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SUMMARY

In this paper a basis is established for a theoretical
comparison of the amount of work required by three widely
different methods of calculating (to a given accuracy) one
component of the solution of a set of simultaneous linear
algebraic equations. The equations are assumed to be in
the form € = H% + -, where  is a given n-dimensional
vector and H is a given n x n real matrix. The amount of
work is measured by the number of multiplications required
under the most unfavorable conditions. The three methods
are (a) the Gauss elimination method, (b) the particular
stationary linear iterative method defined by the recursion
formula € Nel ™ HE&N + v, N=20,1,2,..., and (c) a Monte

Carlo method which consists essentially of a statistical
process for estimating the iterates of H. The amount of

work required by the first method is proportional to n3,
where n is the order of the matrix H. The amount of work
required by the second method to achieve a predetermined

accuracy is given by an expression of the form Kn2 + n,

where k is ordinarily fairly large. The amount of work
required by the Monte Carlo method is given by an expres-

sion of the form n + n + b, where b is ordinarily a very
large number. If no preliminary preparations aimed at
reducing b are made, then the amount of work for the Monte
Carlo method is given by an expression of the form n + b.

+This report represents results obtained at the
Institute of Mathematical Sciences, New York University,
under the sponsorship of the Army Office of Ordnance Re-
search, Contract No. DA-30-069-ORD-1257, RAD Project No.
TB2-0001 (1089), Research in the field of Probability,
Statistics, and Numerical Analysis (Monte Carlo Method).
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The result of this varying dependence on the dimension-
ality of the problem is that the Monte Carlo method is

theoretically more efficient than the other two methods for

sufficiently large values of n. The value of n at which
one method becomes more efficient than the other depends on
the accuracy with which the solution is to be computed.

Upper bounds, which are actually attained in special
cases, are derived in this paper for the amount of work re-
quired by the iterative and the stochastic methods. From
these, break-even points on the range of the dimensionality
n are calculated which serve at least as indications of the
intervals of values of n which are favorable for each of
the three methods. A table in Section 5 gives the favorable
numerical intervals of n for various typical specifications
of the problem.

A feature of the presentation is the development of a
new minimum-variance arrangement of the Monte Carlo method
for solving linear equations, which exploits in a simple way
an initial estimate of the solution to reduce variance. The
construction of the Monte Carlo method will be found in Sec-~
tion 3. 1In section 6, this Monte Carlo arrangement is
adapted to the problem of inverting a matrix. Section 6
also contains derivations and comparisons of certain general
linear and polynomial iterative methods for matrix inversion.

I. INTRODUCTION

Many of the problems of numerical analysis to which
Monte Carlo methods have been applied belong to the follow-
ing general type: A rule is given whereby each one of a set
of real or complex numbers a;, a5, ... can be computed. It

is required to compute the sum of the series aj; + a, +
(The series may be finite or infinite.)

The standard method of stochastic estimation (''Monte
Carlo" method) for this type of problem consists in selecting
numbers z, and p,, k = 1,2,..., such that z;p_ = a,, p, 2 0,

z Py = 1. Then a random variable J is set up with the proba-

k
bility distribution given by Pr(J = k) = Py s k =1,2,...
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The random variable zj will obviously have a theoretical
mean value equal to the sum of the series a; + as + ...

The statistic

_— Iy Jo Y
v Vv
where Jl’ J2, ... are independent replicas of J, furnishes

an estimator of the mean value of =zjy (that is, of the solu-

tion of the problem) which has various well-known optimum
statistical properties.

It is hard for some classically trained numerical
analysts to see how Monte Carlo methods can ever be advan-
tageous in such a problem. A somewhat over-simplified
version of their reasoning might go as follows. Let s be

S
chosen so that Zak gives a satisfactory approximation to
‘ 1
the sum of the series. (If the series is finite, let s be

the number of terms.) Since each observed value of zJ
conditionally estimates just one of the numbers ay s there

will have to be at least as many terms in the summation

for Zq as in Zak. Indeed, because of statistical fluctu-
1 .

ations it will probably be necessary to make very many

more observations on zj than there are terms in the finite

S —
approximation %ak, and even then, ZV will probably not be
s
as good as Zak. This means that the count of additions
1

alone will be very much greater for the stochastic approx-
imation than for the straightforward method of solution;

and then too, there is the trouble of setting up the zk‘s

and pk's in advance, and of determining stochastically,

over and over again, the value of J to use in the obser-
vations.
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The case against this argument can very conveniently
be stated in terms of a specific problem which is funda-
mental to this paper. It is the problem of calculating

the i-th component of the vector KN+19, where K denotes
the 2n x 2n matrix [kij] and O is the 2n-dimensional vec-

tor (t;,...,t, ). The i-th element of kKN+lg, which we
write as [KN+19],, is the sum of (2n)N*l terms of the type
i

k,. k. ce. k.o t. . The stochastic estimation [3]+
ii iid ii i
1 12 N N+1 N+1
is accomplished by selecting numbers zij and pi,, i,j =
J
1,...,2n, such that Zijpij - kij’ with pij - 0, ;pij = ]
for all i, Then a family of random variables Jo,ﬂ s d

-tc,J

2}
N+l is set up in such a way that it represents a Mar-
kov process (or '"random walk'") with states (resting places)
designated by 1,2,...,2n and with stationary transition
probabilities. The specification of the joint probability
distribution is accomplished by assigning an arbitrary
distribution to Jo (but with Pr(Jo-i) % 0), and thereafter

using the equations** Pr(Jk+1-j|Jk-i) ol JPY i,j=1,...,
2n., Finally, a random variable
Z t

= 7 z .e e
.o J J
JoJl JN+1 o1l J1J2 JNJN+1 JN+1

is set up. It is now easily seen from the definition of
mean value in probability theory, that+++ E(Z|JO=i) -

KN+19]i. We use (Zy+...+4Z))/V as the estimator of

*+*The square brackets refer to the references at the
end of the paper.

**By Pr(z|b) we mean the conditional probability of
the event a, given that the event b has occurred.

+++By E(x|a), we mean the mean value of the conditional
distribution of the random variable X, given that the
event a has occurred,.
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KN+19]1, where Z

tions of Z.

1,...,Z\) denote V independent determina-

The various possible values of k.li ki i ...k.1 ki t,
: 1 12 N N+1 N+l
correspond to the values of a, in the previous more general

formulation. Let us think of these possible values as re-=
numbered in a linear and serial order, using a single index

k. There will be s = (2n) such numbers. (They may not

be all distinct.) Then the (2n) correspondingly renum-

bered products p: . e Ps s play the role of p Po,-.,P
ii, iving 1, P2 »Pg

in the previous formulation, and the various possible values

of the vector random variable J = (Jg,Jdy,.-.,Jy41) correspond

to the values of J in the previous formulation.

It now begins to be evident that our formulation of the
general summation problem at the beginning of the section
was deceptively over-simplified. 1In a multi-dimensional
summation problem, the following two factors may come into
play on the side of a Monte Carlo method of solution:

(a) If the calculation of each ay is a complicated

one, it may be possible to arrange things so that the cal-
culation of each observation on zy is very much simpler

than the calculation of the corresponding term ag. This

will in particular be the case if the calculation of each
a, involves the formation of a continued product, because

then part of the work of calculating the product can be
sidestepped in the stochastic process by using the multi-
plicative law of probabilities.

