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Introduction 

Problems  involving the classical  linear partial differential 
equations of mathematical physics can  be  reduced to 
algebraic  ones of a very  much  simpler structure by replac- 
ing the differentials  by  difference quotients on some  (say 
rectilinear) mesh. This paper will undertake an elementary 
discussion of these  algebraic  problems,  in particular of 
the behavior of the solution as the mesh  width  tends to 
zero. For present  purposes we limit ourselves  mainly to 
simple but typical  cases, and treat them in such a way that 
the applicability of the method to more  general  difference 
equations and to those  with arbitrarily many  independent 
variables  is  made  clear. 

Corresponding to the correctly  posed  problems for 
partial differential equations we will treat boundary value 
and eigenvalue  problems for elliptic  difference equations, 
and initial value  problems for the hyperbolic or parabolic 
cases.  We  will  show  by typical  examples  th,at the passage 
to the limit is indeed  possible,  i.e., that the solution of 
the difference equation converges to  the solution of the 
corresponding  differential equation; in fact we will  find 
that for elliptic equations in general a difference quotient 
of arbitrarily high order tends to the corresponding  deriv- 
ative.  Nowhere do we assume the existence of the solution 
to the differential equation problem-on the contrary, we 
obtain a simple  existence  proof  by  using the limiting 
process.’ For  the case  of elliptic  equations  convergence  is 

1 Our method of proof may  be extended without difficulty to cover bound- 
ary value and eigenvalue problems for arbitrary linear elliptic differential 
equations and initial value problems for  arbitrary linear hyperbolic differential 
equations. 

obtained independently of the choice of mesh, but we 
will  find that for the case of the initial value  problem for 
hyperbolic  equations,  convergence  is obtained only if 
the ratio of the mesh  widths  in  different  directions  satis- 
fies certain  inequalities which in turn depend on the posi- 
tion of the characteristics  relative to the mesh. 

We take as a typical  case the boundary value  problem 
of potential theory. Its solution and its  relation to the 
solution of the corresponding  difference equation has 
been  extensively treated during the past few  years.’  How- 
ever  in contrast to the present  paper, the previous  work  has 
involved the use of quite special  characteristics of the 
potential equation so that the applicability of the method 
used there to other problems has not been  immediately 
evident. 

In addition to the main part of the paper, we append 
an elementary  algebraic  discussion of the connection of 
the boundary value  problem of elliptic equations with the 
random walk problem  arising  in  statistics. 
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1. The elliptic case 

Section 1. Preliminary remarks 

1. Definitions 

Consider a rectangular array of points in the (x ,  y)-plane, 
such that for mesh  width h > 0 the points  of the lattice 
are given  by 

x = nh 

y = rnh 1 m ,  n = 0 ,  f l ,   f 2 ,  . 

Let G be a region of the plane bounded by a continuous 
closed  curve  which has no double  points.  Then the cor- 
responding mesh region, G,-which is  uniquely  deter- 
mined for sufficiently  small  mesh  width-consists of all 
those mesh points lying in G which can  be  connected to 
any other given point in G by a connected  chain of  mesh 
points. By a connected  chain of  mesh points we mean a 
sequence of points such that each point follows in the 
sequence one of its four neighboring  points. We denote 
as a boundary point of Gh a point  whose four neighboring 
points do not all belong to G,. All other points of Gh we 
call interior points. 

We shall consider  functions u, u, . of position on 
the grid,  i.e.,  functions  which are defined  only for grid 
points, but we shall denote them as u(x, y), u(x, y), . . 
For their forward and backward  difference quotients we 
employ the following notation, 

u, = - [.(x + h ,  Y )  - 4 x 9  Y)l ,  1 
h 

In the same way the difference quotients of higher order 
are formed,  e.g., 

(UJ, = U,Z = Uzr 

1 
= 2 [.(x + h ,  Y> - 2u(x,  Y> + .(x - h ,  ~ 1 1 ,  etc. 

2.  Difference expressions and Green's function 

In order to study linear  difference  expressions  of  second 
order, we form  (using as a model the theory of partial 
differential  equations), a bilinear  expression from the 
forward difference quotients of two  functions, u and u,  

B(u, u) = au,u, + bu,u, + cu,u, + du,v, + auzv 

216 + Pu,u + YUU, + 6uu, + guv ,  

where a = a(x, y), - - - , a = a(x, y), - - , g = g(x, Y )  are 
functions on the mesh. 

From the bilinear  expression  of  first order we derive 
a difference  expression of second order in the following 
way: we form the sum 

over all points of a region Gh in the mesh,  where  in B(u, u) 
the difference quotients between boundary points and 
points not belonging to the mesh are to be  set equal to 
zero. We  now transform the sum through partial summa- 
tion, i.e., we arrange the sum according to u, and split 
it up into a sum  over the set of interior points, GL and a 
sum over the set of boundary  points, r h .  Thus we obtain: 

= --h2 uL(u) - h V % ( U ) .  (1) 
G h '  r h  

L(u) is a linear  difference  expression of second order de- 
fined for all interior points of G,:  

%(u) is, for every boundary point, a linear  difference  ex- 
pression  whose  exact form will not be  given  here. 

If we arrange eo,, B(u, u) according to u, we find 

= -h2  uM(u) - h U S ( U ) .  (2) 
O h '   r h '  

M(u) is  called the adjoint difference  expression of L(u) 
and has the form 

M(u)  = ( a 4 Z  + ( b U , ) Z  + ( C U J B  + (dU,)z7 

+ (au), + @U)o - TU, - 6 4  - go, 

while S(u) is a difference  expression  corresponding to (R(u) 
for the boundary. 

Formulas (1) and (2) give 

+ h [u%(u) - us(u)] = 0. (3) 
r h '  

Formulas (l), (2), and (3) are called Green's formula. 
The simplest and most important case  results if the 

bilinear  form  is  symmetric,  i.e., if the relations b = c, 
a = y, = 6 hold. In this  case L(u) is  identical  with 
M(u)-the self-adjoint case-and it can  be  derived from 
the quadratic expression 

B(u, u) = au; + 2bu,u, + duz 

+ 2cYu,u + 2 P U , U  + gu2. 
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In the following we shall limit  ourselves  mainly to 
expressions L(u) which are self-adjoint. The character 
of the difference  expression L(u) depends  principally on 
the nature of those  terms  in the quadratic form B(u, u) 
which are quadratic in the first  difference  quotients. We 
call this part of B(u, u) the characteristic form: 

P ( u ,  u) = au: + 2bu,u, + du:. 

We call the corresponding  difference  expression L(u) ellip- 
tic or hyperbolic,  depending  on  whether the function 
P(u, u) of the difference quotients is  (positive)  definite 
or indefinite. 

The difference  expression Au = uZ2 + u,# with  which 
we shall concern  ourselves  in the following paragraph is 
elliptic, i.e., it comes from the quadratic expression 

~ ( u ,  u) = u: + u: or u i  + u,". 

The  corresponding  Green's  formulas are 

h2 (u: -b u:) = -h2 uAu 
Q h  Gh'  

- h u%(u) [Note 31 (4) 
rh 

h2 (VAU - U A V )  
Gh' 

4- h [u%(u) - u%(u)] = 0 .  ( 5 )  

The difference  expression, Au = u,? f uvg, is  obviously 
the analogue of the differentisl  expression (dzu/dxz) + 
(d2u/dy2) for a function K ( X ,  y )  of the continuous  variables 
x and y .  Written out explicitly the difference  expression  is 

Au = -5 [u(x + h ,  Y )  u(x ,  Y + h)  

r h  

1 
h 

+ .(X - h ,  Y )  + ~ ( x ,  Y - h) - 4 ~ ( x ,  Y ) ] .  

Therefore (h2/4)Au is the excess  of the arithmetic mean 
of the functional values at the four  neighborhood points 
over the functional value at the point in question. 

Completely  similar  considerations  lead to linear  dif- 
ference  expressions of the fourth order and corresponding 
Green's formula, provided  one starts from  bilinear dif- 
ference  expressions  which are formed from the difference 
quotients of second  order.  Consider for example the 
difference  expression 

AAu = u , , ~ ~  + 2uzZug + uUvgg.  

This  corresponds to the quadratic expression 

provided  one orders the sum 

h2 AuAv 
Gh' 

according to v, or equivalently  replaces u by Au in Eq. (5). 
One  must  notice  however that in the expression AAu, 
the functional value at a point is  connected  with the values 
at its neighboring points and at their neighboring  points, 
and accordingly is defined  only for such points of the 
region Gh as are also interior points of the region GL (See 
Section 5) .  The entirety of such points we designate as GL'. 
We obtain then  Green's formula 

h2 A u * A u  
Gh' 

where %(u) is a definable  linear  difference  expression for 
each point of the boundary strip r h  + I'L. r; indicates 
the set of boundary points of GL. 

Section 2. Boundary value and eigenvalue problems 

1. The theory of boundary value problems 

The boundary value  problem for linear  elliptic  homo- 
geneous  difference  equations of second order, which cor- 
responds to the classical boundary value  problem for 
partial differential  equations,  can  be  formulated  in the 
following  way. 

Let there be given a self-adjoint  elliptic  linear  difference 
expression of second order, L(u), in a mesh region, Gh. 
L(u) results  from a quadratic expression B(u, u) which  is 
positive  definite  in the sense that  it cannot  vanish if u, and 
u,  do not themselves  vanish. 

A function, u, is to be  determined  satisfying  in Gh the 
difference equation L(u) = 0, and assuming  prescribed 
values at the boundary points. 

