Theory of Computation

Prof. Michael Mascagni

Florida State University
Department of Computer Science

Preliminaries (1)

Alphabets and Strings (1.3)

Alphabets and Strings

v

An alphabet is a finite nonempty set A of symbols.

An n-tuple of symbols of A is called a word or a string on A.
In stead of writing a word as (a1, a2, ..., a,) we write simply
aid2...ap.

If u=ajas...a,, then we say that n is the length of v and
we write |u| = n.

We allow a unique null word, written 0, of length 0.

The set of all words on the alphabet A is written as A*.

Any subset of A* is called a language on A or a language with
alphabet A.

N

34

Preliminaries (1)

Alphabets and Strings (1.3)

Alphabets and Strings, More

» If u,v € A*, then we write uv for the word obtained by
placing the string v after the string u. For example, if
A ={a,b,c},u= bab, and v = caa, then uv = babcaa.
» Where no confusion can result, we write uv instead of uv.
» It is obvious that, for all u, u0 = Ou = u, and that, for all
u,v,w, u(vw) = (uv)w.
» If uis astring, and n€ N,n > 0, we write

ull = gy
—
n
We also write nl% = 0.
> If ue A*, we write u” for u written backward: i.e., if
U=aias...apn, then uf = a,... aa;. Clearly, 0f =0, and
(uv)R = vRuR for u,v € A",

Finite Automata (9.1)
Nondeterministic Finite Automata (9.2)

Regular Languages (9) Additional e 3)

The Concept of Finite Automata

» A finite automaton has a finite number of internal states that
control its behavior. The states function as memory in the
sense that the current state keeps track of the progress of the
computation.

» The automaton begins by reading the leftmost symbol on a
finite input tape, in a specific state called the initial state.

> If at a given time, the automaton is in a state g;, reading a
given symbol s; on the input tape, the machine moves one
square to the right on the tape and enters a state qy.

» The current state plus the symbol being read from the tape
completely determine the automaton’s next state.

» When all symbols have been read, the automaton either stops
at an accepting state or a non-accepting state.

Finite Automat.
Nondetermini

Regular Languages (9) Additional

Definition of Finite Automaton

Definition. A finite automaton .# consists of
» an alphabet A = {s1,%,...,5},
> a set of states Q = {q1,q2, ..., qm},
» a transition function § that maps each pair
(gi,sj),1 <i<m,1<j<n,into a state qy,
» aset F C Q of final or accepting states, and
» an initial state ¢1 € Q.

We can represent the transition function ¢ using a state versus
symbol table.

Finite Automat.
Nondetermini

Regular Languages (9) Additional
Closure P

What Does This Automaton Do?

The finite automaton .#Z has
» alphabet A = {a, b},
» the set of states Q = {q1, 92, 93,qa},
» the transition function § defined by the following table:

o | a b

g1 | 92 qa
g | 92 Qg3
g3 | 94 Qg3
d4 | 94 g4

» the set F = {g3} as the accepting states, and
> g; as the initial state.

6 /34

Finite Automat.
Nondetermini

Regular Languages (9) Additional

What Does Automaton .# Do?

For strings aabbb, baba, aaba, and abbb, the finite automaton .#

» accepts aabbb as ./ terminates in state g3, which is an
accepting state;

» rejects baba as .Z terminates in state g4, which is not an
accepting state;

> rejects aaba as .# terminates in state g4, which is not an
accepting state;

P accepts abbb as .Z terminates in state g3, which is an
accepting state.

Finite Automat.
Nondetermini

Regular Languages (9) Additional

Function 6*(q;, u)

If g; is any state of . and u € A*, we shall write 6*(q;, u) for the
state which .# will enter if it begins in state g; at the left end of
the string u and moves across u until the entire string has been

processed.
» 0*(q1, aabbb) = gs,
» 0%(q1, baba) = qa,
» 5*(q1,aaba) = qa,
» 5*(q1, abbb) = gs.

itomata (9.2)

Regular Languages (9)

Closure

Definition of Function 6*(q;, u)

A formal definition of function 0*(g;, u) is by the following
recursion:

(S*(ql,O) = dqi,
5*((],', USJ') = 5(5*(qi: U),Sj).
Obviously, 6*(gi, s;) = 0(qi, sj).