(b) Some of the numbers ak in the finite approxima-

tion to Za, may be very unimportant and need not be

k
represented in the statistical estimator at all. The
stochastic estimation process, if properly set up, will
automatically take care of this by wmaking the appearance
of the representative of a non-essential term a very rare
event.

We add here, more or less as an aside, the remark that
when the calculation of each particular zJ is much simpler
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j» then the problem of the

accumulation of round-off errors may not be nearly as
serious for the stochastic method as it is in the direct
computation.

than that of the corresponding a

All of these factors favoring the Monte Carlo method

are present in the case of the problem KN"‘lQ]i and in the
related problem of solving systems of linear algebraic
equations. The factor (a) is usually particularly in
evidence in numerical problems of stochastic origin, and
indeed it is in such problems that the Monte Carlo method
has had its chief successes. Matrix problems can always
be thrown into a form in which they are numerically equi-
valent to problems with a stochastic pedigree. We shall
exploit that fact in the present paper to obtain a favor-
able environment for the comparisons to be made.

But we cannot conclude this introduction without
making a remark which is on the negative side as far as
Monte Carlo methods are concerned. It certainly would
seem that whenever Monte Carlo methods appear to advan-
tage in summation problems, factor (b) above must be
playing an important role, because otherwise the criti-
cisms regarding the necessary number of addition operations
required for any reasonable degree of accuracy in the Monte
Carlo approach would be valid. But if that is so, why can-
not a deterministic method be devised which will ignore the
unimportant terms and be even more efficient? The author
suspects that what we now need is a more highly developed
deterministic theory of quadrature and of linear computa-
tion in many dimensions. When this becomes available, the
Monte Carlo method may, at least for matrix problems, lose
the very modest advantages which will be claimed for it in
this paper.

ITI. THE NUMERICAL PROBLEM AND ITS
NON-STOCHASTIC SOLUTION

Throughout the paper we shall continue to denote
matrices by capital letters, and their elements by the cor-
responding lower case letters; thus, for example, H = [hij]'

We represent vectors by lower case Greek letters and their
components by the corresponding Roman letters; thus for




A

example, S = (xl,xg,...,xn). We shall also find it con-

venient occasionally to designate the elements of a matrix
by double subscripts affixed to the symbol for the matrix

41 -
(thus, H, , or [(1-H) Hg]ij). Furthermore we shall fre-

quently designate the components of a vector by a similar
subscript notation (thus § = (5]1, 3:12,..., S]n). All
vectors will be real and n-dimensional and all matrices
will have only real elements.

By || B || we shall mean max Z{h__|, and by || § ||, we

i 3

jl- Tt is obvious that ||HE IS ||H] |5
and that ||A+B|| £ || A|l + ||B||- It is well-known' that

shall mean max | x

1aB)| S ||a]| ||B]|; therefore, by induction ||EN| < [ | .

The numerical problem with which we shall be mainly
concerned is that of solving the linear system

(2.1) AT = ¥,

for § , where A is a given non-singular n x n matrix and
is a given vector. We assume that this system has been
thrown into the form

(2.2) 5 =HE + v,
where H = [hij] is an n x n matrix with the property that

(2.3) |H || = max =|h, | < 1
i o§ 313

+
See for example Courant and Hilbert [1]; p. 16,
footnote.
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It is beyond the scope of this paper to give an
extended discussion of the methods of passing from (2.1)
to (2.2), but a few general remarks on the subject are
in order at this point. In the first place, it is always
theoretically possible to transform the problem repre-
sented by (2.1) in this manner. Indeed, let H be any
matrix whatsoever with the property (2.3). (For instance,
let H = dI, where I is the unit matrix and d is a scalar
lying between 0 and 1.) It is known that if H satisfies
(2.3),then I-H cannot be singulart. Let M be defined by
the equation I - MA = H. This says that M = (I-H)A-1l.
Therefore M cannot be singular. The system

§ = HE + My = (I-MA)Y + M,
is just the same as the system

MAR = M,

and since M is non-singular, this system is precisely
equivalent (2.1).

But in practice it is not feasible to set up an arbi-
trary H satisfying (2.3), and then to detefmine M as above.

The reason is thai the formula M = (I-H)A™ gresu poses
a knowledge of A-l, and in the presence of this the origi-

nal problem becomes trivial. Thus it is natural to think of
M as being chosen first, the choice being made in such a
way that I - MA = H has suitable properties. There are a
number of different procedures in the literature of linear
computation for arriving at an appropriate choice of M.
For example, if A has dominant diagonal--that is, if

n
> =
as the inverse of the principal diagonal matrix whose
principal diagonal 1s that of A. This will obviously in-
sure that || H|| < 17

|a 1aij|, i=1,...,n,~~then M can be chosen

*0. Taussky-Todd, [9].

**Further discussion will be found in any good treatise
on numerical analysis which deals with iterative methods of
solving linear equations. See for example Householder [T7]
and Milne [8]. See Forsythe [6] for further references.
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There are numerous non-stochastic methods of solving
(2.1)*. We shall here restrict our considerations mainly
to a class of methods known as linear iterative processes,
An effective Monte Carlo method for the problem (2.1) can
be based on this type of process, as we presently shall

see,
The general stationary linear iterative process for

solving (2.1) is arrived at by throwing (2.1) into an equi-

valent form which has the appearance of (2.2), but with H

restricted only by the requirement that its eigenvalues
all lie in the unit circle. An initial estimate § o of the

solution is made, and successive approximations §-, 52,
..., are then defined by

(2.4) SN+1 -HSN + Y, N=20,1,2,... .

If §m denotes the solution of the equations {(2.2), then

clearly, since §_ = HE  + Y s

(2.5) €@ - SN =H(E gx - §yo1)
"HQ(g(D -‘EN—I )

'HN(ga) - §50)

Thus the condition for convergence for any starting vector
¥, is that lim HN = 0. The well-known necessary and

Na®
sufficient condition [7] for lim HN = 0 is that all the
N>

eigenvalues of H should lie in the unit circle, which
explains the requirement on H imposed earlier in this

paragraph.

But in the present discussion, we go one step beyond
this requirement and insist that || H|| < 1. Since

| B¥|| < || 5 ||Y, this condition will certainly insure that

HN_)O.

*See previous footnote for references.
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For purposes of error analysis” it is advantageous

now to introduce the residual vectors

(2.6) Py =Y - (-DF .,

“HE  +Y -5y~ 5y - 85y N=0,1,2,...

The vectoré (DN are of course always computable at any stage

in the iterative solution. If § N-—a-ga) - (I—Hf'le, then

obviously PDI—?()' The converse is also true, because

1 - ~ e p
(1-1y Py = ga) - BN' Thus P, oF ||PNH, are logical

measures of the error in the N-th approximation to the solu-
tion. It is to be noted from (2.4) and (2.6) that

(2.7) PN“SN+1*SN-(HSN+\/)-(HSN_1+Y)

=H(E - 5y 1) =Hpy,
N
= ... = H f’o .
From (2.6) and (2.7) it follows that the successive

approximations § |\ generated by (2.4) can theoretically
also be generated in the following manner: Select g, as

before and compute ?<o from the definition of residual

vector, P, = Y - (I—H)g(). Then conduct the iterations
by means of the pair of formulas

(2.8) gN+1=§N4gN, N=20,1,... |,

(2.9) Cys1 =HP y » N=0,1,... .