Under  these  requirements  there  will  be  exactly as many 
linear  equations as there are interior points of the mesh 
at which the function u is to be  determined.4  Some of 
these  equations which  involve  only  mesh points whose 
neighbors  also lie  in the interior of the region are homo- 
geneous; others which  involve boundary points of the 
mesh  region are inhomogeneous. If the right-hand side of 
the inhomogeneous  equations  is set equal to zero, that is 
if u = 0 on the boundary,  then it follows from Green's 
formula (l), by setting u = v that B(u, u) vanishes, and 
further, from the definiteness of B(u, u), that K, and u, 
vanish, and hence that u itself  vanishes. Thus the dif- 

B(u,  u)a= r(uzz + u , ~ ) ~  = (AU)', 
T P  ference equation for zero boundary values  has the solution 

u = 0, or in other words the solution is  uniquely  deter- 
aTheboundaryexpression~(u)maybewrittenasfollows:Letua,ul, ..., u, mined  since the difference of two  solutions  with the 

trarv  difference eouation of second  order. L(u) = 0. is transuosed.  then  the 
4 If  the  matrix of the  linear  system of equations  corresponding to an arbi- 

be  values of the  function at a  boundary  point  and at its Y neighboring  points 
( U  5 3), then 

, , _  , 
transposed  set of equations  corresponds to the  adjoint  difference equation 

tions  with  symmetric  coefficients. 
M(u) = 0. Thus  the above self-adjoint  system gives rise to a set of linear  equa- 

~. 
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same boundary value  must  vanish. Further, if a linear 
system of equations with as many  unknowns as equations 
is  such that for vanishing right-hand side the unknowns 
must  vanish,  then the fundamental theorem of the theory 
of equations asserts that for an arbitrary right-hand side 
exactly  one solution must  exist. In our case there follows 
at once the existence of a solution of the boundary value 
problem. 

Therefore we  see that for elliptic  difference equations 
the uniqueness and existence of the solution of the bound- 
ary value  problem are related to each other through the 
fundamental theorem of the theory of linear equations, 
whereas for partial differential equations both facts  must 
be  proved by quite different  methods. The basis for this 
difficulty  in the latter case is to be found in the fact that 
the differential equations are no longer  equivalent to a 
finite  number of equations, and so one can no longer de- 
pend on the equality of the number of unknowns and 
equations. 

Since the difference  expression Au = 0 can  be  derived 
from the positive  definite quadratic expression 

the boundary value  problem for the difference  expression 
is uniquely  solvable. 

The theory for difference equations of higher order is 
developed in exactly the same way as that for difference 
equations of second order; for example  one  can treat the 
fourth order difference equation AAu = 0. In this case 
the values of the function  must  be  prescribed on the bound- 
ary strip FA + FA. Evidently  here  also the difference  equa- 
tion yields just as many  linear equations as there are 
unknown functional values at the points of GL’. In order 
to demonstrate the existence and uniqueness of the solu- 
tion  one  needs  only to show that a solution which has the 
value  zero  in the boundary strip FA + I?; necessarily 
vanishes  identically. To this end we note that the sum 
over the corresponding quadratic expression 

for such a function  vanishes, as can be  seen by transform- 
ing the sum  according to Green’s formula (6). The vanish- 
ing of the sum (7) however  implies that Au vanishes at all 
points of GA, and according to the above proof  this  can 
only  happen for vanishing boundary values if the function 
u assumes the value  zero throughout the region. Thus our 
assertion  is  proved, and both the existence and uniqueness 
of the solution to the boundary value  problem for the 
difference equations are g~aranteed.~ 

6 For the actual process of carrying through the solution of the boundary 
value  problem  by an iterative method, see among others the treatment: “Uber 
Randwertaufgaben bei partiellen Differenzengleichungen” by R. Courant, 
Zeitschr. f. angew.  Mathematik u. Mechanik 6, 322-325 (1925). Also there is a 
report by H. Henky, in Zeifschr. f. angew.  Math. u. Mech. 2, 58 ff (1922). 

2. Relation to the minimum problem 

The above boundary value  problem is related to the fol- 
lowing  minimum  problem:  among all functions p(x, y )  
defined  in the mesh region Gh and assuming given  values 
at the boundary points, that function p = u(x, y )  is to be 
found for which the sum 

h2 c c %% 
Q h  

over the mesh  region  assumes the least  possible  value. 
We assume that the quadratic difference  expression of 
first order, B(u, u) is  positive  definite in the sense  de- 
scribed in Section l, Part 2. One  can  show that the dif- 
ference equation L(p) = 0 results from this minimum 
requirement on the solution cp = u(x, y) ,  where L(p) is the 
difference  expression of second order derived  previously 
from B(p, p). In fact this can be  seen  either  by  applying 
therulesofdifferentialcalculustothesumsh2~a~~B(p,cp) 
as a function of a h i t e  number of values of p at the grid 
points, or by  employing the usual methods from the 
calculus of variations. 

By  way  of example,  solving the boundary value prob- 
lem of finding the solution to the equation Ap = 0 which 
assumes  given boundary values,  is  equivalent to minimiz- 
ing the sum h2 cQh (p: + (0:) over all functions which 
take on the boundary values. 

There is a similar  correspondence for the fourth-order 
difference equations, where we limit  ourselves to the 
example AAp = 0. The boundary value  problem cor- 
responding to this difference equation is  equivalent to the 
problem of minimizing the sum 

h2 ( A P ) ~  

for functions that take on given  values on the boundary 
strip I?;. Besides this  sum there are yet other quadratic 
expressions in the second  derivatives which  give  rise to the 
equation AAu = 0 under the process of being  minimized. 
For example  this  is true in GI, for the sum 

h2 (utz + 2 ~ 2 ,  + u”,). 

ffh’ 

ah’ 

That the minimum  problem  posed above always  has 
a solution follows from the theorem that a continuous 
function of a h i t e  number of variables (the functional 
values of p at the grid  points)  always has a minimum if it 
is bounded from below and if it tends to infinity as soon as 
any of the independent  variables goes to infinity: 

3. Green’s function 
It is  possible to treat the boundary value  problem  for the 
inhomogeneous equation, L(u) = -f, in much the same 
way  as the homogeneous  case, L(u) = 0. For the inhomo- 
geneous  case it is sufficient to consider  only the case of 

theorem are satisfied. 
6 It can easily be verified  that the hypotheses for the application of this 
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zero boundary conditions, since different boundary condi- 
tions can be taken  care of by adding a suitable  solution of 
the homogeneous  equation. To solve the linear system of 
equations representing the  boundary value problem, 
L(u) = - f ,  we first choose as the  function !(x, y )  a func- 
tion which assumes the value - l / h 2  at the  point x = l, 
y = q of the mesh. If K ( x ,  y ;  .$, 7) is the solution (vanish- 
ing on  the boundary) of this difference equation which 
depends on  the parametric  point ([, q), then the solution 
for  an  arbitrary  boundary condition can be represented  by 
the sum 

u(x ,  Y> = h2 K ( x ,  Y ;  E t  d f ( E ,  3). 
( E . l ) i n G h  

The function K(x,  y ;  E, q) which depends on  the points 
(x, y)  and ([, q) is called the Green’s function of the dif- 
ferential expressions L(u). If we call the Green’s function 
for  the  adjoint expression M(u), K(x, y ;  E ,  q), then the 
equivalence 

K G ,  *; t ,  3) = m ,  3; E ,  *) holds, 

as can  be seen to follow immediately from Green’s form- 
ula (3) when u = K(x, y ;  .$, q), and D = Z?(x, y ;  & *). For a 
self-adjoint difference expression the  above relation gives 
the symmetric expression 

K G ,  *; E ,  7) = KG,  77; E ,  *I. 

4. Eigenvalue problems 

Self-adjoint difference expressions, L(u), give rise to eigen- 
value  problems of the following type: find the value of a 
parameter X, the eigenvalue, such that in Gh, a solution, 
the eigenfunction can be found for the difference equation 
L(u) f Xu = 0, where u is to be zero on  the  boundary, r h .  

The eigenvalue problem is equivalent to finding the 
principle axes of the quadratic form B(u, u). Exactly as 
many eigenvalues and corresponding eigenfunctions exist 
as there  are interior mesh points of the region G,. The 
system of eigenfunctions and eigenvalues (and a proof of 
their existence) is  given  by the minimum problem: 

Among all functions, p ( x ,  y), vanishing on  the  boundary, 
and satisfying the orthogonality  relation 

and normalized such that 

the function, p = u, is to be  found for which the sum 

h2 c c B:cp> ‘PI 
R h  

assumes its minimum value. The value of this minimum 

is  the mth eigenvalue, and  the function for which it is 
assumed is the m th eigenfunction.’ 

Section 3.’ Connections  with the problem of the random walk 
The theme of the following is related to a question from 
the theory of probability, namely the problem of the 
random walk in a bounded region.” We consider the 
lines of a mesh region Gh as  paths along which a particle 
can move from  one grid  point to a neighboring one. In 
this net of streets the particle can wander aimlessly, and 
it can choose at  random  one of the  four directions leading 
from each intersection of paths of the net-all four direc- 
tions being equally probable. The walk ends as  soon as a 
boundary point of G, is reached because here the particle 
must  be  absorbed. 

We ask: 

1) What is the probability w(P; R) that a random walk 
starting from a point P reaches a particle  point R 
of the  boundary? 

