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Alphabets and Strings (1.3)

Alphabets and Strings

I An alphabet is a finite nonempty set A of symbols.

I An n-tuple of symbols of A is called a word or a string on A.
In stead of writing a word as (a1, a2, . . . , an) we write simply
a1a2 . . . an.

I If u = a1a2 . . . an, then we say that n is the length of u and
we write |u| = n.

I We allow a unique null word, written 0, of length 0.

I The set of all words on the alphabet A is written as A∗.

I Any subset of A∗ is called a language on A or a language with
alphabet A.
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Alphabets and Strings, More

I If u, v ∈ A∗, then we write ûv for the word obtained by
placing the string v after the string u. For example, if
A = {a, b, c}, u = bab, and v = caa, then ûv = babcaa.

I Where no confusion can result, we write uv instead of ûv .
I It is obvious that, for all u, u0 = 0u = u, and that, for all

u, v ,w , u(vw) = (uv)w .
I If u is a string, and n ∈ N, n > 0, we write

u[n] = uu . . . u︸ ︷︷ ︸
n

We also write n[0] = 0.
I If u ∈ A∗, we write uR for u written backward; i.e., if

u = a1a2 . . . an, then uR = an . . . a2a1. Clearly, 0R = 0, and
(uv)R = vRuR for u, v ∈ A∗.
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The Concept of Finite Automata

I A finite automaton has a finite number of internal states that
control its behavior. The states function as memory in the
sense that the current state keeps track of the progress of the
computation.

I The automaton begins by reading the leftmost symbol on a
finite input tape, in a specific state called the initial state.

I If at a given time, the automaton is in a state qi , reading a
given symbol sj on the input tape, the machine moves one
square to the right on the tape and enters a state qk .

I The current state plus the symbol being read from the tape
completely determine the automaton’s next state.

I When all symbols have been read, the automaton either stops
at an accepting state or a non-accepting state.
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Definition of Finite Automaton

Definition. A finite automaton M consists of

I an alphabet A = {s1, s2, . . . , sn},
I a set of states Q = {q1, q2, . . . , qm},
I a transition function δ that maps each pair

(qi , sj), 1 ≤ i ≤ m, 1 ≤ j ≤ n, into a state qk ,

I a set F ⊆ Q of final or accepting states, and

I an initial state q1 ∈ Q.

We can represent the transition function δ using a state versus
symbol table.

5 / 34



Preliminaries (1)
Regular Languages (9)

Finite Automata (9.1)
Nondeterministic Finite Automata (9.2)
Additional Examples (9.3)
Closure Properties (9.4)

What Does This Automaton Do?

The finite automaton M has

I alphabet A = {a, b},
I the set of states Q = {q1, q2, q3, q4},
I the transition function δ defined by the following table:

δ a b

q1 q2 q4
q2 q2 q3
q3 q4 q3
q4 q4 q4

I the set F = {q3} as the accepting states, and

I q1 as the initial state.
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What Does Automaton M Do?

For strings aabbb, baba, aaba, and abbb, the finite automaton M

I accepts aabbb as M terminates in state q3, which is an
accepting state;

I rejects baba as M terminates in state q4, which is not an
accepting state;

I rejects aaba as M terminates in state q4, which is not an
accepting state;

I accepts abbb as M terminates in state q3, which is an
accepting state.
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Function δ∗(qi , u)

If qi is any state of M and u ∈ A∗, we shall write δ∗(qi , u) for the
state which M will enter if it begins in state qi at the left end of
the string u and moves across u until the entire string has been
processed.

I δ∗(q1, aabbb) = q3,

I δ∗(q1, baba) = q4,

I δ∗(q1, aaba) = q4,

I δ∗(q1, abbb) = q3.

8 / 34



Preliminaries (1)
Regular Languages (9)

Finite Automata (9.1)
Nondeterministic Finite Automata (9.2)
Additional Examples (9.3)
Closure Properties (9.4)

Definition of Function δ∗(qi , u)

A formal definition of function δ∗(qi , u) is by the following
recursion:

δ∗(qi , 0) = qi ,

δ∗(qi , usj) = δ(δ∗(qi , u), sj).

Obviously, δ∗(qi , sj) = δ(qi , sj).