We note that by back substitution, we find that

+By error in this paper, we shall mean truncation error
or statistical error or both at once. There will be no study
of round-off error, nor of the effect of miscellaneous arith-
metical mistakes,
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(2.10) 5N+1-Eo+po+(’1+ -~'+?N‘5o+’(I+H+
N
+ H )P()

In actual practice, the customary running check on
the accuracy of the solution consists in computing IIPNH

from time to time to see how small it is. The iterations
are stopped when ||@y | reaches a predetermined order of
smallness. If (2.4) were used for the iterations, the com-
putation of QN would be done by using the formula PN -

EN+1 - EN' If (2.8) and (2.9) were to be used, it would

be advisable to compute test values of ||Py|| from the defin-
ition of PN (that is, from the formula Py = - (I-B) E ),

rather than to accept the values of ”QN‘I given by (2.9).
We shall come back to this point in a moment.

An a prijiori truncation error analysis, made with the
purpose of estimating the number of iterations which will be
required to achieve a given accuracy, can be conducted either
in terms of Py or in terms of the error vector %4, - Ey.

If the size of ||py || is to be the criterion, then we use
(2.7) to obtain the very simple estimate

(2.11) ey NS HEINIpg Il -

But if the deviation of E N from E(D seems to be a more ap-

propriate or convenient measure Yf the truncation error,
then we use the fact that (I-H)~ P Ew- %o - Substi-

tuting this into (2.5), we find that

(2.12) € - Ey-HU-mp .

Since (I-H)"! = I + H + H° + ..., it follows that

b a=m2 & Nl o+ fE) o« IEIZ + = = )DL
Therefore
(2.13) lEg - Exl & LB oy

]
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1t is perhaps worthwhile to point out here, by way of
an aside, that the inequalities (2.11) and (2.13) hold for
any one of the various matrix and vector norms in common
use* , and not just for the norm [[H|| = max Z|hij|. We are

i)

using this particular norm here because of a special appli-
cation it has to the Monte Carlo method, which will be
brought out in the next section.

The iterative formulas (2.8) and (2.9) are (so to
speak) homogeneous. and therefore look easier to use than
(2.4). But (2.8) and (2.9) have the great disadvantage of
being not self-correcting in case a mistake is made at one
stage, whereas (2.4) does have this property. Suppose for
example that for some N, QN+l is mistakenly computed as a

zero vector in using (2.9). Then since all subsequent vec-
tors P will equal zero, it is obvious from (2.10) that EN

will be irretrievably wrong. But if a mistake is made in
computing § .., by (2.4), the subsequent effect is like

starting over again with another E‘).

Therefore we are not proposing (2.8) and (2.9) as a
practical substitute for (2.4) for a non-stochastic numeri-
cal solution of the problem E = HE + . Our real purpose
in introducing the alternative iteration formulas was to
develop the representation of §,N given by formula (2.10).

This representation seems to be an advantageous one upon
which to construct a Monte Carlo solution, as we shall see
in the next section. :

It is not without interest, however, to point out that
if the amount of work involved in a computing job is measured
in any sensible way, it theoretically requires no more work
to use (2.8) and (2.9) up to a predetermined value of N than
to use (2.4). This assumes that check values of QN will not

have to be computed from the &finition of residual vector
from time to time in the use of (2.8) and (2.9). 1In this
paper, we shall measure amount of work by merely counting up
the number of multiplications required under the worst con-
ditions, assuming no zero or unit elements. Additions and
subtractions will be ignored. A division or reciprocation
will count as a single multiplication, To arrive at EN by

*See Householder (7], pp. 38-44.
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(2.4), starting with go’ requires n© multiplications per

iteration, or Nn? in all. To arrive at gN by (2.8) and

(2.9) without computing any intermediate or final check
values of PN takes n2 multiplications for Po’ and there-

after (N—l)n2 multiplications for each iterative deter-
mination of qu. So once again the count is NnZ<,

Actually, in later sections we are going to set up an
error analysis which implies that Po will always have to

be computed. The use of (2.4) will be tacitly assumed, so
n? extra multiplications will have to be added to the total
count.

I1I. STOCHASTIC SOLUTION OF THE PROBLEMS

It should be apparent from the foregoing section that
even if one restricts oneself to the class of stationary
linear iterative processes, there is literally an uncount-
ably infinite number of methods for solving the problem
A § =7, because of the different possible choices of H
or M. An even more disconcerting fact than this was impli-
cit in the discussion in the foregoing section. It can be
expressed in the form of a theorem: '"Given any one way of
solving A§ = , there is always a much better way." For
given any one H, a happier choice of H from the standpoint
of the error analyses given by (2.11) and (2.12) always
exists. \

Under such circumstances it is evident that some strict
ground rules are required if meaningful comparisons are to
be made between methods. This statement applies even to
comparisons within very special classes of classical methods,
and it is especially relevant when an utterly unorthodox
method such as the Monte Carlo Method is to be brought into
the picture.

We propose then to adhere to the following set of rules:

(1) 1t will be assumed that the problem is given in
the form & = HE +Y, with H|] <1.

(2) The primary comparison will be between a Monte
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Carlo Method for solving E = HE + E’ and a stationary
e

linear iterative method of the type scribed in the
preceding section. Both methods will be based on the par-
ticular H given in (1). The linear iterative method will
be defined by the recursion relations § y,; = HEy + Y’

N = 0,1,..., or alternatively, by the formula

(3.1) Ey™ o+ (I3 + ... + H D,

where E’o is the initial estimate and Po is the initial

residual vector (see equation 2.10). The Monte Carlo
Method will consist in effect of a statistical estimation of

(3.2) Em-§0+(I+H+H2+...)90,

using the same H, the same scﬂ and same Po aS in (3.1).

(3) No speculation will be permited as to the exist-
ence of a better H on which to base either the stochastic
or the non-stochastic method.

(4) The measure of approximation used in the case of
the iterative method will be ||¥ , - §x||. The measure of

approximation used in the stochastic method will be
| E cn]i - 'va, where Eoo]i denotes the i-th component of

the solution vector § o’ and EV is its statistical estima-

tor, based on a sample of size y .

(5) To furnish some contact with the large family of
alternative methods of solving € = HE + v, a simple
direct method of solution will be brought into the compar-
ison. For simplicity, it will be assumed that this direct
method gives the exact solution. Round-off error will be
ignored. The direct method which we select is the Gauss
Elimination Method, because for present purposes it seems
to be as good as any other and better than most.

(6) As previously stated in Section II, the amount of
work required for a computation will be measured only by the
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number of multiplications required in the worst cases,
counting a reciprocation or division as one multiplication,
In counting multiplications, the possibility of unit or
zero factors is not taken into account.

(7) It will be assumed that the problem is to find
only one component of the solution of ¥ = HE + vy .