2) What is the mathematical expectation u(P;  Q) that a 
random walk starting from P reaches a point Q of 
G, without  touching the  boundary? 

This  probability or mathematical expectation, respec- 
tively, will be defined more precisely by the following 
process. Assume that  at  the  point P there is a unit con- 
centration of matter.  Let  this  matter diffuse into  the mesh 
with constant velocity, traveling say a mesh width in  unit 
time. At each meshpoint let exactly one-fourth of the 
matter  at  the point diffuse outwards in each of the  four 
possible directions. The matter which reaches a boundary 
point is to remain at that point. If the point of origin P 
is itself a boundary  point,  then the matter never leaves that 
point. 

We define the probability w(P; R) that a random walk 
starting from P reaches the boundary  point R (without 

7 From the orthogonality condition on the eigenfunctions, 

h2 u(V)u(’) = 0 9 (v # PI 
a h  

it follows that each function. g(x, y ) ,  which vanishes on the boundary of the 
mesh can be expanded in terms of the eigenfunctions in the form 

= c ( v ) u ( 4  
N 

v = l  

where the coefficients are determined from the equations 

tions may be derived, 
In this way in particular the following representation for the Green’s func- 

8 Section 3 is not prerequisite to Section 4. 
9 The present  treatment is essentially different from  the familiar treatments 

for molecules. 7 he difference lies precisely in the way in which the boundary 
which can he  carried through, say for example in the case of Brownian motion 

of the region enters. 



previously attaining the boundary), as the amount of To this end we remark that the quantity E @ ;  Q) satis- 
matter which accumulates at this boundary point over fies the following  relations 
an infinite amount of time. 

We define the probability E,(P; Q) that the walk starting 
from the point P reaches the point Q in exactly n steps 
withoui  touching the boundary by the amount of matter 
which accumulate in n units of time  provided P and Q are 
both interior points. If either P or Q are boundary points 
then E,  is  set equal to zero. 

The value E,(P; Q) is  exactly equal to 1/4" times the 
number of paths of n steps  leading from P to Q without 
touching the boundary. Thus E,(P; Q)  = &(e; P). 

We define the mathematical  expectation u(P; Q) that 
one of the paths considered  above  leads from P to the 
point Q by the infinite  sum of all of these  possibilities, 

m 

u ( P ;  Q) = E d P ;  Q) (Note  lo), 
" = O  

i.e., for the interior points P and Q, the sum of all the 
concentrations which have  passed through the point Q at 
different  times.  This  will  be  assigned the expected  value 1 
for a concentration originating at Q. 

If the amount arriving at  the boundary point R in 
exactly n steps  is  designated  as F,(P; R),  then the proba- 
bility w(P; R) is  given  by the series 

w(P;  R )  = Fv(P; R ) .  
m 

" = O  

All the terms of this series are positive and the partial 
sum is bounded by one  (since the concentration  reaching 
the boundary can  be  made up of only part of the initial 
concentration), and therefore the convergence of the series 
is assured. 

Now it is easy to see that the probability En(P; Q), that 
is, the concentration  reaching the point Q in exactly n 
steps tends to zero as n increases. For if at any point Q, 
from which the boundary point R can  be  reached in m 
steps, we have E,(P; Q) > Q( > 0, then at least a/4" of 
the concentration at Q will  reach the point R after m 
steps.  However,  since the sum F,(P; R) converges, 
the concentration reaching R goes to zero with increasing 
time,  where the value of En(P; Q) must  itself  vanish  as 
time  increases; that is, the probability of an infinitely  long 
walk remaining  in the interior of the region  is  zero. 

From this it follows that the entire concentration even- 
tually  reaches the boundary; or  in other words that the sum xR w(P; R)  over all the boundary points R is equal to one. 

The  convergence  of the infinite  series for the mathemati- 
cal  expectation 

m 

remains to be  shown. 
220 10 The  convergence  will  be  shown  below. 

En+I(P; Q) = ${En(P;  QJ + En(P; Q J  
En(P; Q,) QJ) 9 [n 2 1 1 9  

where  Ql through Q4 are the four neighboring  points of 
the interior point Q. That is, the concentration at the 
point Q at the n + 1 a t  step consists of 1/4 times the sum 
of the concentrations at the four neighboring points at 
the nth step. If one of the neighbors of Q, for example 
Ql = R,  is a boundary point then it follows that  no con- 
centration flows from this boundary point to Q since the 
expression E,(P; R) is  zero  in  this  case. Furthermore, for 
an interior point, Eo(P; P) = 1 and of course E1(P; Q) = 0. 

From these  relationships we find for the partial sum 

the equation 

un+l(P; Q )  = $(un(P; QI) + un(P; QJ 

+ un(P; QJ + uw(P; Q J  I s  

for P # Q. For the case of P = Q, 

u,+~(P; P) = 1 + $ { u n ( P ;  PI) + on(P; ~ 2 )  

+ s ( P ;  Pa) + v J P ;  P4) 1 9  

that is, the expectation that a point goes back into itself 
consists of the expectation that a nonvanishing path leads 
from P back again to itself-namely, 

t {un(P;  ~ 1 )  + un(P; PJ  + un(P; ~ 3 )  + un(P; PJI 9 

together  with the expectation  unity that expresses the 
initial position of the concentration itself at this point. 

The quantity u,(P; Q) thus satisfies the following dif- 
ference  equation" 

Aun(P; Q) = J Q), 
4 

for P # Q, 

4 Avn(P; Q)  = 2 ( E n ( P ;  Q) - I } ,  for P = Q. 

un(P; Q) is equal to zero  when Q is a boundary point. 

he interpreted as an equation of the  heat  conduction  type.  That is, if the  func- 
11 This  defines the  A-operation for the valiable point Q. This  equation  can 

tion v,(p; Q) is considered, not as a function of the  index n as in Our P~eXnta- 
tion above, but  rather as a  function of time, f ,  which is proportional to n, SO 
that t = n r  and v,(P; Q) = u(P; Q; t )  = u( t ) ,  then  the above equations  can  be 
written  in  the following form: 

for P # Q, 

as its limiting form, see Section 6 of the second half of the  paper. 
For a similar  difference  equation  which has a parabolic  differential  equation 
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The solution of this  boundary  value  problem for arbi- 
trary right-hand side is uniquely  determined as we have 
explained  earlier  (Section 2, Part l), and depends  con- 
tinuously on the right-hand side.  Since the variables 
E,(P; Q) tend to zero, the solution u,(P; Q )  converges to 
the solution v(P;  Q )  of the difference equation 

Au(P; Q) = 0 for P # Q 

4 
Au(P; Q) = -3 for P = Q, h 

with boundary values u(P; R) = 0. 
Thus we  see that the mathematical  expectation u(P; Q) 

exists and is none other than the Green’s function for the 
difference equation Au = 0, except for a factor of 4. The 
symmetry of the Green’s  function  is an immediate  conse- 
quence of the symmetry of the quantity E,(P; Q) which 
was  used to define it. 

The probability w(P;  R)  satisfies,  with  respect to P,  the 
relation 

w(P; R) = t ( w ( P 1 ;  R) w(Pz; R) 

+  pa; R) + w(P4;  R) I 9 

and thus the difference equation Aw = 0. That is,  if P I ,  Pz, 
Pa,  P,, are the four  neighboring points of the interior 
point P ,  then  each path from P to R must  pass through 
one of these four directions, and each of the four  is  equally 
likely. Furthermore, the probability of going from one 
boundary point R to another R‘ is w(R;  R‘) = 0 unless 
the two points R and R’ coincide,  in  which  case  w(R;  R) = 1. 
Thus w(P; R) is that solution of the boundary value prob- 
lem Aw = 0 which  assumes the value 1 at the boundary 
point R and the value 0 at all other points of the boundary. 
Therefore the solution of the boundary value  problem for 
an arbitrary boundary  value u(R) has the simple form 
u(P) = xR w(P;  R)u(R),  where the sum  is to be  extended 
over all the boundary points.” If the function u E 1 is 
substituted for u in this expression,  then we  check the rela- 
tion 1 = CR W(P; R). 

The interpretation given above for Green’s  function  as 
an expectation yields  immediately further properties. We 
mention  only the fact that  the Green’s function decreases 
if one  goes from the region G to a subregion lying within 
G ;  that is, the number of possible paths for steps on the 
mesh leading from one point P to another Q (without 
touching the boundary),  decreases  as the region  decreases. 

Of course,  corresponding  relationships hold for more 
than two  independent  variables. We note only that other 
elliptic  difference equations admit a similar  probability 
interpretation. 

boundary is the  boundary  expression W(K(P ,  Q)), constructed  from  the  Green’s 
12 Moreover it is easy to show  that  the  probability w(P; R) of reaching  the 

function K ( P ;  Q) in terns of Q, where u(x, y)  is  to be identified  with w(P, Q), 
and n(x, y) with u(P, Q) in  Green’s  formula (5). 

If the limit for vanishing  mesh  width  is  considered  by 
methods given in the following  section,  then the Green’s 
function on the mesh  goes  over to the Green’s  function 
of the potential equation except for a numerical factor; 
a similar  relationship  holds between the expression 
w(P; R ) / h  and the normal derivative of the Green’s  func- 
tion at  the boundary of the region. In this way, for ex- 
ample, the Green’s  function for the potential equation 
could  be interpreted as the specific mathematical  expecta- 
tion of going  from  one  point to another,13  without  reaching 
the boundary. 