We say that .# accepts a word u provided that *(q1, u) € F.
M rejects a word u means that 0*(q1,u) € Q — F.

Finite Automat.
Nondetermini

Regular Languages (9) Additional

Regular Languages

The language accepted by a finite automaton .7, written L(.Z),
is the set of all u € A" accepted by .#:

L(A#) = {uc A* | 5*(q1,u) € F}.

A language is called regular if there exists a finite automaton that
accepts it.

10/34

itomata (9.2)

Regular Languages (9)

Closure

What Language Does This Automaton Accept?

The finite automaton .# has
» the alphabet A = {a, b},
» the set of states Q = {q1, g2, 93,44},
» the transition function § defined by the following table:

o | a b

g1 | 92 qa
g | 92 Qg3
g3 | 94 Qg3
d4 | 94 g4

» the set F = {g3} as the accepting states, and
> g; as the initial state.

11 /34

Regular Languages (9) Additional
Closure

What Language Does Automaton .# Accept?

The language it accepts is

{al"lplm | 0 m > 0}.

As the above language is accepted by a finite automaton, we say it
is a regular language.

12 /34

Finite Automat.
Nondetermini: inite Automata (9.2)

Regular Languages (9) Additional 3)
Closure P

State Transition Diagram

» Another way to represent the transition function ¢ is to draw
a graph in which each state is represented by a vertex.

» The fact that §(qgj,s;) = qx is represented by drawing an
arrow from vertex g; to vertex g, and labeling it s;.

» The diagram thus obtained is called the state transition
diagram for the given automaton.

» See Fig. 1.1 in the textbook (p. 240) for the state transition
diagram for the finite automaton we just showed in the
previous two slides.

13 /34

Finite Automata (9.1)
Nondeterministic Finite Automata (9.2)

Regular Languages (9) Additional 3)
Closure P

Nondeterministic Finite Automata

> We modify the definition of a finite automaton to permit
transitions at each stage to either zero, one, or more than one
states.

» That is, we make the the values of the transition function ¢
be sets of states, i.e., sets of elements of Q (rather than
members of Q).

» The devices so obtained are called nondeterministic finite
automata (ndfa).

» Sometimes the ordinary finite automata are then called
deterministic finite automata (dfa).

14 /34

tomata (9.2)

Regular Languages (9)

Closure

Definition of Nondeterministic Finite Automaton

Definition. A nondeterministic finite automaton .7 consists of
» an alphabet A = {s1,5,...,5,},

> a set of states Q = {q1,G2, ..., qm},

» a transition function ¢ that maps each pair
(gi,sj),1 <i<m,1<j<n,into a subset of states Q;, C Q,

> aset F C Q of final or accepting states, and
» an initial state g1 € Q.

15 /34

Finite Automa

Automata (9.2)

Regular Languages (9) £ i 3)
Closure

Definition of Function 6*(q;, u)

The formal definition of function ¢*(g;, u) is now by:

5(a,0) = {ai}.
Sanus) = | da.s).

q€8*(qi,u)

> A ndfa .# with initial state g1 accepts u € A* if
§*(q1, u) N F # 0.

» That is, at least one of the states at which .#Z ultimately
arrives belongs to F.

» L(.#), the language accepted by .7 , is the set of all strings
accepted by .Z .

16 /34

Finite Autom.
Nondetermin Automata (9.2)

Regular Languages (9) Additi).3)
Closure P

What Does This Automaton Do?

The nondeterministic finite automaton .# has
the alphabet A = {a, b},
the set of states Q = {qg1, 92,43, qa},

>
>
>

v

the transition function J defined by the following table:
0 | a b
a1 | {q1,92} {1, g3}
92 | {94} 0
g3 | 0 {qa}
s | {qa} {qa}

the set F = {q4} as the accepting states, and

g1 as the initial state.

For the state transition diagram of .#, see Fig. 2.1 in the
textbook (p. 243).

17 /34

Finite Automata (9
Nondeterministic Fi

Regular Languages (9)

What Strings Does Automaton .# Accept?

M accepts a string on the alphabet {a, b} just in case at least one
of the symbols has two successive occurrence in the string.

Why?

18 /34

ite Automata (9.2)

Regular Languages (9) £ s (9.3)

Viewing dfa as ndfa

> Strictly speaking, a dfa is not just a special kind of ndfa.