It is recognized freely that the last restriction on
the comparison is a strange one, It is made because the
question of efficient Monte Carlo estimation of all com-
ponents of the solution simultaneously Has not yet been
adequately investigated. Of course, separate statistically
independent estimations can be made for each of the n com-
ponents of the solution. This would multiply the measure
of work which we shall derive for the Monte Carlo method™
by a factor of n. At the same time, for a given sample
size V , the probability that all estimations fall within
preassigned limits of error, will be smaller than it is for
the estimation of a single component++. Therefore {y should
be correspondingly increased. But it is almost surely inef-
ficient to use separate independent estimators for each
component of the solution., It seems intuitively clear that
data obtained in the course of estimating one component
should be used again for other componentst++,

With these preliminary comments out of the way, we pro-
ceed to set up the Monte Carlo estimation of £ aﬂjn

The standard method of estimating KN+1Q]1, where K =
[kij] is a given 2n x 2n matrix and @ = (ty,...,to;) is a

2n-dimensional vector, has already been described in Sec-
tion I. Here we recapitulate it briefly. Numbers 24 j

*That is, the measure of the work for the purely stochas-
tic part of the solution. This is represented by the third
quantity in the sum on the right side of (4.5), or of (4.6),
in Section IV, below.

*++The question involved here is that of the distribution
of the extreme absolute value of n normally distributed inde-
pendent random variables with zero means and differing vari-
ances,

+++The re-use of samples to estimate various components
simultaneously is discussed briefly in [4].
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and pij’ i, j=1,...,2n, are chosen such that z, .p =k

ijvij ij?
with p. . Z 0, 2 Pii = 1. A Markov process with states

J
1,2,...,2n, and with the matrix [pij] as its matrix of

transition probabilities is set up. Let Jos Jis ooes d
be a family of random variables which represent the pro-
cess, in the sense that Pr(J  =j|J =i) = Pijo 1,3 =1,

z e Z t
1 9190 InIN+1 Y

has the property that E(Z|J =i) = KN+19]i.

.,2n. The random variable Z = zZ5 3
(o) N+1

Consider now the 2n x 2n matrix

(3.3) K= | «ceeen

and the vector

(3.4) . 0 = {__9__] ,
Po

where H is the matrix of the equation E = HE, + V , I is
the n x n matrix and Po is the residual vector corres-

ponding to the initial estimate ©& , of the solution of
these equations. (That is, Po -Y - (I-H) %, ,.) Then it
is easily shown that

k]
[}
T S0 SRR oL
KN+l . ——
3
0 : I
Therefore
(I+H+...+HN)[JO
KNtlg o | el .
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Our Monte Carlo solution of the equations & = HE +Yy
consists of statistically estimating the i-th component of
this vector KNH'O, adding this statistical estimate to

€ ,]i, and with reference to (2.10) or (3.1), using this
sum to approximate thereby the i-th component of the solu-
tion vector ¥ o+ More specifically, we set up the numbers

and p;; for the special matrix K appearing in (3.3).

z
i3
For each sample random walk, represented by a determination
of the vector random variable J,, Jy, ..., Jy,], made with

Jo = i, we compute the statistic

.ZJ J

4+ 7 = - .. t
Eoli €.l 25 J,%3, 3, e

1 N+1

in which t / is the JN+1-th component of the vector @

IN+1
given by (3.4). The conditional mean value of this statis-

; N
tic, given that J = i, is § ], + (I+H+...+H )Po]i’ or

EN-&-I] i-

The statistical estimation of .%N+l is accomplished by

taking the average of ~ independent determinations of the
random variable ¥ ,]; + Z, which we denote by € ,]; + 23 ,
E’o]i + 2y vees E’o]i + Z, . This average takes the form

Zl+Z2+. . oZ \)

-% 1 ,
3 oli * 3

z

Of course, -Z-V directly estimates or approximates

€ y,1]; and not the solution component € oli- But we now

eliminate the truncation error completely from considera-
tion in the Monte Carlo solution by assuming that N, although
finite, is so large that ||§ _ - €y, |l is completely neg-
ligible. From (2.12) it is obvious that_this can always be
done. For all practical purposes then, Z will be an esti-

mator directly of v

6 oli - I1{_1';\11(1101(1‘79]i -g ], + (I+H+H2+...)Po]i.




This is the i-~th component of the vector which appears in
(3.2).

We shall now discuss the choice of the numbers z. . and

ij
pij with reference to the special matrix K now under con-

sideration. Obviously it is necessary to choose zij and

o that =z = h. . i,j=1,...,n, and z -
Py ® 13°4 3 ij> ted soceslls i,i+0f4,14n
1. Moreover, for i > n, zijpij = ] if i = j and otherwise
Zijpij = Q.

Within these limitations, there are of course an infin-
ite number of possible choices of the numbers zij and Py

ot

It seems likely from evidence of various types that an opti-
mum choice, or at least a near-optimum choice, in the present

instance consists in letting Py = lhijl, i,j = 1,...,n,

pij -0, i=1,...,n, J = n+4l, n+2, s n+i-1, n+i+l, ...,2n,
Pij = 0, 1 >mn, J# i and Py i4n = 1 —jglpij; i =1 _..,n,

p = 1, i > n. VWe must defer a complete discussion of this

ij
choice of the numbers Pi j to another paper which is now under
preparation.

n
It is to be noticed that 2 pijj & |[H| <1, i =1,...,n.
j=1

J-
With this choice of the numbers piJ it follows that zij -
+ i = - -
T1 i,] 1, ..., n, and Z;,i+n l/pi,i+n for i 1,...,n.

We henceforth shall usually drop the subscript on Po and
write P = (ry,...,T ).

Then
Z = z Z e 2 t
Iod1 "I3dp ININel  INel
(3.3) 0 , Jye1 = 1,2,...,n
= r
J
+ N+ -1 » Jge = 04l,...,2n
pJ y D+J
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where N is the "duration" of the random walk represented
by JO, Jl’ ... ; that is, N+ is the number of times a state

in the first n states is visited before any state in the
last n states is visited.t (The present set-up of the Mar-
kov process makes the last n states play the role of
absorbing states.)

It is to be noted at this point that

(3.4) 1z ¢ el - Il el
m;n pi,i+n 1 - max g Pi 3
i el 9
- _ el :
1 - | =]

This means that E(ZQIJ0 = i) exists and is uniformly

bounded for all values of N.

Let v denote the conditional variance of the random
variable Z, relative to the hypothesis that Hy = i. This

is a measure of dispersion of Z defined by v = E{[Z—E(Z)]?lJon} -
E(22|Jo-i) - (5;0]1)2. It is necessary for later develop-

ments to obtain an appraisal of v. The explicit formula for
v is known++, but in the present situation a rough method of
appraisal which bypasses the formula will give just as good
a bound for v as can be obtained from the explicit formula
for v.

*We shall here count in the first state--the state
from which the random walk ‘starts--in computing Nt. Thus
if 4 pnon-absorbing states are visited including the start-
ing point and then absorption takes place, then Nt = 4, and
J3 is the last one of the J's taking on one of the values

l, 2, ..., n, and J4 is equal to n + JB’ This convention

concerning Nt is adopted so as to conform with the defini-
tion given in Curtiss [3], and so as to simplify later
formulas slightly.

++see [3], p. 223.
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The rough method is this. Given any random variable
X distributed on the interval (-a,a), it obviously follows
from the mean-value definition that E(XZ) § E(a®) = a2 and
E[ X-E(X) ]23 a? - [BE(X)]2 . Thus the highest value that
the variance of such a random variable can have is a®.
But if the random variable has a uniform distribution on
" this interval, direct computation reveals that the variance

is only a2/3. 1If the distribution is somewhat bell-shaped,
the variance may be much less, with zero as the greatest

lower bound. Therefore, as a rough approximation, we shall
in the present instance take the variance to be not greater

than a2/2. That is, our appraisal of v will be

2
(3.5) v £ 1 el )
2a-mHe

where the right side is obtained by referring to (3.4)%.