In going  over to  the limit of a continuum from the mesh, 
the influence of the direction in the mesh  prescribed for 
the random walk  vanishes.  This fact suggests that  it would 
be of some  interest to consider  limiting cases  of more 
general  random  walks for which the limitations on the 
direction of the walk are relaxed.  This  lies  outside of the 
scope of this  presentation,  however, and we can  only  hope 
to renew the question at some other opportunity. 

Section 4. The solution of the differential  equation  as a 
limiting form of the solution of the difference equation 

1. The boundary  ualue  problem of potential theory 

In letting the solution of the difference equation tend to the 
solution of the corresponding  differential equation we shall 
relinquish the greatest  possible  degree of generality  with 
regard to the boundary and boundary values  in order to 
demonstrate more  clearly the character of our method.14 
Therefore we assume that we are given a simply  connected 
region G with a boundary formed of a finite  number of 
arcs  with  continuously turning tangents.  Let f ( x ,  y )  be a 
given function which  is continuous and has  continuous 
partial derivatives of first and second order in a region 
containing G. If G h  is the mesh region  with mesh  width h 
belonging to the region G, then  let the boundary value 
problem for the difference equation Au = 0 be  solved for 
the same  boundary  values which the function f (x ,   y )  
assumes on the boundary; let uh(x, y)  be the solution. We 
shall prove that as h ”+ 0 the function uh(x, y )  converges 
to a function u(x, y )  which  satisfies in G the partial dif- 
ferential equation (13~u/I3x~) + (dZu/dy2) = 0 and takes 
the value of !(x, y )  at each of the points of the boundary. 
We shall show further that for any  region  lying  entirely 
within G the difference quotients of uh of arbitrary order 
tend uniformly towards the corresponding partial deriva- 
tives of u(x, y). 

In the convergence  proof it is  convenient to replace the 
boundary condition u = f by the weaker  requirement that 

stood to he equal to the  area of the  element. 
l a  Here  the a priori expectation of reaching  a certain area  element  is  under- 

boundaries  and  boundary  values in no way  causes  any  fundamental  difficulty. 
14 We mention however  that  carrying  through our method for more  general 
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Figure 1 

where S, is that strip of G whose points are at a distance 
from the boundary smaller  than r.15 The convergence  proof 
depends  on the fact that for any  subregion G* lying en- 
tirely  within G ,  the  function uh(x, y )  and each of its dif- 
ference quotients is  bounded and uniformly continuous 
as h-+ 0 in the following  sense: For each of these  functions, 
say wh(x, y ) ,  there exists a a(&) depending  only on the 
subregion and not on h such that 

Iwfb(P) - wfb(P1) I < e 

provided the mesh points P and PI lie in the same  sub- 
region  of G h  and are separated from each other by a dis- 
tance less than a(&). 

Once  uniform continuity in this sense  (equicontinuity) 
has been established we can  in the usual way  select from 
the functions uh a subsequence of functions which tend 
uniformly in any  subregion G* to a limit  function u(x, y ) ,  
while the difference quotients of uh tend uniformly  towards 

characterization of the solution, as can be  seen from the easily  proved theorem: 
16 The weaker boundary value requirement does in fact provide the unique 

If the boundary condition above is satisfied for f ( x ,  y )  = 0 for  a  function 
satisfying the equation 

- + 7 = 0  a2U aZu 
ax2 ay 
in the interior of G and if 

exists. then v(x,  y)  is identically zero.  (See Courant,  “iiber die Losungen der 
Differentialgleichungen der Physik,” Marh Ann. 85, 296 ff.) 

In the case of two independent variables the boundary values are actually 
attained. as follows from the weaker requirement: but in the case of more 
variables the corresponding result cannot in  general  be  expected  since there 
can exist exceptional points on the boundary at which the boundary value is 
not taken on even though a solution exists under the weaker requirement. 222 

the partial derivatives of u. The limit  function  then  pos- 
sesses  derivatives  of arbitrarily high order in any proper 
subregion G* of G and satisfies V2u = 0 in this region. If 
we can  show  also that u satisfies the boundary condition 
we can  regard it as the solution of our boundary value 
problem for the region G .  Since  this solution is  uniquely 
determined, it is  clear that not  only a partial sequence of 
the functions uh, but this sequence  of  functions  itself 
possesses the required  convergence  properties. 

The uniform  continuity  (equicontinuity) of our quanti- 
ties  may  be  established by proving the following  lemmas. 

1) As h+ 0 the sums  over the mesh region h2 cQA u2 
and h2 cQA (u: + u;) remain  bounded.I6 

2) If w = wh satisfies the difference equation Aw = 0 
at a mesh point of Gh, and if, as h -+ 0 the sum 

extended  over a mesh region G$ associated with a 
subregion G* of G remains  bounded,  then for any 
fixed subregion G** lying entirely  within G* the sum 

over the mesh  region G?* associated  with G** like- 
wise remains  bounded as h + 0. Using 1) there 
follows  from this, since all of the difference quotients 
w of the function u,, again  satisfy the difference equa- 
tion Aw = 0, that each of the sums h2 cGA* w2 
is bounded. 

3) From the boundedness of these  sums there follows 
finally the boundedness and uniform  continuity of all 
the difference quotients themselves. 

2. Proof of the lemmas 

The proof of 1) follows  from the fact that the functional 
values U h  are themselves bounded. For the greatest  (or 
least)  value of the function is  assumed on the boundary” 
and so is  bounded by a prescribed  finite  value. The bound- 
edness of the sum h2 Ea,, (uf + u:) is an immediate 
consequence of the minimum property of our mesh func- 
tion formulated  in Part 2 of Section 2 which  gives  in 
particular 

but as h 0 the sum on the right  tends to the integral 

which, by hypothesis,  exists. 

16 Here and  in the following we drop the index h from  the grid functions. 

ferential equations. that we can relax  these conditions. To this end we need 
We note. however.  with a view to carrying over the method to other dif- 

only to bring into play the inequality (15) or to use the reasoning of the alter- 
native (see Part 4, Section 4). 
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To prove 2) we consider the quadratic sum 

h2 c (w: + w: + w: + w",, 
int .01  

where the summation  extends  over all the interior points 
of a square Q,,  (see  Fig. 1). We denote the values of the 
function on the boundary SI of the square Q,, by w,, and 
those on  the boundary So, of  Q,,  by wo. Then  Green's 
formula gives 

h2 (wz" + w: + w: + 4 )  (8) 
i n t . 9 1  

= cw2- cwz- cw2 
SI SO c1 

where SI and So are respectively the boundary of Ql and 
the square boundary of the lattice points Qo  lying within 
SI, while C1 consists of the four corner points of the 
boundary of Ql. 

We  now consider a sequence of concentric squares 
Q,, Q,, . . . , Q,  with boundaries So, SI, . . , S,, where 
each boundary is separated from the next by a mesh  width. 
Applying the formula to each of these squares and ob- 
serving that we have  always 

5 ha (w: + w: + w: + w3. (k 2 1) 
01 

we obtain 

2h2 c c (w: + 4 )  
0 0  

5 cw2- w Z - c w 2  ( l < k < n ) ,  
S I  Sk-1 C1; 

where Ck consists of the four  corner  points of the bound- 
ary Qk. 

We strengthen the inequality by neglecting the last non- 
positive term on the right and we then add the n inequalities 
to obtain 

Summing this inequality  from n = 1 to n = N we  get 

Diminishing the mesh  width h we can  make the squares 
Qo and Q,,  converge  towards  two  fixed squares lying within 
G and having  corresponding  sides separated by a distance 
a. In this  process Nh 4 a and we have,  independent of the 
mesh  width 

h2 ( d  + wi) I ;;i w2. 
h2 

(9) 
Q O  Q N  

For sufficiently  small h this  inequality  holds of course 
not only for two  squares  Qo and QN but with a change  in 
the constant, a, for any  two  subregions of G such that one 

Figure 2 

is contained  entirely  within the other. Thus lemma (2) 
is proved.18 

In order to prove the third result, that uA and all its 
partial difference quotients wA remain  bounded and uni- 
formly  continuous as h 4 0, we consider a rectangle R 
(Fig. 2)  with corners Po, Q,, P, Q and with  sides PoQo and 
PQ of length a parallel to the x-axis. 

We start with the relation 

w(Qo) -  PO) = h W. - h2 w , ~ ,  

and the inequality 

Iw(Q0) - w(Po)I 5 h I w , ~  + h2 IwZyI. (11) 

which  is a consequence  of it. 
We then  let the side PQ of the rectangle  vary  between 

an initial  line PIQl, a distance b from PoQo and a final  line 
PzQz a distance 2b from PoQo, and we sum the corre- 
sponding (b /h )  + 1 inequalities (11). We obtain the esti- 
mate 

PO R 

PO 

where the summations  extend  over the entire rectangle, 
R,  = PoQoPpQz. From Schwarz's inequality it then  fol- 
lows that, 

we  find : 
18 If we do not assume that Aw = 0, then in place of the inequality (9) 

for suitable constants ct  and cz independent of h. where G** lies entirely 
within G*, and G* in turn is contained in the interior of G. 223 
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Figure 3 

Since,  by  hypothesis, the sums  which  occur  here  multi- 
plied  by h2 remain bounded, it follows that as a -+ 0 the 
difference Iw(Po) - w(Qo)l -+ 0 independently of the 
mesh-width,  since for each  subregion G* of G the quantity 
b  can  be  held fixed. Consequently the uniform continuity 
(equicontinuity) of w = w h  is  proved for the x-direction. 
Similarly it holds for the y-direction and so also for any 
subregion G* of G. The boundedness of the function w h  

in G* finally  follows from its uniform  continuity  (equi- 
continuity) and the boundedness of h2 cc, wi. 

