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Context-Free Production

Let 7/, T be a pair of disjoint alphabets. A context-free production
on ¥, T is an expression
X —h

where X € 7 and he (VU T)*".
» The elements of ¥ are called variables, and the elements of T

are called terminals.

» If P stands for the production X — hand u,v € (¥ U T)",
we write
u =p v

to mean that there are words p, g € (¥ U T)* such that
u = pXq and v = phq.
» Productions X — 0 are called null productions.
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Context-Free Grammar

A context-free grammar [ with variables 7" and terminals T
consists of a finite set of context-free productions on 7', T
together with a designated symbol S € ¥ called the start symbol.

» Collectively, the set 7" U T is called the alphabet of I'.

» If none of the productions of [ is a null production, I is called
a positive context-free grammar.
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Derivation

If I is a context-free grammar with variables 7" and terminals T,
and if u,v e (7 UT)" we write

u =r v
to mean that v =p v for some production P of ['. We write
u =r v
to mean there is a sequence vy, ..., Uy, where u = uq, U, = v, and
Ui =r UuUjy1 for1 <i<m.

The sequence w1, ..., uy is called a derivation of v from u inT.

» The number m is called the length of the derivation.

» The subscript [ in = may be omitted when no ambiguity
results.
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Context-Free Language

> Let [ be a context-free grammar with terminals T and start
symbol S, we define

LN ={ueT"|S =" u.

L(T) is called the language generated by I'.

> A Language L C T* is called context-free is there is a
context-free grammar [ such that L = L(I").
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Context-Free Language, An Example

A simple example of a context-free grammar [ is given by
v ={S}, T ={a, b}, and the productions

S — aSb

S — ab

» Clearly, we have

L(r) = {al" bl | n > 0}.

> That is, the language {al"bl"l | n > 0} is context-free.

» Note that L(I) is not regular.

> Later we shall show that every regular language is
context-free.
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Positive Context-Free Grammar

» Recall that if none of the productions of a context-free
grammar [ is a null production, I is called a positive
context-free grammar.

» If [ is a positive context-free grammar, then 0 ¢ L().

» The following algorithm transforms a given context-free
grammar [ into a positive context-free grammar I such that
L(T) = L(T) or L(I') = L(T) U {0}.

1. First we compute the kernel of T,
ker(M ={Vev |V =f 0}

2. Then we obtain I by first adding all productions that can be
obtained from the productions of " by deleting from the
righthand sides one or more variables belonging to ker(I") and
then deleting all null productions.
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Positive Context-Free Grammar, An Example

Consider the context-free grammar [ with productions

S XYYX, S—aX, X—0, Y—=O0.

We obtain a positive context-free grammar I by
1. first computing the kernel of T,

ker(l) = {X,Y,S}.
2. then obtaining the productions of I as the following:
S—=>XYYX, §—=YYX, §— XYX, §— XYY,
S—=>YX, S=>YY, S—= XX, §S—= XY,

S—>X, S=>Y,

S—>aX, S —a 8/35
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Positive Context-Free Grammar, Continued

Theorem 1.2. A language L is context-free if and only if there is a
positive context-free grammar I such that

L=L( or L=L(r)u{o}.

Moreover, there is an algorithm that will transform a context-free
grammar A for which L = L(A) into a positive context-free
grammar [ that satisfies the above equation. O
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[-tree

Let I be a positive context-free grammar with alphabet 7 U T,
where T consists of the terminals and 7 is the set of variables.
A tree is called a I-tree if it satisfies the following conditions:

1. the root is labeled by a variable;
2. each vertex which is not a leaf is labeled by a variable;

3. if a vertex is labeled X and its immediate successors (i.e.
children) are labeled a1, ap, ..., ay (reading from left to

right), then X — agan ... ay is a production of I'.

Let .7 be a I-tree, and let v be a vertex of I which is labeled by
the variable X. We shall speak of the subtree .7V of .7
determined by v. The vertices of .7 are v, its immediate
successors in .7, their immediate successors, and so on. Clearly,
TV is itself a [-tree.
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Derivation Tree

> If .7 is a [-tree, we write (.7) for the word that consists of
the labels of the leaves of .7 reading from left to right.

> If the root of .7 is labeled by the start symbol symbol S of '
and if w = (.7), then .7 is called a derivation tree for w inT.