Another appraisal which will be needed relates to the
mean value of the duration of N*. It is known**t that

n
E(NY|J =i) = 2 (I+P+P2+...+PN)iJ P
j=1
where P = [Ihijl]‘
Therefore,
s 2
E(N*|J =i) S max = (I+P+P%+... ). .,
° i =l o

S HTll+ e+ (IP)2 « ...

- 1
Rl

+If the reader prefers to work with a bound which is one
hundred per cent certain not to be exceeded, he will have to
comb through the remaining calculations in this paper and re-
place the factor 1/2 by unity wherever (3.5) is used. There
are enough safety factors in our estimates, insofar as avoid-
ing the favoring of the Monte Carlo method is concerned, so
that this ought to be unnecessary.

**see Curtiss [3], p. 226.
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This formula holds good for any Markov process with
absorbing states and with stationary transition probabil-
ities given by a matrix such as P. 1In the present case,
P = [Ihiji]’ so our upper bound for the mean deviation is

(3.6) E(NH|J, = 1) S -
1 - |||

It should be noted that (3.6) becomes an equality if
the sum of the elements of the i-th row of P = %[hij, is

constant for i = 1,...,n,

Incidentally, the reason for using the matrix norm
max Zlhijl instead of one of the other norms should now

i
be apparent. The natural appraisals for both v and the
mean duration seem to involve this particular norm.

The conditional variance of N*, given that J, = i,
has the following bound% in the case N = o0:

(3.7) Var(N*t|J =i) S —2 . {1+E(N"'|J-i) E(N+J_ =1i)
° 1- || »|| o™} g

2 . 2
—_— - E(N* - 1 .
i o)

In view of certain safety factors in this formula, we shall
accept the following simpler heuristic appraisal of the var-
iance, obtained by discarding the second term in the third
member of (3.7) and halving the first term:

(3.8) var(N*|g =1) S 1 .
1- || H||

*See Curtiss [3], p. 226.
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Thus our appraisal of the conditional variance of the
duration is identical with our appraisal of the conditional
mean value of the duration,

In concluding this section, we shall make two general
remarks about the Monte Carlo method for solving E = HE +Y
developed above.

In the first place, one of the desirable features of
any Monte Carlo solution is to achieve an arrangement where-
by the more that is known about the soluticn of the problem
in advance, the smaller the variance of the statistical
estimator is, with zero variance attained in the presence
of full knowledge of the solution. Such an arrangement has
been achieved in the present case. If the solution is
known in advance, then p, = P = 0, and consequently v = 0,

The inequality (3.5) gives a bound for v which depends on

the square of the norm of the zero-th residual vector, and
thus the better the initial estimate or guess is, the smaller
the variance is™.

In the second place, our Monte Carlo solution has an
automatic self-correction feature similar to that of the
iterative method based on (2.4). If an error is made in com-
puting the Z for any one sample walk, this erroneous Z
merely is incorporated into the average of a great many other
realizations of the same random variable, and its effect will
ordinarily be negligible.

IVv. THE A PRIORI ESTIMATION OF THE
REQUIRED AMOUNT OF WORK

In the fourth of the ground rules stated at the begin-
ning of Section III, we announced that the measure of
approximation to be used in the case of the iterative method
would be [lg =& ¢ ||, and in the case of the stochastic

method it would be lE’a)]i - Z,|. We shall now state more
explicitly just how we are going to use these measures of
approximation.

The general idea is that in each case, the computation
is to proceed until the approximate solution is suitably
close to the exact solution, and the definition of "suitably

+ Another minimum variance Monte Carlo solution of the
problem A% =¥V is presented in Curtiss [3], pp. 227-231.
The present arrangement seems to be simpler and somewhat
easier to use in practice.
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close" used in each case will be comparable. Specifically,
given a small number d > O, we propose that the iterations
in the non-stochastic method shall be carried on until
finally “%’a)"gN||< d, and we propose that the sampling

of the Markov process shall be continued until finally
6 oo ly = Zv | < d.
oo 'i

But the vector E7oo is unknown. We must therefore

translate our measures of error into terms of the data of
the problem and the initial estimate 250. To achieve a

theoretical rather than empirical comparison, we shall
restrict ourselves entirely to an a priori error analysis.

The error analysis and consequent appraisal of the
amount of work required to achieve a given accuracy, is
of necessity carried out very differently in the case of
the two methods. In the case of the non-stochastic method,
we base the analysis on the inequality (2.13)., With an
eye on this inequality, we seek the lowest value of N such
that

A

—— Pl < & .
1= |fu

Taking logarithms of both sides, we find that the required
value of N is ’

log
(4.1) Ny = 1 + e
log || H |

+ log (1 - ||H||

where the square bracket here means '"largest integer in."
(The logarithms can be taken to any convenient base, as
for example, 10.)

We must therefore carry out Ny iterations of the re-
cursion formula Gy, = Hby +y - As pointed out at the

end of Section 11, each iteration counts as n2 multiplica-
tions., However, since we have set ourselves the peculiar
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problem of finding only one component of the solution
vector, the last iteration (in which E’N is computed from
o
a ) can be abbreviated to just n multiplications. The
N -1
o
formula for No involves || P|| , and it seems reasonable to
suppose therefore that in using this error analysis in prac-
tice, P = Po would always be computed at the outset. This

would take n2 more multiplications. Thus the grand total
of the number of multiplications required a priori to achieve
the inequality ||6 o - Ex|l < d is

(4.2) m = (No—l)n2 +n + n°

lo d + log(l- fH | )
=02 4+ 0+ n? TP

log || H |

We now attack the analogous problem for the stochastic
method.

The statistical estimator Z, is given by the formula

1+22+ .o .+Z\)

B z
Z\) -E’O]i+ \‘) 3

where Zl’ Z2, ey ZQ are Y mutually independent determin-

ations of the random variable which appears in the right
member of (3.3). The mean value of Z, is E‘oo]i for all

practical purposes. It will not be possible to adjust N so
as to assure ourselves a priori, given any d > O however
small, that Z,) will deviate from its mean value by less
than d. We must therefore have recourse to the theory of
statistical estimation,

Probably the easiest way to approach the question is to de-
mand that a priori, the probability of a deviation of less
than d shall be at or above some predetermined rather high
level. Specifically, we choose a small number p, and re-
quire that W shall be taken as the lowest value for which,
a priori, the following inequality holds:
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pr(|E,m]i-’z’\)| <d)>1-2p .

Now i\) is a constant plus the average of V independent,

identically distributed random variables, each with a finite
variance v. It therefore follows from a well-known réiult
in probability theory called the Central Limit Theorem  that

(7‘3 - E(Z'\)))/vs/2 is approximately distributed according

to the normal Or Gaussian distribution, where v denotes
the conditional variance of Z\>, given that J0 = i, The

approximation is ordinarily very good for V > 100, and in
all of our subsequent applications of this theorem we shall
be dealing with values of ¥ much greater than this. At
worst, the effect of a poor approximation would be merely
to deceive us by a few one hundredths as to the value of
the probability level p which is really in effect.

The variance of a constant plus a random variable is
the same as the variance of the random variable alone.
Therefore the variance v, of Z, is equal to that of the

average of \V independent determinations of the random var-
iable Z. A familiar formula of statistical theory*' then
states that v = v/VJ , where as in Section III, v is the
conditional variance of Z, given that J, = i.