By this proof we establish the existence of a  subsequence 
of functions uh which  converge towards a limit function 
u(x,  y) and which do so uniformly  together  with all their 
difference quotients, in the sense  discussed  above for every 
interior subregion of G. This  limit function u(x, y )  has 
throughout G continuous partial derivatives of arbitrary 
order, and satisfies there the potential equation: 

3. The boundary  condition 

In order to prove that the solution satisfies the boundary 
condition formulated above we shall first of all establish 
the inequality 

h2 x u2 5 Ar2h2 (uz + ui) 
8 v . h  S 9 . h  

+ Brh u2 (1 3) 
r h  

where s, , h  is that  part of the mesh  region Gh which  lies 
inside a boundary strip S,. This boundary strip S, consists 
of all points of G whose  distance from the boundary is less 
than r ;  it is bounded by I' and another curve I?, (Fig. 3). 
The constants A and B depend  only on  the region and not 

224 on the function u nor the mesh  width h. 

In order to prove the above  inequality, we divide the 
boundary, I', of G into a  finite  number of  pieces for which 
the angle of the tangent with  one of the x- or y-axes is 
greater than some  positive  value  (say 30'). Let y, for 
instance,  be  a piece  of I' which  is  sufficiently steep (in the 
above  sense)  relative to  the x-axis  (see  Fig. 4). Lines 
parallel to the x-axis  intersecting y will cut a  section yr 
from the neighboring  curve I?,, and will  define  together 
with y and y r  a piece s, of the boundary strip S,. We use 
the symbol s, , h  to denote the portion of G h  contained in s, 
and denote the associated portion of the boundary r h  

We  now imagine  a  parallel to the x-axis to be  drawn 
through a mesh point Ph of s, , h. Let it meet the boundary 
y h  in  a  point P h .  The portion of this  line which  lies  in 
s, , h we call p r ,  h .  Its length  is  certainly  smaller than cr, 
where the constant c depends  only on the smallest  angle 
of inclination of a  tangent y to the x-axis. 

Between the values of u at PA and we have the relation 

by Y h -  

U ( P h )  = r(Ph) f h 0,. 
P b P h  

Squaring both sides and applying Schwarz's inequality, 
we obtain 

u(Ph)' 5 2u(Ph)' + 2cr.h u;. 
Ur , h 

Summing  with  respect to Ph in the x-direction, we get 

h v 2  5 2 ~ r u ( P ~ ) ~  + 2c2r2h uz. 
P7 U. 

Summing  again in the y-direction we obtain the relation 

Writing  down the inequalities  associated  with the other 
portions of I' and adding all the inequalities  together we 
obtain the desired  inequality (13).19 

We next  set u h  = u h  - f h  so that u h  = 0 on r h .  

Then  since h2 xOb (uz + I$ remains bounded as 
h 4 0, we obtain from (13) 

where K is a constant which does not depend on the func- 
tion u or the mesh  size. Extending the sum on the left to 
the difference s, - S, , h of two boundary strips, the 
inequality (16) still holds  with the same constant K and 
we can  pass to the limit h 3 0. 

18 By similar  reasoning we can also establish  the  inequality 

in  which  the  constants c1 and c2 depend only on the  region G and not on the 
mesh  division. 
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4. Applicability of the method to other problems 

\ \ 
Figure 4 

From the inequality (16) we then get 

Now letting the narrower  boundary strip S ,  approach the 
boundary we obtain the inequality 

/lr v2 dxdy = f /l, ( u  - f)2 dxdy I Kr r 

which states that the limit  function u satisfies the pre- 
scribed boundary condition. 

Our method  is  based  essentially on the inequalities  arising 
from the lemmas stated previously  since the principal 
points of the proofs  follow  from the two last lemmas  in 
Part 1 of Section 4.” No use  is  made of special funda- 
mental solutions or special  properties of the difference 
expression, and therefore the method  can  be  carried  over 
directly to the case of arbitrarily many  independent  vari- 
ables as well as to the eigenvalue  problem, 

- + + + + u = o .  
d2u a2u 
dx’ d y  

The  same sort of convergence  relations  will obtain in this 
case  as above.’l  Also the method  applies to linear partial 
differential  equations of other types,  in particular its 
application to equations with variable coefficients requires 
only  some  minor  modifications. The essential  difference 
in  this case  lies  only  in  proving the boundedness of 
ha ui which  of course  does not always  hold for an 
arbitrary linear  problem. However in case this sum  is not 
bounded it can  be  shown that the general boundary value 
problem for the differential equation in  question  also 
possesses  effectively no solutions, but that in  this  case there 
exist  nonvanishing  solutions of the corresponding  homo- 
geneous  problem, i.e.,  eigenfunctions.” 

5 .  The boundary value problem AAu = 0 

In order to show that the method  can be carried  over to 
the case of differential equations of higher order, we  will 
treat briefly the boundary value  problem of the differential 
equation : 

d4U d4u ”2” d4U 

ax4 ax2 dy’ dy4 - + ” - 0. 

We seek,  in G, a solution of this equation for which the 
values of u and its  first  derivative are given on the bound- 
ary, being  specified there by some  function f (x ,  y ) .  

To this  end we assume as previously that f(x, y )  together 
with its first and second  derivatives is continuous  in that 
region of the plane  containing the region G. 

We replace our differential equation problem by the 
new problem of solving the difference equation Au = 0 
in the mesh  region G subject to the condition that  at the 
points of the boundary strip rh + r; the function u takes 
on the values f(x, y ) .  From Section 2 we know that this 
boundary value  problem  has a unique solution. We  will 
show that as the mesh  size  decreases, this solution, in  each 

20 For an application of corresponding integral inequalities see K. Fried- 
richs, “Die Rand- und Eigenwertprobleme aus der Theorie der elastischen 
Platten”, Math. Ann. 98, 222 (1926). 

11 Similarly one proves at the same time that every solution of such a dif- 
ferential equation problem has derivatives of every order. 

22 See  Courant-Hilbert, Merhoden der Maihemarischen Physik 1, Ch. 111, 
Section 3, where the theory of integral equations is handled with the help of 
the corresponding principle of the alternative. See  also the Dissertation (Got- 
tingen) of W. v. Koppenfels, which will appear soon. 225 
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interior subregion of G, converges to the solution of the 
differential equation, and that all of its difference quotients 
converge to the  corresponding partial derivatives. 

we note first that for the solution u = uh, the sum 

h2 c c ( L  + 2 4 ,  + uty> 
Gh' 

remains  bounded as h + 0. That is, by applying the mini- 
mum  requirements  on the solution (Part 2, Section 2) one 
fmds that this  sum is not larger than the corresponding  sum 

h2 c c (fL + 2fK + E J ,  
oh' 

and this  converges as h 4 0 to 

which  exists,  by  hypothesis. 
From the  boundedness of the sum 

h2 c c (UZ, + 2 2 ,  + UZ,) 
ah' 

follows  immediately the boundedness of h2 eo I ( A u ) ~  
and also that of 

That is, for arbitrary w the following  inequality  holds 
(see Footnote 19), 

+ ch w2 
rh 

Then if one  substitutes the first  difference quotients of w 
for w itself  in  this  inequality and applies the expression 
over the subregion of Gh for which  they are defined, 
one  finds the further inequality, 

where  again the constant c is  independent of the function 
and of the mesh  size.  We apply this inequality to w = u h  

and thus find  the  boundedness of the sum  over I?,, -I- r: 
on the right-hand side; by  definition  these boundary sums 
converge to the corresponding integral containing f(x, y ) .  
Thus from the boundedness of 

follows the boundedness of h2 X O h  (u: i- and 
226 thence that of h2 e a h  u2. 

For the third step we substitute one  after the other the 
expressions Au, Au,, Au,, ALL,, . ' , for win the inequality 

+ ch2 (Awl2 
0' 

(see Part 2, Section  4)  where G* is a subregion of G con- 
taining G** in its interior. The expressions  introduced all 
satisfy the equation Aw = 0. It follows  then that for  each 
expression  in turn and for all subregions G* of G that the 
s u m s , h Z ~ G r ~ ( w : +   w g , t h a t i s , h 2 c G * C ( A u ~ f  Aut), 
h2 c~. (AD, + AuZy), . . are bounded  together  with 
the sums : 

h2 c c U 2 ,  h2 (UZ + u 3 ,  
o h  O h  

and h2 (nu) ' ,  
O h  

which are already  known to be  bounded. 
Finally we substitute into the inequality (lo), in  place of 

w, the sequence of functions u,,, uZy,  u,,, u,.=, , for 
which 

are bounded as shown  above. We then fmd that for all 
subregions the sums 

ha c ( U L  + U,2,J 3 h2 (UZ,, + U,2y,>, * . . 
Gh* G h *  

remain  bounded. 
From these  facts we can now  conclude as previously 

that from our sequence of  mesh functions a subsequence 
can  be  chosen which  in  each  interior  subregion of G con- 
verges (together  with all its  difference  quotients)  uniformly 
to a limit  function (or respectively  its  derivatives)  which 
is  continuous in the interior of G. 