We say that M accepts a word u provided that δ∗(q1, u) ∈ F .
M rejects a word u means that δ∗(q1, u) ∈ Q − F .
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Regular Languages

The language accepted by a finite automaton M , written L(M ),
is the set of all u ∈ A∗ accepted by M :

L(M ) = {u ∈ A∗ | δ∗(q1, u) ∈ F}.

A language is called regular if there exists a finite automaton that
accepts it.
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What Language Does This Automaton Accept?

The finite automaton M has

I the alphabet A = {a, b},
I the set of states Q = {q1, q2, q3, q4},
I the transition function δ defined by the following table:

δ a b

q1 q2 q4
q2 q2 q3
q3 q4 q3
q4 q4 q4

I the set F = {q3} as the accepting states, and

I q1 as the initial state.
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What Language Does Automaton M Accept?

The language it accepts is

{a[n]b[m] | n,m > 0}.

As the above language is accepted by a finite automaton, we say it
is a regular language.

12 / 34



Preliminaries (1)
Regular Languages (9)

Finite Automata (9.1)
Nondeterministic Finite Automata (9.2)
Additional Examples (9.3)
Closure Properties (9.4)

State Transition Diagram

I Another way to represent the transition function δ is to draw
a graph in which each state is represented by a vertex.

I The fact that δ(qi , sj) = qk is represented by drawing an
arrow from vertex qi to vertex qk and labeling it sj .

I The diagram thus obtained is called the state transition
diagram for the given automaton.

I See Fig. 1.1 in the textbook (p. 240) for the state transition
diagram for the finite automaton we just showed in the
previous two slides.

13 / 34



Preliminaries (1)
Regular Languages (9)

Finite Automata (9.1)
Nondeterministic Finite Automata (9.2)
Additional Examples (9.3)
Closure Properties (9.4)

Nondeterministic Finite Automata

I We modify the definition of a finite automaton to permit
transitions at each stage to either zero, one, or more than one
states.

I That is, we make the the values of the transition function δ
be sets of states, i.e., sets of elements of Q (rather than
members of Q).

I The devices so obtained are called nondeterministic finite
automata (ndfa).

I Sometimes the ordinary finite automata are then called
deterministic finite automata (dfa).
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Definition of Nondeterministic Finite Automaton

Definition. A nondeterministic finite automaton M consists of

I an alphabet A = {s1, s2, . . . , sn},
I a set of states Q = {q1, q2, . . . , qm},
I a transition function δ that maps each pair

(qi , sj), 1 ≤ i ≤ m, 1 ≤ j ≤ n, into a subset of states Qk ⊆ Q,

I a set F ⊆ Q of final or accepting states, and

I an initial state q1 ∈ Q.

15 / 34



Preliminaries (1)
Regular Languages (9)

Finite Automata (9.1)
Nondeterministic Finite Automata (9.2)
Additional Examples (9.3)
Closure Properties (9.4)

Definition of Function δ∗(qi , u)

The formal definition of function δ∗(qi , u) is now by:

δ∗(qi , 0) = {qi},
δ∗(qi , usj) =

⋃
q∈δ∗(qi ,u)

δ(q, sj).

I A ndfa M with initial state q1 accepts u ∈ A∗ if
δ∗(q1, u) ∩ F 6= ∅.

I That is, at least one of the states at which M ultimately
arrives belongs to F .

I L(M ), the language accepted by M , is the set of all strings
accepted by M .
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What Does This Automaton Do?

The nondeterministic finite automaton M has

I the alphabet A = {a, b},
I the set of states Q = {q1, q2, q3, q4},
I the transition function δ defined by the following table:

δ a b

q1 {q1, q2} {q1, q3}
q2 {q4} ∅
q3 ∅ {q4}
q4 {q4} {q4}

I the set F = {q4} as the accepting states, and

I q1 as the initial state.

I For the state transition diagram of M , see Fig. 2.1 in the
textbook (p. 243).
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What Strings Does Automaton M Accept?

M accepts a string on the alphabet {a, b} just in case at least one
of the symbols has two successive occurrence in the string.

Why?
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Viewing dfa as ndfa

I Strictly speaking, a dfa is not just a special kind of ndfa.