Putting the above facts fogether, we have:

pr(l§ 14 --Z.\)l < d)

= Pr
1/2 1/2
Vv vy
EZy) -Z,]| av’?
= Pr <
v1/2 vl/2

¥y
d\)l/2 / y1/2

=
491/2/ L1172 Vor

a

- 2
- L 1 -t?/2

Vorn

+see e.g. [2], Chap. 17. “**see e.g. [2] p. 345.
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At this point we shall make an arbitrary decision
about the level of certainty 1 - 2p which is to be de-
manded. If x = 2, then

o 2
1 o-t/2 g¢ = 0455

X Vor

A level of certainty equal to 1 - 0.0455 = ,9545 seems
more than adequate for present purposes, in view of vari-
ous other safety factors which are embodied in our
appraisals,

Thus we are seeking the smallest value of VvV such

that
v
This value of VvV is
4v
(4.3) Qo - i;; + 1 |,

where again [ ] means "largest integer in."

This is the number of independént sample realizations
of the Markov process needed to achieve the demanded order
of accuracy with a probability of at least 95.45%.

To estimate the amount of work required to attain this
level of accuracy, we must make some further assumptions as
to how the Monte Carlo computations will be carried out.
From (3.3), we see that each sample will (almost surely)
involve computing some one of the numbers r, /p i =

i,i+n’
l1,...,n. It seems logical therefore to assume that these
guantities will all be calculated in advance. It will

require n° multiplications to compute Po» glven %o, and

thereafter it will require n multiplications to get the
quotients ri/p

i,i4n”




We must now come to an agreement as to how much work
is involved in following each random walk JO,Jl,... to

absorption. It seems to be not unreasonable to assume
that each step before absorption, and the step in which
absorption takes place, always requires the equivalent of
one multiplication. ©Of course, after absorpticen takes
place in one of the states numbered n+l, n+2, ..., 2n, no
more computations are required for the particular realiza-
tion of the Markov process at hand, and a new independent
sample is started. In other words, each complete random
walk, represented by J0 —-> Ji-é %2-9 cee > JN+_1~> %ﬁ. =

JN+~1 4+ n, will require N* multiplications.

In ascribing to each step the equivalent of one multii-
plication, we have in mind the fact that to select the
value of Jk+l’ given Jk’ a pseudo-random number will pre-

sumably be generated and certain comparison operations will
have to be performed.

Putting these assumptions together, we find that the
total amount of work required, measured in multiplications,
is

2 + + +
(4.4) nc + n + N1 + N2 + .. + N’v ,

o

where NI, ey Nt are \)o independent determinations of

%

o
the random variable Nt introduced in Section I11. This is

a random variable whose (conditional) mean value is n2

n + \)OE(N+|JO-i) and whose (conditional) variance is

Vo Var(NF|J =i).

+

In Section III (e.g. 3.7) we arrived at an appraisal
of the magnitude of Var(N+|Jo-i) which was just the same

as our appraisal of the magnitude of E(N*]Jo-i). Inter-
preted very broadly, and giving our appraisals more credit

for sharpness than they probably deserve, this means that
if the same problem £ = HE + Y » Were solved over and
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over by the Monte Carlo method, the amount of work could be
expected to exhibit statistical fluctuations around its
mean, of a magnitude as great as something like 2 or 3 times
the square root of \JOE(N+|JO-1). Qualitatively speaking,

we can state with some assurance that the amount of work
required to achieve a given accuracy would vary greatly from
trial to trial if the solution by Monte Carlo methods were
to be carried out over and over. Due to the effect of the
Central Limit Theorem as applied to (4.4) if the Monte Carlo
solution were to bhe carried out over and over again, about
half of the time the total amount of work (excluding prelim-
inary preparations) would be less than \)oE(N*]Jowi), and

about half the time it would be more than tkis quantity. It
would practically never be more than ¥V JE(N" |J,=1) +

B{QOE(N+|J;-1)} /e, |

These statistical fluctuations of the amount of work
constitute just one more obstacle to a comparison between
stochastic and non-stochastic methods of solution of linear
equations. It seems logical, however, to settle on the mean
value of the random variable in (4.4) as the most suitable
representative of the amount of work in the stochastic
method to use for comparison purposes, and this we shall do.

Our formula for the mean number of multiplications
required a priori to assure that ‘aoo i~ ZV | < 4 is thus

=

\
(4.5) n? + n + [4" } + IJL E(Nt{Jo=1) .

Into this, we substitute the bounds given by (3.5) and
(3.6), which are in terms of the data of the problem. We
finally arrived at the formula

2(le|I®
a2(1- || B |2

(4.6) T=n+n + -—JL———- 1+ [
1~ ml

which is our basic estimate of the (mean) amount of work
required in the Monte Carlo method.
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V. NUMERICAL COMPARISONS

It will now be convenient to express the number d

" (which measures the desired closeness of approximation) as

a percentage or fraction of the norm of the initial residu-
al vector p = P,. That is because l|p || and d appear in
our formulas for amount of work only in a ratio. Thus we
let

a=-rllell, r>o0.

The goal of the non-stochastic iterative method can now be
phrased as being to reduce [[§ , - & | until it becomes

less than some suitably small nultiple r of the largest
element (in absolute value) of the initial residual vector.
The goal of the stochastic method will be toc reduce

I%;oo]i - 7\)| by repeated sampling until it too becomes
less than the same small multiple r of the largest element

of P = Po'

With this agreement, we recapitulate our basic formulas
for measuring the amount of work. The upper bound for the
amount of work required in the non-stochastic iterative
method is

(5.1) m=n° +n + n° [log r + log(l-h) ]
log h

where h = || H || .

The upper bound for the mean amount of work required in the
stochastic method is

(5.2) Ben®4n+ — J14 |2 ,
1-h re(1l-h)2
In each formula, the square brackets mean "largest integer in."

The quantity in braces in (5.2) represents V o» the

total number of times the Markov process must be sampled.
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Perhaps a more natural formulation of the goals of the
iterative method and the Monte Carlo method from the purely
theoretical point of view would be obtained if instead of
requiring that the inequalities [[&_ - & || < r||p || and

1S ool -2y < r|| e, Il shall hold (the latter with

high probability), we required that the inequalities
e, - Byl <ty - Bll and |5 1, - Zy | <
r'|l& , - & |l shall hold for some specified r' > O.

These modified requirements lead to simpler estimates for
the total amount of work. Proceeding in the spirit of our
previous analysis, we use the relation

1o - Eoll = Na-m ey & 1€l
1 -nh

and rephrase the new requirements as follows:

Heoll

- & < r!
oo = Byl < v Ll

leoll
1 - &

.

l%Dcn]i —'20'] <r’

Substituting the right-hand members of these inequalities
for d in (4.2) and (4.6) respectively, we get

m' = n2 4+ n 4+ n° log r' s
log h

and

=5

= n° + n + ]
1-h r'e




0f course in practice, ||§ - an|| is itself not

computable before the solution is known, so the new
requirements will always have to be translated into terms
of ||Po|| and h, just as they were in the above theoreti-
cal error analysis. This essentially reduces the new set
of requirements to the old ones, with an intermediate
appraisal thrown into the picture. Therefore at the ex-
pense of a slight complication in our formulas, we choose
to assume that the required degree of approximation is
expressed in terms of a multiple of the computable quan-
tity ||®,]|| rather than in terms of a multiple of the

non-computable quantity ||€& ., - &4l .