We have  yet to show that this  limit  function  which 
obviously  satisfies the differential  equation AAu = 0 also 
takes on the prescribed boundary conditions. For this 
purpose we say  here  only that, analogous to the foregoing, 
the expressions 

/k, [(E - 2)' + (!$ - ZT] dxdy 5 cr2 

hold.23 That the limit function fulfills these  conditions 
may be seen  by carrying  over the treatment in Part 3, 
Section 4 to the function u and its first  difference  quotient. 

~~ ~ 

28 That the boundary values for the function and its derivatives actually 
are assumed is not difficult to prove. See for instance the corresponding treat- 
ment of K. Friedrichs, loc. cit. 
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From the uniqueness  of our boundary  value  problem 
we  see furthermore that not only a selected  subsequence, 
but also the original  sequence of functions u possesses the 
asserted  convergence  properties. 

II. The hyperbolic case 

Section 1. The equation of the vibrating string 

In the second part of this  paper we shall consider the 
initial value  problem for linear  hyperbolic partial dif- 
ferential  equations. We shall prove that under certain 
hypotheses the solutions of the difference  equations  con- 
verge to the solutions of the differential equations as the 
mesh  size  decreases. 

We can  discuss the situation most  easily  by  considering 
the example  of the approximation to the solution of the 
wave equation 

d2U d 2 U  - - " 
a t 2  dx? = 0 (1) 

We limit  ourselves to the particular initial value  problem 
where the value of the solution u, and its derivatives are 
given on the line t = 0. 

In order to find the corresponding  difference equation, 
we construct in the (x, t)-plane a square grid  with  lines 
parallel to the axes and with mesh width h. Following the 
notation of the first part of the paper we replace the 
differential equation (1) by the difference equation 
ut - uzz = 0. If we select a grid  point, Po, then the cor- 
responding  difference equation relates the value  of the 
function at this point to the values at four neighboring 
points. If we characterize the four  neighboring  values by 
the four indices 1, 2, 3, 4 (cf.  Fig. 9 ,  then the difference 

equation assumes the simple  form 

u1 + 113 - uz - u* = 0.  (2) 

Note that the value of the function u at  the point Po does 
not appear itself  in the equation. 

We consider the grid  split up into two  subgrids,  indi- 
cated  in  Fig. 5 by dots and crosses  respectively. The dif- 
ference equation connects the values of the function  over 
each of the subgrids  separately, and so we shall consider 
only  one of the two  grids. As initial condition the values 
of the function are prescribed  on the two  rows  of the grid, 
t = 0 and t = h. We can give the solution of this initial 
value  problem  explicitly; that is, we express the value  of 
the solution at any point S in terms of the values  given 
along the two initial rows. One  can see at once that the 
value at a point of the row t = 2h is  uniquely  determined 
by only the three values at the points close to it in the two 
first  rows. The value at a point of the fourth row is  uniquely 
determined by the values of the solution at three particular 
points  in the second and thud rows, and through them it is 
related to certain  values  in the first  two  rows.  In  general to a 
point S there will correspond a certain region of depend- 
ence  in the first  two rows; it may  be found by drawing 
the lines x + t = const. and x - t = const., through the 
point S and extending  them until they meet the second 
row at the points a! and fl  respectively  (cf.  Fig. 6). The 
triangle Sap is  called the triangle of determination because 
all the values of u in it remain  unchanged  provided the 
values on the first  two  rows  of it are held  fixed. The sides  of 
the triangle are called lines of determination. 

lines of determination by u' and u', that is, 
If one  denotes the differences of u in the direction of the 

Figure 6 
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then the difference equation assumes the form 

u: = u;, 

i.e., along a line of determination the differences  with 
respect to the other  direction of determination are con- 
stant, and thus are equal to one of the given differences  be- 
tween the value at two  points on the first  two  rows. 
Moreover the difference us - u ,  is a sum of  differences ut 
along the determining  line z, so that using the remark 
above, we can obtain the final  result  (in  obvious notation): 

I% 

us = u, + u‘. (3) 
ax 

We  now let h go to zero, and let the prescribed  values 
on the second and first  rows  converge  uniformly to a 
twice continuously  differentiable  function, !(x), and the 
difference quotients u’/h\/z there converge  uniformly to a 
continuously  differentiable  function &x). Evidently the 
right-hand side of (3) goes  over  uniformly to the expression 

1 z + t  
f(x - t> + J - t  dt)  dt  (4) 

if S converges to the point (x, t). This  is the well-known 
expression for the solution of the wave equation (1) with 
initial values u(x, 0) = f(x) and &(x, O)/at = ?(x) + 
&g(x). Thus it is  shown that as h -+ 0 the solution of the 
difference equation converges to the solution of the dif- 
ferential equation provided the initial values  converge 
appropriately (as above). 

Section 2. On the  influence of the choice of mesh. The  do- 
mains of dependence of the difference and differential 
equations 

The relationships  developed  in  Section 1 suggest the fol- 
lowing  considerations. 

In the same  way that the solution of a linear  hyperbolic 
equation at a point S depends  only on a certain part of 
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lying  between the two  characteristics  drawn  through S, 
the solution of the difference equation has also at  the 
point S a certain  domain of dependence  defined by the 
lines of determination  drawn through S. In Section 1 the 
directions for the lines of determination of the difference 
equation coincided  with the characteristic  directions for 
the differential equation so that the domains of dependence 
coincided in the limit. This result,  however,  was  based 
essentially on  the orientation of the mesh in the (x,t)- 
plane, and depended furthermore on  the fact that a square 
mesh had been  chosen.  We shall now  consider a more 
general  rectangular mesh  with  mesh  size equal to h (time 
interval) in the t-direction and equal to kh (space  interval) 
in the x-direction,  where k is a constant. The domain of 
dependence for the difference equation, u t  E - uZz  = 0 
for this mesh will now either  lie  entirely  within the domain 
of dependence of the differential equation, d2u/at2 - 
a2u/dx2 = 0, or on the other hand will contain this latter 
region  inside its own domain  according as k < 1 or k > 1 
respectively. 

From this  follows a remarkable fact: if for the case 
k < 1 one  lets h -+ 0, then the solution to the difference 
equation in general cannot converge to  the solution of 
the differential equation. In this case a change in the initial 
values of the solution of the differential equation in the 
neighborhood of the endpoints a and p of the domain of 
dependence  (see  Fig. 7) causes,  according to formula (4), a 
change in the solution itself at the point (x, t).  For the 
solution of the difference equation at the point S, how- 
ever, the changes at the points a and /3 are not relevant 
since  these points lie outside of the domain of dependence 
of the difference  equations. That convergence  does  occur 
for the case k > 1 will  be  proved in Section 3. See for 
example  Fig. 9. 

If we consider the differential equation 



in two  space  variables, x and y ,  and time, t ,  and if  we 
replace it by the corresponding difference equation on a 
rectilinear grid, then  in contrast to the case of only  two 
independent  variables it is  impossible to choose the mesh 
division so that the domain of dependence of the dif- 
ference and differential  equations  coincide,  since the do- 
main of dependence of the difference equation is a quadri- 
lateral while that of the differential equation is a circle. 
Later (cf.  Section 4) we shall choose the mesh  division so 
that  the domain of determination of the difference  equa- 
tion contains that of the differential equation in  its interior, 
and shall show that once  again  convergence  occurs. 

On the whole  an  essential  result of this section  will  be 
that in the case of each  linear  homogeneous  hyperbolic 
equation of second order one  can  choose the mesh so that 
the solution of the difference  equation  converges to the 
solution of the differential  equation as h + 0, (see for 
instance  Sections 3,4, 7, 8). 

Section 3. Limiting values for arbitrary rectangular grids 

Now  we consider further the wave equation 

section of the initial rows t = 0 and t = h cut out by  lines 
of determination through S parallel to the sides of an 
elementary  rhombus. We assume that the initial values are 
prescribed in such a way that as t -+ 0 for fixed k the first 
difference quotients formed from them  converge  uniformly 
to given continuous functions on the line t = 0. The initial 
values  can  be  used to form an explicit  representation of 
the solution of the difference equation (corresponding to 
(3) in Section 1); however it is too complicated to yield a 
limiting  value  easily as h -+ 0. Thus we will try another 
approach which  will also  make it possible for us to treat 
the general  problem.24 

We multiply the difference  expression L(u) by (ul - us) 
and form the product using the following  identities: 

(U1 - U3)(U1 - 2uo + u,) 

= ( U l  - uo)2 - (uo - u,)’, (7) 

(ul - u3)(uZ - 2uO f u4) 

= (u, - Uo)2  - (uo - U,)’ - $[(u1 - uJ2 

+ (u1 - u4)’ - (U2 - u3)’ - (u4 - uJ21. (8) 

Then we obtain 

but impose it now on a rectangular  grid  with  time interval 2(ul - u3)L(u) = 7 1 - [ (u,  - uo)’ 
h and space interval kh. The corresponding  difference 
equation is 1 

h 2 (  3 
- (uo - u3121 + E [(ul - uJ2 

1 
L(u) = h5 (u1 - 2uo + us) 

( ~ 1  - ~4)’ - (UZ - U3)’ - (u4 - U J 2 1 .  (9) 

1 
“ 

p h 2  (uz - 2uo + u4) = 0, (6) 

where the indices  represent a “fundamental rhombus” 
with  midpoint Po and corners PI, P,,  P,, P4 (see  Fig. 8). 
According to the equation L(u) = 0 the value of the func- 
tion u at a point S can  be  represented by its values on that 

Figure 9 
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The product (9) is  now  summed  over all elementary  rhom- 
buses of the domain of determination, Sap. The quadratic 
difference  terms on the right-hand  side  always appear with 
alternate signs  in  two  neighboring  rhombuses so that they 
cancel out for any  two  rhombuses  belonging to the tri- 
angle Sap. Only the sums of squared differences  over the 
“boundary” of the triangle  remain, and we obtain the 
relation : 

keit ... etc.,” Mafh. Ann. 98, 192 ff. (1928).  where a similar transformation is 
*4 For the following see K. Friedrichs and H. Lewy, “ijber die Eindeutig- 
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Here u' and u' denote  differences  in the direction of deter- 
mination  defined  in  Section 1, while u designates the dif- 
ference of the functional values at two  neighboring  points 
on a mesh  line  parallel to the t axis. The range  in cs, 
over  which (u')' is taken  is the outermost boundary line 
Sa! and its  nearest  parallel  neighbor found by shifting the 
points of Sa! downward by the amount h. There is a similar 
range for (u')' in ESP, and so all of the differences, u', u', 
and u appear once and only  once. 

For the solution to the problem L(u) = 0 the right-hand 
side of (10) vanishes. The sum  over the initial rows I and I1 
which occurs  there  remains  bounded as h+ 0 (for fixed k); 
specifically it goes  over into an integral of the prescribed 
function along the initial line.  Consequently the sums  over 
Sa! and S@ in (10) also  remain  bounded. If now k 2 1 
as we must  require (see  previous  discussion),  then 1 - l/k' 
is  non-negative, and we find that the individual  sums 

extended  over  any  line of determination  whatever,  remain 
bounded. 

From this we can  derive the "uniform  continuity" 
(equicontinuity) (cf.  Section 4 of the first part of the paper) 
of the sequence of grid  functions  in all directions in the 
plane?5 since the values of u on the initial line are bounded, 
there must  exist a subset which  converges  uniformly to a 
limit  function u(x, t ) .  

Both the first and second  difference quotients of the func- 
tion u also  satisfy the difference equation L(u) = 0. Their 
initial values  can  be  expressed through the equation 
L(u) = 0 in  terms of the first,  second and third difference 
quotients of u involving initial values at points on the two 
initial lines I and I1 only. We require that they tend to 
continuous limit functions, that is, that the given initial 
values u(x, 0), ut(x,  0) be three times or respectively 
twice continuously  differentiable  with  respect to x. 

From this we can  apply the convergence  considerations 
set forth above to the first and second  difference quotients 
of u, as well as to u itself, and we can  choose a subsequence 
such that these  difference quotients converge  uniformly 
to certain  functions, which  must  be the first or respectively 
second  derivatives of the limit  function u(x, t). Hence the 
limit  function  satisfies the differential equation d2u/dt2 - 
d2uu/dx2 = 0 which results as the limit of the difference 
equation L(u) = 0; it represents  indeed the solution of the 
initial value  problem.  Since  such a solution is  uniquely 

path of two segments. SIS and SSa, where the former is parallel to  one line of 
15 If SI  and Se are two points at a distance 6, then one connects them by a 

determination and the  latter to the other. Then one finds the appraisal, 

Ius,  - U R I  5 Iusx - U S 1  + Ius - U,s* l  
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determined, every  subsequence  of  mesh  functions con- 
verges, and therefore the sequence  itself  converges to the 
limit  function. 

Section 4.  The wave equation in three variables 

We treat next the wave equation, 

and consider its relation to the observations  on the domain 
of dependence  discussed  in  Section 2. The domain of de- 
pendence of the differential equation (1 l) is a circular  cone 
with  axis parallel to the t-direction and with  apex  angle a!, 
where tan a! = l/fi. In any  rectilinear  grid  parallel to the 
axes  we introduce the corresponding  difference equation 

This equation relates the functional values of u at points 
of an elementary tetrahedron. In  fact  it  allows the value  of 
the function u at a point S to be  expressed  uniquely  in 
terms of the values of the function at certain  points of the 
two initial planes t = 0 and t = h. At  each point S we 
obtain a pyramid of determination which cuts out from 
the two  base  planes  two  rhombuses as domains of de- 
pendence. 

If we let the mesh  widths tend to zero,  keeping their 
ratios fixed, then we can  expect  convergence of the se- 
quence of  mesh functions to the solution of the differential 
equation only  provided the pyramid of determination 
contains the cone of determination of the differential 
equation in its interior. The simplest  grid  with  this property 
will  be  one  constructed  in  such a way that the pyramid of 
determination is tangent to the exterior of the cone of 
determination.  Our  differential equation is  chosen so that 
this occurs for a grid of cubes  parallel to the axes. 

The difference equation (12), in the notation of Fig. 10, 
assumes for such a grid the form: 

L(u) = -2 (u& - 2ufl + u,) - h5 (u1 - 2uo + U : J  
L 1 

h 

1 
- hT (u2 - 2ufl + 4 ,  (1 3) 

in which the functional value, u,, at the midpoint  actually 
cancels out. The values of the solution on the two initial 
planes  must  be the values of a function  having four con- 
tinuous derivatives  with  respect to x,yzt .  

For the convergence  proof we again  use the method  de- 
veloped  in  Section 3. We construct the triple sum 

h2 c 2 u 6  
- u, 
h 

L(u)  = 0 

for the solution to the difference equation, where the 
summation  is to be  extended  over  all  elementary  octahe- 
drons of the pyramid of determination  emanating  from 



a 
Figure 10 

the point S.  Then  almost exactly as  before we find that 
the values of the function u at the interior  points of the 
pyramid of determination cancel out in the summation 
and  that only the values on the two pyramids called F, 
and  on  the two base surfaces I and I1 remain. 

If we denote by u' the difference of the values of the 
function at two points connected by a line of an elementary 
octahedron,  then we can write the result as 

( U T  - ( U ' Y  = 0 ,  (14) 
F I 11 

where the sum is extended over all surfaces containing 
differences u';  each such difference is to  appear only once.26 
The double  sum over the two initial surfaces stays bounded 
since it goes over into  an integral of the initial values. 
Therefore the sum over the "surface of determination" 
F remains bounded. 

We now apply these results not to u itself, but  to its 
first, second and  third difference quotients, which them- 
selves satisfy the difference equation (13). Their  initial 
values can be expressed using only values on  the first two 
initial planes by means of (13) using first through fourth 
difference quotients. If w = w h  is one of the difference 
quotients of any  order  up to third  order, then we know 
that  the sum h2 (w'lh)' extended over a surface of 
determination remains bounded. From this it follows, 
through exactly the  methods used in Section 4 of the first 
part of the  paper, that  the function u and its first and 
second difference quotients are uniformly continuous 
(equicontinuous). Thus there exists a sequence of  mesh 
widths decreasing to zero such that these quantities, which 

2 8  The grid ratio  has  been  chosen in such a way  that the differences between 
values of  u appearing on the two neighboring surfaces in F do not occur, 
(as they did  in the general case in one dimension treated in Section 3). 

are bounded initially, converge to continuous limit func- 
tions and, in  fact, converge to the solution of the dif- 
ferential  equation and  to  the first and second derivatives of 
this  solution,  all exactly as we found earlier (Section 3). 

Appendix. Supplements and generalizations 

Section 5. Example of a  differential equation of first order 

We have seen in Section 2 that in the case when the region 
of dependence of the differential equation covers only a 
part of the region of dependence of the difference equation, 
the influence of the rest of the region is not included in the 
limit. We can demonstrate  this  phenomenon explicitly 
by the example of the differential equation of first order, 
&/at  = 0 if  we replace it by the difference equation 

2u, - u, + ui: = 0 .  (1 5 )  

In  the notation of Fig. 5 this becomes 

ut = -- u2 + u4 
2 (16) 

As before, the difference equation connects only the points 
of a submesh with one another. The initial value problem 
consists of assigning as initial values for u at points x = 2ih 
on  the row t = 0 the values, f Z i ,  assumed there by a con- 
tinuous function f(x). 

We consider the  point S at a distance 2nh up along the 
t-axis. It is easy to verify that  the solution u at S is repre- 
sented as 

As the mesh size decreases, that is as n "+ a, the  sum  on 
the right-hand side tends simply to  the value fo. This can 
be  demonstrated  from the continuity of f(x) and  from  the 
behavior of the binomial coefficients as n increases (see 
the following paragraph). 

Section 6. The equation of heat conduction 

The difference equation (16) of Section 5 can also  be in- 
terpreted as  the analogue of an entirely different dif- 
ferential  equation, namely the  equation of heat  conduction, 

In  any rectangular mesh with mesh spacing I and h in 
the time and space directions, respectively, the correspond- 
ing difference equation becomes 

In the limit as the mesh size goes to zero the difference 
equation preserves its  form only if 1 and h2 are decreased 23 1 
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proportionately. In particular if we set I = h2, then the 
value u,, drops out of the equation and the difference  equa- 
tion becomes 

with the auxiliary  condition 

g(x)  dx = 2 4 ; .  

u1 = --. 
The solution to (16) is given  by formula 

uz + u4 
2 (1 6 )  

I n  + iJ 

As the mesh  width  decreases,  a  point f on the x-axis 
is  always  characterized by the index 

2i = [ / h .   ( 2 0 )  

The mesh  width h is  related to the ordinate t of a particular 
point by 

2nh2 = t .  (21)  

We shall investigate  what  happens to formula (17) as 
h 4 0, that is n 4 a. Using (21) we write (17) in  the form 

For the coefficient  of 2hfzi = 2hf(f)  we use the abbrevia- 
tion 

The limiting  value of the coefficient,  which is usually 
determined by  using  Stirling's formula, we  will calculate 
here by considering the function gzn([ )  as the solution of 
an ordinary difference equation which approaches a dif- 
ferential equation as h 4 0. As the difference equation one 
finds 

(in  which  we  have written gh(f) instead of gzn(f)) .  Or 

gh( E )  satisfies the normalization  condition 

2 gh(t)").2h = 2 4 .  
i"7I 

This  sum  is  over the region of dependence  of the difference 
equation, and as h 4 0 this  covers the entire x-axis. 

It can  be  shown  easily that g h ( f )  converges  uniformly 
to the solution g(x) of the differential  equation 

232 g ' b )  = - g ( x ) x / t  
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From formula (22) after passing to the limit we  find 
n m  . 

which  is the known solution of the heat  conduction  equa- 
tion. 

The results of this  section  can  be  carried  over  directly 
to the case  of the differential equation, 

4""" a u  a 2 U  a% 
a t  axZ dy2 = O 

and so on for even more  independent  variables. 

Section 7.  The general homogeneous linear equation of 
second  order in the plane 

We consider the differential equation 

The coefficients are assumed to be twice  continuously 
differentiable  with  respect to x and t ,  while the initial 
values on the line t = 0 are assumed three times continu- 
ously  differentiable  with  respect to x .  We replace the dif- 
ferential equation by the difference equation 

L(u) = ufi(X, t )  - k2Uzz(X, t )  

+ auf + Bu, + Y U  = 0 (24)  

in a  grid  with  time mesh width h and space mesh width ch 
so that in a  neighborhood of the appropriate part of the 
initial value  line the inequality 1 - k2/c2 > E > 0 holds 
for the constant, c. The initial values are to be  chosen 
as in Section 3. 

For the proof of convergence we again transform the 
sum, 

h2 c 2 -  
h L(u) 

S us 

by  using  identities (7)  and (8). In addition to a  sum (see 
for example  (10))  over the doubled boundary of the tri- 
angle Sap (Fig, 6) one obtains a sum over the entire tri- 
angle Sap because of the variability of the coefficient k 
and the presence of lower order derivatives in the dif- 
ferential equation. By using the differentiability of k and 
the Schwarz  inequality  one  can  show that this latter sum  is 
bounded  from  above by 

where the constant C is  independent of the function u, 



the mesh  width h, and, in a certain  neighborhood of the 
initial line,  also  independent of the point S. 

Again  we can  estimate an upper  bound for h2 a! u2 
byz7 

where the same  properties  hold  for C1 and C ,  as are stated 
above for C.  

Thus we obtain an inequality of the form 

where D, for all points S and mesh widths h, is a fixed 
bound for the sums  over the initial line. 

As vertices of our triangles we choose a sequence of 
points So, S,, . , S, = S lying on a line  parallel to  the 
t-axis. By summing the corresponding  sequence of in- 
equalities (25) after multiplying by h we obtain the follow- 
ing  inequality 

(26) 

Now  if  we notice that one  can  express a difference u' 
or u\ in  terms of two  differences u and a difference u\ or 
respectively u', then we  see that the left-hand  side of (26) 
is  larger than the simpler form 

with a suitable constant C4. 
Then by  confining the discussion to a sufficiently small 

neighborhood, 0 5 t 5 nh = 6 of the initial line  where 6 
is small  enough so that 

C4 - nhC, = C5 > 0, 

we find  from (26), 

27  For proof one makes use of the inequality used in  Footnote 25. 

The bound given  by (27) when  combined  with (25) 
gives a bound on 

from which, as in  Section 3, one  can  prove the uniform 
continuity of u. 

We apply the inequality (25) now,  instead of to the 
function u itself, to its first and second  difference quotients, 
w, which also  satisfy  difference  equations  whose  second- 
order terms are the same as those of (24). In the rest of the 
terms there will appear lower order differences of u which 
cannot be  expressed in terms w, but they will appear in the 
above  argument in the form of quadratic double sums 
multiplied by h2. This is enough to let us reach the same 
conclusions for the difference equation for w as we found 
above for u. So we can  conclude from this the uniform 
continuity  (equicontinuity) and boundedness of the func- 
tion u and its first and second  derivatives.  Consequently a 
subsequence  exists  which  converges  uniformly to the solu- 
tion of the initial value  problem for the differential  equa- 
tion. Again from the uniqueness of the solution we find that 
the sequence of functions itself  converges. 

In all of this the assumption  must  be  made that the 
difference quotients up to third order involving  values on 
the two initial lines  converge to continuous limit  func- 
tions." 

Section 8. The initial value problem for an arbitrary linear 
hyperbolic differential equation of second order 

We shall now  show that the methods  developed so far are 
adequate for solving the initial value  problem for an 
arbitrary homogeneous  linear  hyperbolic  differential 
equation of second order. It suffices to limit the discussion 
to the case of three variables. The development  can be 
extended  immediately to the case of more  variables. It is 
easy to see that a transformation of variables  can  reduce 
the most  general  problem of this type to the following: 
a function u(x, y ,   t )  is to be found which  satisfies the dif- 
ferential equation 

uti - (au,, + 2bu,, + cu,,) 

+ aut + Pus + YU, + 6u = 0 ,  (28) 

and which,  together  with its first  derivative,  assumes  pre- 
scribed  values on the surface t = 0. The coefficients  in 
Eq. (28) are functions of the variables x,  y ,  and t and 
satisfy the condition 

a > 0, c > 0 ,  ac - b2 > 0.  

We assume that the coefficients are three times  dif- 
ferentiable  with  respect to x ,  y ,  and t ,  and that the initial 

coefficients of the differential equation, and further on the restriction to a 
$8  This assumption and also the assumptions on the differentiability of the 

sufficiently small region of the initial line can  be weakened in special cases. 233 
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values u and u, are respectively four and three times  con- 
tinuously  differentiable  with  respect to x and y. 

The coordinates x and y can  be  drawn  from a given 
point on  the initial plane in such a way that b = 0 there. 
Then of course in a certain  neighborhood of this point 
the conditions 

u - Ibl > 0 ,  c - Ib[ > 0 

hold. We restrict our investigation to this neighborhood. 
We can  choose a three times  continuously  differentiable 
function d > 0 so that 

: : : />s>o  (29) 

d - Ibl 

for some constant e. Then we put the differential equation 
into the form 

utt - (a - d)um - (c - d)u,, 

- ik(d + b)(uzz + 2uzu + uug) 

- %(d - b>(u,, - 2uzy + ugu) 

+ aut + Pus + YU, + 6~ = 0.  (30) 

We now construct in the space a grid of points, t = Ih, 
x +  y =  m k h , x -  y =  n k l ( l , m , n =  ... - 1 , 0 , 1 , 2 . . . )  
and we replace  Eq. (30) by a difference  equation L(u) = 0 
over this mesh.  We do this by assigning to each  point Po 
the following neighborhood: The point P a s  or the point 
P ,  which  lies at a distance h or - h respectively  along the 
t-axis  from Po; also the points Ply   Ps  which Lie in the 

234 same (x ,  y)-plane  with Po (see  Fig. 11). These  points  con- 

stitute an “elementary octahedron” with  vertices P a s ,  Pa, 
PI,   P, ,   P, ,   P, .  For each  grid  point  lying  in the interior of 
G we replace the derivatives  appearing  in Eq. (30) by 
difference quotients over the elementary octahedron 
about Po. 

We replace 

1 
utt by 2 ( ~ a ,  - 2 ~ 0  + u,) 

1 
uz, by (uz - 2 ~ 0  + 4 

1 
uwu by ( ~ 1  - 2 ~ 0  + u3) 

4 
uz, + 2uzy + u,, by ~5;” (ug - 2 ~ 0  + us) 

4 
uz, - 2 ~ 2 .  + u,, by i % 2  ( u j  - 2 ~ 0  + 117). 

The first  derivatives  in (30) are replaced  by the cor- 
responding  difference  quotients  in the elementary  octahe- 
dron. The coefficients  of the difference equation are given 
the values  assumed  by the coefficients  of the differential 
equation at the point Po. 

On the initial planes t = 0 and t = h we assume that the 
values of the function are assigned  in  such a way that as 
the mesh  size  approaches  zero for fixed k,  the function 
approaches the prescribed  initial  value, and the difference 
quotients  over the two  planes  up  through  differences  of 
fourth order converge  uniformly to the prescribed  deriva- 
tives. 

The solution of the difference equation L(u) = 0 at a 
point  is  uniquely  determined by the values on the two  base 
surfaces of the pyramid of determination  passing  through 
the point. 

To prove  convergence we construct a sum 

h3 2 L(u)  

over all the elementary  octahedrons of the pyramid of 
determination, and we transform it by using  identities 
(7) and (8). This gives one  space  summation  multiplied 
by h3 and quadratic in the first  difference quotients, and 
also over a double surface a sum which  is  multiplied  by 
h2 and contains the squares of all the difference  quotients 
of the type u,  - uo, u, - u,, u, - us. In this ex- 
pression  according to (29) the coefficients are larger than 
some  fixed  positive constant in all those cases  where the 
ratio l/k between the time and space mesh  sizes  is taken 
sufficiently  small. 

From here on one  can  proceed  exactly as before  (Sections 
7,4) and prove that the solution of the difference  equation 
converges to the solution of the differential equation. 

(Submitted to  Math. Ann. September I ,  1927) 

COURANT, FRIEDRICHS AND LEWY 