I This is because for a dfa, δ(q, s) is a state, where for a ndfa it
is a set of states.

I But it is natural to identify a dfa M with transition function
δ, with the closely related ndfa M̄ whose transition function δ̄
is given by

δ̄(q, s) = {δ(q, s)},

and which has the same final states as M .

I It is obviously that L(M ) = L(M̄ ).
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dfa is as expressive as ndfa

Theorem 2.1. A language is accepted by a ndfa if and only if it is
regular. Equivalently, a language is accepted by an ndfa if and only
if it is accepted by a dfa.

Proof Outline. As we have seen, a language accepted by a dfa is
also accepted by an ndfa.

Conversely, let L = L(M ), where M is an ndfa with transition
function δ, set of states Q = {q1, . . . , qm}, and set of final states
F . We will construct a dfa M̃ such that L(M̃ ) = L(M ) = L.

The idea of the construction is that the individual states of M̃ will
be sets of states of M .

20 / 34



Preliminaries (1)
Regular Languages (9)

Finite Automata (9.1)
Nondeterministic Finite Automata (9.2)
Additional Examples (9.3)
Closure Properties (9.4)

Constructing M̃

The dfa M̃ consists of

I the same alphabet A = {s1, s2, . . . , sn} of the ndfa M ,

I the set of states Q̃ = {Q1,Q2, . . . ,Q2m} which consists of all
the 2m subsets of the set of states of the ndfa M ,

I the transition function δ̃ defined by

δ̃(Qi , s) =
⋃
q∈Qi

δ(q, s),

I the set F of final states given by

F = {Qi | Qi ∩ F 6= ∅},

I the initial state Q1 = {q1}, where q1 is the initial state of M .
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Lemma 1. Let R ⊆ Q̃. Then

δ̃(
⋃

Qi∈R
Qi , s) =

⋃
Qi∈R

δ̃(Qi , s).

Proof. Let
⋃

Qi∈R Qi = Q. Then by definition,

δ̃(Q, s) =
⋃
q∈Q

δ(q, s)

=
⋃

Qi∈R

⋃
q∈Qi

δ(q, s)

=
⋃

Qi∈R
δ̃(Qi , s).

2
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Lemma 2. For any string u,

δ̃∗(Qi , u) =
⋃
q∈Qi

δ∗(q, u).

Proof. The proof is by induction on |u|. If |u| = 0, then u = 0 and

δ̃∗(Qi , 0) = Qi =
⋃
q∈Qi

{q} =
⋃
q∈Qi

δ∗(q, 0)
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Proof. (Continued) If |u| = l + 1 and the result is known for
|u| = l , we write u = vs, where |v | = l , and observe that, using
Lemma 1 and the induction hypothesis,

δ̃∗(Qi , u) = δ̃∗(Qi , vs) = δ̃(δ̃∗(Qi , v), s)

= δ̃(
⋃
q∈Qi

δ∗(q, v), s)

=
⋃
q∈Qi

δ̃(δ∗(q, v), s)

=
⋃
q∈Qi

⋃
r∈δ∗(q,v)

δ(r , s)

=
⋃
q∈Qi

δ∗(q, vs) =
⋃
q∈Qi

δ∗(q, u).

2
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Lemma 3. L(M ) = L(M̃ ).

Proof. u ∈ L(M̃ ) if and only if δ̃∗(Q1, u) ∈ F . But, by Lemma 2,

δ̃∗(Q1, u) = δ̃∗({q1}, u) = δ∗(q1, u).

Hence,

u ∈ L(M̃ ) if and only if δ∗(q1, u) ∈ F

if and only if δ∗(q1, u) ∩ F 6= ∅
if and only if u ∈ L(M )

2

Note that Theorem 2.1 is an immediate consequence of Lemma 3.
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Additional Examples

I Construct a dfa that accepts the language:

{(11)[n] | n ≥ 0}

I The vendor machine example. (Fig. 3.2 in textbook, p. 248)

I Construct an ndfa that accepts all and only strings which end
in bab or aaba.

I Construct an ndfa that accepts the language:

{a[n1]b[m1] . . . a[nk ]b[mk ] | n1,m1, . . . , nk ,mk > 0}.
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Closure properties

I To show that the class of regular languages is closed under a
large number of operations.