In addition to the iterative and Monte Carlo methods
of solving % = H% 4y, we promised in the ground rules
in Section III that a non-iterative direct method will be
brought into the comparison as a sort of standard of ref-
erence. The method we propose to consider is the Gauss
Elimination Methodt. It seems to be the particular direct
method best adapted to the peculiar problem to which we
have addressed ourselves; namely, that of computing just
one component of the solution vector.

To apply it, we might proceed as follows: We are
seeking € ],, for some fixed i = i . Permute the columns

of I-H and the, components of {; so that the i,-th column of
I-H becomes the n-th one and the io—th component of £, be-

comes the n~th one. Triangularize the (new) matrix I-H as
in the first part of the Gauss elimination method, always
using leading row elements as pivots. At the end of the

triangularization procedure, which requires approximately

n3/3 + n? multiplications**, the coefficient of the desired
component is sitting out in the open, so to speak, at a
vertex of a triangular array, with nothing but zeros for
the other terms in its row. Of course at the same time Y
must be suitably transformed.

It would require only about (1/2)n2 more multiplica-
tions now to get the rest of the components of the solution,
but for present purposes we ignore the fact that a complete
solution would lie so near at hand at this point.

*See for example Dwyer [5], Section 6.4.

++The exact count depends on the order in which the
arithmetic operations are carried out.
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The elimination solution, as we said in Section 3, is
assumed to be exact. No questions of approximation (which
for large matrices in practice will indeed arise because of
round-off error) will be considered here.

As indicated above, our formula for the amount of work
in the direct solution is, then

(5.3) m =2 4 p° .

It follows from formulas (5.1), (5.2), and (5.3) that
with reasonable values of h and r, the direct method will be
more economical for small values of n, the non-stochastic
iterative method for intermediate values of n, and the Monte
Carlo method for large values of n. The formulas for the
break-even points, obtained by equating our estimates for the
amount of work, are as follows:

The amount of work for the Gauss elimination method, as
estimated by (5.3), is less than that for the stationary
linear iterative method, as estimated by (5.1), for values of
n in the interval

2 1/2
1 ﬁ n < 3a + (9a° + 12) ,
2
where
a - log r + log (1-h)

log h

It is greater than that for either the linear iterative
method or the Monte Carlo method for values of n exceeding
the right member of (5.4).

The amount of work, as estimated by (5.1), for the sta-
tionary linear iterative method is less than the mean amount
of work for the Monte Carlo method, as estimated by (5.2),
for values of n in the interval

(5.5) 1$n < L2

a ’

222




where

1 2
r2(1-h)2

It is greater than the mean amount of work for the Monte
Carlo method for values of n exceeding the right menber of
(5.5).

In the accompanying table, we list numerical values of
these limits, together with some related quantities, for
various typical values of r and h. In one case--that in
which h = 9/10, r = 1/10--the linear iterative method always
requires (by our a priori estimates) more multiplications
than some one or hoth of the other two methods. (We are
referring to the mean amount as usual in the case of the
Monte Carlo method). The break-even dimensionality for the
Monte Carlo method was computed in this case by equating
(5.1) and (5.3).

It is important to notice that the measure of work for
the Monte Carlo method will increase only as n2, and not as

an2, a>1l. The term n in (5.2) represents the work required
to prepare the vector Po before the stochastic estimation

procedure 1s begun. If one is willing to content oneselfwith
€£o = 0 as_the initial estimate, then no multiplications

whatever are needed to find p = p,, and the term n<c in (5,2)
drops out. Under the circumstances, the total mean amount of
work required by the Monte Carlo method increases only as the
first power of n. If we also decide not to calculate the num-
bers ri/pi,i+n in advance, but only as needed in the sampling,

then all direct formal dependence of the mean amount of work
in the Monte Carlo method on n disappears.

The reader should be warned not to try to check the table
for consistency by assuming that two stages of a reduction in

the magnitude of |[€, - Ex|| by an amount r||p,|l, using the

approximate solution of & = HY + y obtained in the first
stage as the E;o for the second stage, should theoretically

require just the same amount of work as a one~stage reduction
in ||§ o, - Exll by an amount of r2]|P0“, let N, be the num-

ber of iterations required by the first stage. The methods
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used to compute the table would place N, at the smallest

value compatible with

N
o}
(5'6) E—— <r
1-h
If N! is the number of iterations required to effect a one-

o A
stage reduction in ||, - &£yl by an amount r“\polly the

methods used to compute the table would place N, at the
smallest value compatible with

N°®
(o]

2

< r2 .

pond
=3

This inequality is the same as the following one:

N'/2
h ° < r
1-h (1—h)1/2
Since (1—h)1/2 <1, it follows by comparison with (5.6) that

N&/2 < Ng.

It should also be pointed out that to perform a Monte
Carlo approximation in two stages would require that all com-
ponents of the solution vector must be estimated in the first
stage, and not just one component. The reason is that to set
up the random variable Z (see (3.3)) for the second stage of
estimation, all the components of the initial residual vector
for this stage must be available.

VI. AN ANALOGOUS COMPARISON
FOR MATRIX INVERSION

If the problem is to solve AX = I, where A is a given

n x n matrix, a suitable modification of (3.2) on which to
construct a Monte Carlo solution is as follows:
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(6.1) X A xo + (I+HO+HO+...)H X

o0 oo ?

where X  is an initial estimate of A-l an Hy = 1 = XpA.
1f X, is a reasonably good estimate of A =, then |[Hy | < 1,
and the infinite series in (6.1) converges. We assume that

|| H,ll < 1 throughout the remainder of this section.

We set up the numbers zij
ments of Hy exactly as in Section III. Assuming that we
are trying to approximate the (i,k)-th element of X, , we
take as the p of formula (3.3), the k-th column of H X, -

The statistical estimator will now be

and pij in terms of the ele-

AR /AP SR YA
— l 2 L » u
Z\) = %70] i + N 4

where f’o is the k-th column of Xo‘

The stationary linear iterative process which corres-
ponds to (6.1) is given by the recursion formula

(6.2) X - HX; + X, N=0,1,...,

N+1 N

where X, 1s the N-th approximation to A~ Obviously A"l -

-1 N
HOA + Xo, SO

-1 - -1 _ - = uNea-1

This is the analogue of (2.5). Since A=} - Xo = (I—H)'lﬂxo,
we find that

(6.3) A"l - Xy = HY(1-H,)"lH X,

This equation is the analogue of (2.12).
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If we let EN denote the k-~th column of x> N=O,1,...,

then the iterations defined by (6.2) give the following
sequence of approximations to & _ , the k-th column of A=l

(6.4) - HOEN +E,, N=0,1,...

Also, from (6.3),

£ _ g

N ~1
@ N Ho(I"H ) ? ’

where f is the k-th column of HOXO. This equation is for-
mally identical with (2.12). Moreover, from it we find that

N
(6.5) e, - &xll € —2lipll

which is the same as (2.13).

If we now define our problem as that of insuring that
€& - Byl < d in the non-stochastic method, and
| & a)]i -Z, | < d in the stochastic method, where d > 0 is
preassigned, then the a priori error analyses become pre-
cisely the same as those given in Section IV. It requires
n3 multiplications to set up H,, given X,, and then n? more
to find p = HE,O. ~ However, HE,O will be used again in the

non-stochastic method to pass from %50 to Eél. The resulting

formula for the total amount of work, including the prepara-
tory work becomes in the non-stochastic case,

(6.6) mo=103 40 40l [1og r + log (l—h)] ,

log b

where h = ||ﬁoH and r = d/]|F||. In the stochastic case it

becomes
2
(6.7) & = nd + n° + n + 21 + 1 o 2
- r“(1-h)
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The break-even point for the two methods is given by the

formula gb/(a—lj} 1/2, where a and b have the same meaning
as in Section V. For values of n less than this quantity,
the non-stochastic method requires less work than the
stochastic method, and for values of n greater than this
quantity, the stochastic method requires less work than the
non~-stochastic method.

In comparing these formulas with (5.1), (5.2) and (5.5)
it should be remembered that in arriving at the earlier
work-estimates (5.1) and (5.2) for the problem AE =7 , we
assumed that the H and the 'y in the equivalent form % =
HE + Y were given, and so we did not count in work re-
guired to find them. Here we did count in the work required
to find our H (denoted here by HO). (The vector Y 1is here

to’ and it comes free, so to speak.) The methods have

therefore become nominally unfavorable as compared tc the
Gauss elimination method, which for the present problem
(finding one component of the solution of A% = £ where &

is the k-th column of I) would require rather less than
n3/3 + n? multiplications.

¥We can sidestep the n3 multiplications required to get
H,, by taking X  as a very simple matrix (maybe even Xo = 1

if || 1-A|] < 1). But we should state here that the real
motivation for using a linear iterative method, or one of
the many orthogonalization and gradient methods, for the
problem A%, =¥ , or the problem AX = I, in place of a
straightforward elimination method, usually does not lie in
a theoretical count of the number of operations required in
the worst cases. It lies in the fact that A may have spec-
ial properties (e.g., symmetry, or many zeros) which are not
suitably exploited by the elimination methods. We are com-
pletely ignoring such considerations throughout this study.
Another motivation sometimes is presented by the necessity
of controlling round-off error. (The Monte Carlo method
looks very good from this standpoint.)

It would also be possible to construct a Monte Carlo
solution on the following rearrangement of (6.1):

S |
o =A== (I+H0+H§+...)Xo

The vector form of this equation is
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%700 -(I+H0+H§+ g

0,

where E’oo and E’o have the same meaning as before. This

procedure would avoid the necessity of calculating Hf@o

in advance, and so the n? term would drop out of (6.7).
The numbers =z, . and pij’ and the random variables JO,JI,...

1]
would be set up as in Section III, but in the random vari-
able Z, the components of . would be replaced by those of

o» and the estimator Z\), 270]1 would be replaced by zero.

With these changes, the estimate (3.5) of the variance of 2
becomes

Jc1 Mgl
n"é' ¥

(1 - |18 D

and formula (4.6) for the mean amount of work (now augmented
by the calculation of Hp but decreased by the amount of work
previously necessary to calculate P ) becomes

) .
m =13 +n + o 1 4 [ 2l QOH ‘ ] .
TR 92 (-1 |2

The disadvantage of this arrangement is that it does
not exploit the fact that v varies with the square of the
norm of whatever vector is playing the role of the vector ©
of Section III. Therefore the goodness of the initial esti-
mate is here made use of to reduce the statistical fluctua-
tions and consequent mean amount of work only through the
effect it has on the value of 1/(1-||Hgl| ).

These remarks suggest a more general comment which is
perhaps the key to all the developments in this paper. The
statistical part of the amount of work required by the Monte
Carlo method to achieve a given accuracy in computing one
element of a solution, is independent of the dimensionality
of the problem. Other known methods vary as the square and
cube of the dimensionality, and those which vary as the
square do so with a proportionality comnstant much larger
than unity. Therefore if one uses the Monte Carlo method,

229



one can afford to make substantial preliminary preparations,
involving an amount of work which varies even with the
square of the dimensionality, if these preparations will
substantially cut down the error in the subsequent statis-
tical estimation procedure.

For the sake of completeness, we shall bring into the
comparison a certain class of non-linear iterative processes

for computing A_1 which theoretically converge much faster
than the linear iterative process (6.2) for a given initial
estimate Xo‘ A typical member of the class is defined by

the recursion formula’

(6.8) X = (T+H S+, . +ES~ )X N =0,1,2,...,

N+1 N N N*?

where Ho = I-X, A, and s is some integer not less tham 2. If

s = 2, the formula becomes S ; = (21~XNA)XN, which is men-

tioned in most textbooks on numerical analysis as an analogue
of the Newton-Raphson method for finding the roots of non-
linear single equations in scalars*t,

The clue to an a priori error analysis for (6.8) lies
in observing that

2 s
Hy = 1 - XA = T - (I+H, +HE (+...+Hg )Xy 1A
S
= 1 - (I+Hy q+...4Hg 1) (I-Hy ;)
- HS
HN—l

*our presentation of these polynomial iteration pro-
cedures will be slightly different from that usually encoun-
tered in the literature, so as to line them up with (6.1)

and (6.2). The usual presentation replaces our HN - I~XNA

by I - AXy. A number of references relating to these meth-
ods, as well as to all other methods discussed in this
paper will be found in Forsythe [6].

**see e.g., Householder [7], pp. 56-57.
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Therefore by back substitution,

N
- s
HN Ho .

-1 -1 -1, -
Now A~ - X = (I - X A)A 7 = HA 7; and X A I - H, so

A"l = (1 - Ho)"lxo. From all this we obtain:

N N
A - XN = Ho (I—Ho) Xo Ho (I—Ho) HOXO

This equation is the analogue of (6.3). From it we get
in place of (6.5),

sN-l
6.9) 16 - By ll & APl™ yoy

1=l HEoll

and this clearly represents a much faster rate of convergence
than (6.5).

The difficulty is that each iteration of (6.8) requires

sn3 multiplications, Moreover in the special problem at
hand--that of finding only one dement of A~l-—the method
does not appear to good advantage, because there seems to be
no way to avoid computing all the elements of the matrix XN

each time, and not just the k-th column, as we did in the
linear iterative method., 1In other words, there seems to be
no direct analogue of the vector recursion formula (6.4) in
the method given by (6.8).

The formula for the total amount of work required to
make the right hand member of (6.9) less than rfjp ||, where
r > 0 is preassigned, is as follows:

log (1 + 1og r + log (1-h),

(6.10) sn3 + snd log h
log s

where, as usual, the square brackets means '"largest integer
in" and h = ||H,|] . A study of the maximum and minimum of
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this expression, considered as a function of s, reveals
that s = 2 or s = 3 usually are the most advantageous val-
ues of s to use. For example, if r = 1073 and h = 9/10,

then the formula (6.10) becomes

snd {1 + [ 1.9465
log s
3

I1f s = 2, this equals 14n3. If s = 3, it equals 15n”. If
s = 4, it equals 16n3. For higher values of s, the disad-
vantage becomes more pronounced.

With r = 10—3, h = 9/10, s = 2, the amount of work
required by the non-linear iterative method given by (6.4),
as estimated from (6.10), is less than required by the
linear method given by (6.4), as estimated from (6.6), for
n { 6. It is greater for n 5 7.
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