» This is because for a dfa, d(q, s) is a state, where for a ndfa it
is a set of states.

» But it is natural to identify a dfa .# with transition function
0, with the closely related ndfa .# whose transition function §
is given by

5(q, 5) = {5((], 5)}v
and which has the same final states as .# .
> It is obviously that L(.Z) = L(.%).

19/34

Finite /\Htoma

Finite Automata (9.2)

Regular Languages (9)

dfa is as expressive as ndfa

Theorem 2.1. A language is accepted by a ndfa if and only if it is
regular. Equivalently, a language is accepted by an ndfa if and only
if it is accepted by a dfa.

Proof Outline. As we have seen, a language accepted by a dfa is
also accepted by an ndfa.

Conversely, let L = L(.#'), where .7 is an ndfa with transition
function 0, set of states Q = {q1,...,qm}, and set of final states
F. We will construct a dfa .# such that L(A) = L(A)= L.

The idea of the construction is that the individual states of .# will
be sets of states of ./Z .

20 /34

Automata (9.2)

Regular Languages (9) £ 3)
Closure

Constructing M

The dfa .# consists of

>
>

the same alphabet A = {s1,s,,...,s,} of the ndfa ./,

the set of states Q = {Q1, @2, ..., Qom} which consists of all
the 2™ subsets of the set of states of the ndfa .Z,

the transition function 6 defined by

S(Q,’,S) - U 5(q75)7

qgeQ;

the set .7 of final states given by

F ={Qi | QinF # 0},

the initial state Q1 = {q1}, where gy is the initial state of ./ .

21/34

Finite Automata (9.1)
Automata (9.2)

Regular Languages (9)

Closure

Lemma 1. Let R € Q. Then

o Q.= Qs

QieR QieR

Proof. Let UQ,_GR @; = Q. Then by definition,
5Q.s) = Jdas)
= U U

QiER geQ;

= U S(Q,‘,S).

QiR

Finite Automata (9.1)
Nondeterministic Finite Automata (9.2)

Regular Languages (9) Additional Examples (9.3)
Closure Properties (9.4)

Lemma 2. For any string u,
“(Qu)=J 0*(q,u
qEQ;
Proof. The proof is by induction on |ul. If [u| =0, then u =0 and

(@0 =Q=J {at=U (a0

qeQ; qeqQ;

23 /34

Regular Languages (9)

Proof. (Continued) If |u| = /4 1 and the result is known for
\u| =/, we write u = vs, where |v| =/, and observe that, using
Lemma 1 and the induction hypothesis,

5(Qru) = 5(Quvs) = 5(5*(Qiv).s)

(U d(av)9)

qeQ;

= U #7(@v.9)

qeQ;

= U U o(r,s)

qeQ;i red*(q,v)

= U *(q, vs) = U 6*(q, u).

qe Q/' qe Qi

5
5

24 /34

Regular Languages (9)

Lemma 3. L(Z) = L(.A).
Proof. u e L(.Z) if and only if 6*(Qy,u) € .Z. But, by Lemma 2,

6 (Quyu) = §*({@}, u) = 6" (au, u).
Hence,
ue L(.A) ifandonlyif 6*(q,u)e€.F
if and only if &6"(q1,u)NF #0
if and only if w e L(.A)

O

Note that Theorem 2.1 is an immediate consequence of Lemma 3.

25 /34

Regular Languages (9)

Additional Examples

» Construct a dfa that accepts the language:

{ant | n> o0

» The vendor machine example. (Fig. 3.2 in textbook, p. 248)

» Construct an ndfa that accepts all and only strings which end
in bab or aaba.

» Construct an ndfa that accepts the language:

{a[”l]b[mll ... almd plmid | ni,my, ..., ng, mg > 0}

26

34

Finite Automata (9.1)
Nondeterministic Finite Automata (9.2)

Regular Languages (9) Additional Examples (9.3)
Closure Properties (9.4)

Closure properties

» To show that the class of regular languages is closed under a
large number of operations.

» To use deterministic or nondeterministic finite automata
whenever necessary, as the two classes of automata are
equivalent in expressiveness (Theorem 2.1).

27 /34

Finite Automat:
Nondetermini: ini ’\ntomata (9.2)

Regular Languages (9) Additional Exa
Closure Properties (9 4)

Nonrestarting dfa

Definition. A dfa is called nonrestarting if there is no pair g, s for
which
5((], S) =q1

where g; is the initial state.

Theorem 4.1. There is an algorithm that will transform a given
dfa ./ into a nonrestarting dfa .# such that L(.Z) = L(.Z).

28 /34

Finite Aut
Nondeterr itomata (9.2)

Regular Languages (9) Additiona
Closure Properties (

Constructing a nonrestarting dfa from a dfa

Proof of Theorem 4.1. From a dfa .#, we can construct an
equivalent nonrestarting dfa ./ by adding a new “returning initial
state g,+1, and by redefining the transition function accordingly.
That is, for %/N we define

> the set of states Q = Q U {Gn+1}

> the transition function é by

S(5) — (5((], S) If q € Q and (5((]75) # ql
@ gny1 if g€ Qand d(q,s)=aq1
S(Qn+1a5) = S(qlas)

. = [F if g & F
> p—
the set of final states F { FU{qni} if qieF
To see that L(.#) = L(.#') we observe that .# follows the same

transitions as .# except whenever .# reenters q1, .# enters q,i1.
D 29 /34

Finite Autor
Nondetermir utomata (9.2)

Regular Languages (9)

Closure Properties (9.4)

LUL

Theorem 4.2. If [and [are regular languages, then so is L U L.
Proof. Let .4/ and ./ be nonrestarting dfas that accept [and [
respectively. We now construct a ndfa A by “merging” ./ and
4 but with a new initial state gi- That is, we define .# by

> the set of states @ = QU Q U {d1} — {91, 61}
> the transition function & by

y - {6(g,9)} if g€ Q—{q1}
o9:5) = { {5(q,s)} if ge @— {4}

3(d1,s) = {0(qr,s)}U{d(d1.s)}

» the set of final states

F FUFU{ql} {g1,G1} ifgi €F or c"llel—:
FUF otherwise
Note that once a first transition has been selected, A is locked

into either .2 or .#/. Hence L(.#/) = LUL. O

30/34

Finite Automata (9
Nondetermini: inite Automata (9.2)
Regular Languages (9) Additional Exa 3

Closure Properties (9 4)

Theorem 4.3. Let L C A* be a regular language. Then A* — L is
regular.

Proof. Let .7 be a dfa that accept L. Let dfa ./ be exactly like
/I except that it accepts precisely when .7 rejects. That is, the
set of accepting states of .7 is Q — F. Then L(.Z)=A"—L. O

31/34

Finite Automat:
Nondetermini

Regular Languages (9) Additional Exa
Closure Properties (9 4)

LiNnL,

Theorem 4.4. If [; and L, are regular languages, then so is
LiNLs.

Proof. Let L1, Ly, C A*. Then, by the De Morgan identity, we have
LiNly, =A" — ((A* — Ll) U (A* - L2))

Theorem 4.2 and 4.3 then give the result. O

32/34

Finite Automat:
Nondetermini: ini ’\ntomata (9.2)

Regular Languages (9) Additional Exa
Closure Properties (9 4)

0 and {0}

Theorem 4.5. () and {0} are regular languages.

Proof.) is clearly the language accepted by any automaton whose
set of accepting states is empty.

For {0}, we can construct a two-state dfa such that F = {g:} and

9(q1,a) = 0(qg2, a) = go for every symbol a € A, the alphabet.
Clearly this dfa accepts {0}. O

33/34

Finite At
Nondetermi

Regular Languages (9) Additional Exa
Closure Properties (9

Every finite subset of A* is regular

Theorem 4.5. Let u € A*. Then {u} is a regular language.

Proof. Theorem 4.4 proves the case for u = 0. For the other case,
let v =ajay...a where | > 1,a1,a»,...a3 € A. We now construct
a (I + 1)-state ndfa .# with initial state g1, accepting state g/ 1,

and the transition function J given by

5(Cli73i) - {qf+l}7 = 17' /
d(gi,a) = 0 foracA—{a}, i=1,...,/

Clearly L(.#') = {u}. O
Corollary 4.7. Every finite subset of A* is regular. O

34 /34

	Preliminaries (1)
	Alphabets and Strings (1.3)

	Regular Languages (9)
	Finite Automata (9.1)
	Nondeterministic Finite Automata (9.2)
	Additional Examples (9.3)
	Closure Properties (9.4)