I To use deterministic or nondeterministic finite automata
whenever necessary, as the two classes of automata are
equivalent in expressiveness (Theorem 2.1).
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Nonrestarting dfa

Definition. A dfa is called nonrestarting if there is no pair q, s for
which

δ(q, s) = q1

where q1 is the initial state.

Theorem 4.1. There is an algorithm that will transform a given
dfa M into a nonrestarting dfa M̃ such that L(M̃ ) = L(M ).
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Constructing a nonrestarting dfa from a dfa

Proof of Theorem 4.1. From a dfa M , we can construct an
equivalent nonrestarting dfa M̃ by adding a new “returning initial”
state qn+1, and by redefining the transition function accordingly.
That is, for M̃ , we define
I the set of states Q̃ = Q ∪ {qn+1}
I the transition function δ̃ by

δ̃(q, s) =

{
δ(q, s) if q ∈ Q and δ(q, s) 6= q1
qn+1 if q ∈ Q and δ(q, s) = q1

δ̃(qn+1, s) = δ̃(q1, s)

I the set of final states F̃ =

{
F if q1 6∈ F
F ∪ {qn+1} if q1 ∈ F

To see that L(M ) = L(M̃ ) we observe that M̃ follows the same
transitions as M except whenever M reenters q1, M̃ enters qn+1.
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L ∪ L̃
Theorem 4.2. If L and L̃ are regular languages, then so is L ∪ L̃.
Proof. Let M and M̃ be nonrestarting dfas that accept L and L̃
respectively. We now construct a ndfa M̌ by “merging” M and
M̃ but with a new initial state q̌1. That is, we define M̌ by
I the set of states Q̌ = Q ∪ Q̃ ∪ {q̌1} − {q1, q̃1}
I the transition function δ̌ by

δ̌(q, s) =

{
{δ(q, s)} if q ∈ Q − {q1}
{δ̃(q, s)} if q ∈ Q̃ − {q̃1}

δ̌(q̌1, s) = {δ(q1, s)} ∪ {δ̃(q̃1, s)}

I the set of final states

F̌ =

{
F ∪ F̃ ∪ {q̌1} − {q1, q̃1} if q1 ∈ F or q̃1 ∈ F̃

F ∪ F̃ otherwise

Note that once a first transition has been selected, M̌ is locked
into either M or M̃ . Hence L(M̌ ) = L ∪ L̃. 2
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A∗ − L

Theorem 4.3. Let L ⊆ A∗ be a regular language. Then A∗ − L is
regular.

Proof. Let M be a dfa that accept L. Let dfa M̄ be exactly like
M except that it accepts precisely when M rejects. That is, the
set of accepting states of M̄ is Q − F . Then L(M̄ ) = A∗ − L. 2
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L1 ∩ L2

Theorem 4.4. If L1 and L2 are regular languages, then so is
L1 ∩ L2.

Proof. Let L1, L2 ⊆ A∗. Then, by the De Morgan identity, we have

L1 ∩ L2 = A∗ − ((A∗ − L1) ∪ (A∗ − L2))

Theorem 4.2 and 4.3 then give the result. 2
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∅ and {0}

Theorem 4.5. ∅ and {0} are regular languages.

Proof. ∅ is clearly the language accepted by any automaton whose
set of accepting states is empty.

For {0}, we can construct a two-state dfa such that F = {q1} and
δ(q1, a) = δ(q2, a) = q2 for every symbol a ∈ A, the alphabet.
Clearly this dfa accepts {0}. 2
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Every finite subset of A∗ is regular

Theorem 4.5. Let u ∈ A∗. Then {u} is a regular language.

Proof. Theorem 4.4 proves the case for u = 0. For the other case,
let u = a1a2 . . . al where l ≥ 1, a1, a2, . . . al ∈ A. We now construct
a (l + 1)–state ndfa M with initial state q1, accepting state ql+1,
and the transition function δ given by

δ(qi , ai ) = {qi+1}, i = 1, . . . , l

δ(qi , a) = ∅ for a ∈ A− {ai}, i = 1, . . . , l

Clearly L(M ) = {u}. 2

Corollary 4.7. Every finite subset of A∗ is regular. 2
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