> See the tree shown in Fig. 1.1 for a derivation tree for al*pl!
in the grammar shown in the same figure

Theorem 1.3. If [ is a positive context-free grammar, and
S = w, then there is a derivation tree for w in I'. O
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Leftmost Derivation and Rightmost Derivation

Definition. We write u =, v in [ if u = xXy and v = xzy, where
X — z is a production of [ and x € T*. If instead, x € (¥ U T)*
but y € T*, we write u =, v. O

» When u =, v, it is the leftmost variable in u for which a
substitution is made. whereas when u =, v, it is the
rightmost variable in u.

> A derivation
Uy =) Up =) U3 = ...Up

is called a leftmost derivation, and then we write u; = uj.
Similarly, a derivation

U] =y Up =y U3 =y ... Uy

is called a rightmost derivation, and we write u; =7 u,.

12/35
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Leftmost Derivation and Rightmost Derivation, Examples

Consider the following positive context-free grammar
S —aXbYy, X —=aX, X—a Y —=>bY, Y—0b

and consider the following three derivations of al* bl from S:

1. S = aXbY = aPIXpY = BIXpY = 4py = Hpl2lYy —
[4] 3]
a

2. S = aXbY = a2Xxpy = I xplAy = BlIxplly =
2181 xp13] = 541 p13]

3. S = aXbY = axbl2y = axpBl = 2l2IxpBl = BIxpBI =
[4] pl3]
a

The first derivation is leftmost, the last is rightmost, and the
second is neither.

13 /35



ars and Their Derivation Trees (10.1)
)
(10.3)

Context-Free Languages (10)

g Lemma (10.4)

Leftmost Derivation and Rightmost Derivation, Continued

Theorem 1.4. Let [ be a positive context-free grammar with start
symbol S and terminals 7. Let w € T*. Then the following
conditions are equivalent:

1.

w e L(I);

2. there is a derivation tree for w in [';
3.
4. there is a rightmost derivation of w from S in .

there is a leftmost derivation of w from S in [;

14 /35
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Branching Context-Free Grammar

Definition. A positive context-free grammar is called branching if
it has no productions of the form X — Y, where X and Y are
variables. O

Theorem 1.5. There is an algorithm that transforms a given
positive context-free grammar [ into a branching grammar A such
that L(A) = L(T).

Proof. We transform [ into A in two steps. First, we eliminate
from I all the “cycling” productions

)(1—))(27 X2—>X3, Xk—>X1

and replace variables Xi, Xo, ..., X in the remaining productions
of [ by a new variable X. Next, we eliminate production X — Y/,
but add to I productions X — x for each word x € (¥ U T)* for
which Y — x is a production of T. O
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Path in a [-tree

A path in a -tree .7 is a sequence a1, ao, ..., ay of vertices of .7
such that a;1 is an immediate successor of «; for
i=1,2,...,k— 1. All of the vertices on the path are called
descendants of «.

We may have two different vertices «, 5 lie on the same path in
the derivation tree .7 and are labeled by the same variable X. In
such a case one of the vertices is a descendant of the other, say, 3
is a descendant of .. Therefore, .7 is not only a subtree of .7
but also of .7“.

We wish to consider two important operations in the derivation
tree .7 which can be performed in this case. The two operations
are called pruning and splicing.
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Pruning and Splicing

» Pruning is the operation that removes the subtree .7% from
the vertex o and to graft the subtree .77 in its place.

» Splicing is the operation that removes the subtree .7 from
the vertex (3 and to graft an exact copy of .7 % in its place.

» Because o and [ are labeled by the same variable, the trees
obtained by pruning and splicing are themselves derivation
trees.

» See Fig. 1.3 in the textbook for illustrations of pruning and
splicing.

17/35
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Pruning and Splicing, Continued

Let .7, and .7, be trees obtained from a derivation tree .7 in a
branching grammar by pruning and splicing, respectively, where o
and [ are as before.

We have (.7) = r(.7“)r, for words r1, r» and (7)) = g1 (7"
for words g1, g». Since «a, 3 are distinct vertices, and since the
grammar is branching, g; and g» cannot both be 0. (That is,

q192 # 0.)
Also,

(T) = n{TP)ry and (Z) = ngl (T .
Since g2 # 0, we have |(77)| < [(7")| and hence
[(Tp)| < (T

18 /35
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Pruning and Splicing, