1, 2, .-+, 2n. The answers to the problem are thus
given by (5.2) and (7.2a) or (7.2b).

Let the mean number of visits to ; if the random walk started at @; be de-
noted by G’ . Then

G = B(2W[(0es, 1] | XY = z;)
= [(I — PN+1)(I — P)~1],'k, t=n,k = n,
G = Ok, k>n
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Assuming that limy.. P¥ = 0, we have

(9.1) @ = lim G = I — P, i<n k= n,
N—®
(9'1}3) Giy}”) = s y k > n.
Then by substituting into (7.4b), we obtain"
lim Var (Z¥(6:), 11| X0 = @) = WG — G — G
N~—+c0

The first two terms of the formula are of course just a special case of (8.1).

The other problem concerns the duration of the random walk X¥, Xr, .
We define the duration to mean the total number of visits made to each of the
transient states 71, s, -+ , &, before absorption takes place. In counting the
visits, we count in the starting point of the walk as one visit.

If the walk is limited to N + 1 visits (that is, to N steps), then the duration
is clearly

¥[(1:0), 1], where (1:0) = (1,1,---,1,0,0,---,0).

RSN "
~

n n

Tts conditional mean value for Xy = x; is the vector dy whose ¢-th component is

dyi = LJa @ = Xiald — PY™UI = P)7y, T =,
dyi = 1, > n.
The vector dy satisfies the recursion relation
dys1,i = Pdy)i + 1, 1=, N=0,1,2---,
with do; = 1. Its limiting value is
(9.2) dy= 20— P, i 2 n.

The variance of the duration can be obtained by substituting appropriately
into (7.2a) or (7.2b). We shall again write out only the limiting case. This is
obtained easily from (7.4b); the -th component is

oot = i = 2 D27t AT duoj — duns — s -
S dwi(2d — 1 — duy),
where d = max; du; .

The duration of non-truncated random walks in an infinite product space has
recently been investigated in very general cases by Wasow [17]. Previously,
special cases had been studied at some length by statistical theorists in connec-
tion with the problem of the mean length of a sequential test. (See [4] for fur-
ther results and references.)

The conditional probability that X7 falls on one of the states z: y oty Tny

7 By Var (Y | b) we mean the variance of the conditional digtribution of the random
variable Y, given that the event b has occurred.
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given that X3 =, 1s clearly Z;;]_(Px)ij. This is the probability that the
walk lasts for NV steps without falling into a trap state. To assert that limpe,e P¥
= 0 is therefore equivalent to saying that the probability that the walk lasts
more than N steps approaches zero with N. In fact, if we consider the infinite
product-space R X B X ...fora moment, limy.. P¥ = 0 means that the wallk
is “almost certainly” of finite duration, and conversely. It is known (see for
example Curtiss [4, Section 11]), that if from each one of the statesxy, 22, - -+ , T,
it is possible to reach a trap state over a path in B X R X -+ with non-zero
probability, then the walk is almost certainly of finite duration.
This provides a sufficient condition for the validity of (9.1) and (9.2). If it is
satisfied, then all the eigenvalues of P will be less than unity in absolute value.
We mentioned in Section 8 that if the numbers pf = 1 — 32, Py Were small,
then the mean duration would tend to be large. This follows intuitively from
the fact that the smaller the absorption probabilities are, the longer the walk
will go on. A somewhat more rigorous demonstration can be given by considering
‘the dependence of the eigenvalues of P on the row-sums of P. If P > 0,4 =
1,.+-,n,5 =1, -+, n, then as the minimum row-sum approaches unity, the
eigenvalue of maximum absolute value'® approaches unity, and thus the con-
vergence to zero of P" becomes slower and slower.

10. Importance sampling. In this section we shall discuss the problem of the
control of the statistical error. The treatment will be analogous to the one in
the latter part of Section 4. It will pertain only to the estimators Zy and Z¥ ,
and not to the estimator Zy_; + Zy. We shall assume throughout that the
problem is to estimate the solution of (2.3) or (2.5). Therefore the factors z;; and
Dii, or 23 and pf; , will always be related in the usual way to the elements of
the matrix H or H*,

It is worth while first to inquire into the conditions under which an m-chain
can be a zero-variance estimator. It will suffice here to examine the situation
only for the function Zy[u, 2] of Section 5.

If Zy did indeed have a conditional variance of zero, given that the random
walk starts at z; , then the value assumed on every path with positive probability
would depend only on ;. One way to insure this would be to choose 2z;; =
Mui/u;, where N is a constant; then

_ v u(Xo) . u(Xy) (X y_1) 7Y AN (v
D=2 u(X) uw(Xy) w(Xy) wEn) = NulX).

Conversely, it can be shown that this is roughly the most general choice of
the factors z;; which will insure the desired result. We shall not try to give an
accurate formulation of the theorem here.

Now if 2;; = Mu;/u;, then the requirement that 2ii0:; = hij implies that the
choice of p,; must be h;u;/u; . This in turn requires not only that all of these
quotients must be real and non-negative, but also that > hijus/Au; = 1. The

* Tt happens to be real and positive, since P is a matrix of positive elements.
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latter relation states that « must be an eigenvector of H corresponding to the
eigenvalue . _

If we stop insisting on stationary tramsition probabilities for our random
walk, and also permit the factors z;; to vary from step to step, then a zero-
variance m-chain estimator of uy = H"u, can very easily be cox:lstructed for
any u, provided that h;; > Oand u; > 0,4,7 = 1, - -+, n. We simply choose

%)) hij UN—1,5 O _  Uni

i =, B = o
Uy i UN—-1,i

@ _ hij Uy (@ _ Un—ti

i = ’ Big =
UN—1,i Un—2,i

@ _ B v (v _ Ui

pi;T = ——, Bij = —.

U Uog

It is easily checked that Zy formed with these factors 2{3° and with % = wu, , has
the constant value uy,; for any random walk starting at z; . For each. K, vg4y =
Huyx , where vx,; = E(Zx | Xo = =), but the chain is not a zero-variance chain
unless K = N. '

The argument can be extended so as to allow zero elements in A and u, by
giving a little attention to the undefined quotients.

It is not difficult to proceed from here to a practical arrangement whereby
given only approximate values of uo, us , us, - - - , Ux, & chain can be set up in
which the variance can be exhibited as a function of the errors of the approxi-
mations, as was done in the case N = 1 in Section 4. Because of limitations of
space we shall not pursue the matter further. Instead we shall study a special
class of m-chains which use stationary transition probabilities and for which the
statistical error analysis is usually easy to make. These m-chains, however, have
the slight disadvantage that they are connected with & special type of matrix H.

The main problem is, as usual, to estimate the vector Uy in the recursion re-
lation

(101) UNsy1 = H’MN + C.
We shall also be interested in the problem of estimating » in the equation
(10.2) u = Hu + ¢,

but as elsewhere in this paper this problem will be considered as the limiting
case of the first problem as N becomes infinite. Whenever (10.2) is in view, we
shall as usual assume that all the eigenvalues of H lie inside the unit circle.
We now impose certain conditions on H. They are that h;; = 0, and that a
vector uy with positive components shall exist such that the components of
(I — H)ug are all positive. The existence of such a vector v, follows automatically
from known results on matrices if the eigenvalues of H all lie inside the unit

circle and H is non-singular. We write U = Huy + ¢ 4+ ¢; then ¢; -+ e > 0,
i=1-,n
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If the problem in view is to solve 4u = b, then theoretically speaking, ma-
trices H and 3 can always be selected so that the equivalent system u = Hy -
Mb, with H + MA = I, satisfies the conditions imposed here. For example,
choose H to be a principal diagonal matrix with elements lying between 0 and 1,
Then its eigenvalues lie in the unit circle, and the existence of & vector ug with
the required property is assured. (Of course, any particular a priori choice of H
such as this usually means that 3 must be determined from 3/ = A4~ (I — H),
which requires a knowledge of 4™, In practice therefore it is A/ that will prob-
ably be chosen first, not H.)

We note that e (or rather — «) is the “residual” in the classical theory of solu-
tions of the system (I — H)u = c. It is easy to show that if the successive ap-
proximations wu , u, - - to the solution « of (10.2) are defined by the recursion
relation (10.1), then

Uy — U = HN(I - H)_IG.

The second member of this equation is the truncation error (as opposed to the
statistical error) in the statistical solution about to be proposed.

At this point we reformulate the problem in terms of the partitioned matrix
and vectors introduced in Section 6. The equation (10.1) can be rewritten as

(10,3) ('llw..HEC) = H* X (uyfc)
and the equation (10.2) becomes
(104) (uic) = H* X (uic).

The problem of solving (10.2) then becomes one of finding an eigenvector of H*
for the eigenvalue unity, given preassigned values C1, Ca, *++, €y for the last n
of the 2n components of the eigenvector. This formulation of the “steady state”
problem as an eigenvalue problem permits us to make an approach to the zero-
variance sampling situation discussed earlier in the section.

We define correspondences between the POINtS Tyy1, Tuga, -+, X2, and the
components of e and ¢ respectively by ¢(@is) = ¢ y €(@in) = €, 0 =1, -+ n;
and we introduce the vector ¢* whose components are given by

Juo(as), i=12-,n
le@) +e@), i=n+1---,2n

That is, ¢* = (uic + €). The n equations represented by wy = Huy + ¢ + ¢
which define the components of ¢ are equivalent to the 2n equations repre-
sented by

(10.5) c* = H*c*,

We are now ready to set up the basic random walk, and the corresponding
m-~-chain whose mean value is the solution of (10.1).
The transition probabilities of the random walk will be given by

Pl = bl [c}/el]

cf = c*(z) =
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Tt is to be noted that p¥ = 0, and because of (10.5),
Sip =1, t=1--,2n
Then 23 is chosen so that
& = ot/

Letting the random variables X¢, X¥, -+ denote as usual the successive states
visited by a random walk having these transition probabilities, and substituting
into Z¥[(uetc), 2*], we obtain

g XD HED HX5)  [wXR), i Xy =20 =12,
YT oD XD &R T @), X =z,i=n+ 1,
n4 2, 0,20

Cancelling terms and using the definition of ¢*, we find that for Xsona, -,
Tn
b §)
106 Zh = ue(X¢ [1 — (X% ._fﬁ—-”--.—-—]
( ) N u0(X¢) ( ¥ C(X?\;) T e(X;:v)

where

_J0, 1=1,---,n
bz = {1, i=n41, -, 2n

Tt is known from the results of Section 6 that EZ¥| Xo = 2:) = uni,t S,
where uy is defined by (10.1) above.

The practical procedure implied here for estimating ux is simply this: Start a
random walk at z;, using the transition probabilities p¥; . If absorption has
not taken place after N steps (that is, if the random walk has not reached any
of the POINtS Tny1, Tasz, *** , T2n), then record wuo;. If absorption does take
place during the N steps, stop the walk then and there, note the index 7 of the
last point z; touched before absorption, and record Ui/ (c; + ). Do this for
many random walks, and then average up the recorded values.

We now consider the statistical error of the procedure. From (10.6),"

¥ | gk 2 * «(X%) *
Var (Zy | Xi = ©;) = w; Var | 8(X%) 56-(-—“-"‘—‘ Xi = a: |,
1=1,:,m

¥ + (X

(We note in passing that if e = 0, then the variance vanishes, as it should.)
Proceeding as we did in Section 4, and letting

€;
e = Imax

it oe’

19 By the symbol Var (¥ | b), we mean the variance of the conditional distribution of ¥,
given that the event b has occurred.
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we get
Var (leXak =xi) <%62ugi 7:=1,"',1’L,

which for practical purposes is about as satisfactory an appraisal of the variance
as it seems possible to obtain. It contains none of the unknown quantities in
the problem.

By using the formulas and methods of Section 7, it is easy to get an explicit
formula for the variance. The result is

Var (Z% | Xo = )
= up(I —HHYI —H) ' éli— {T—H)7 i}, i=1-,mn

where

9
’ €;

€ =
Ci+€i,

One somewhat interesting conclusion that can be drawn from this formula is
that if uo is chosen so as to have constant components, then the variance will
have one standard limiting vector as N — «, no matter what the magnitude
of the components of % may be. It turns out that this limiting vector is

(I — H)¢ — W,

where % is the solution of (10.2) and
2

ci = Ci 3 =1 n
P = = = cee n
Do — H)i’ ! ’
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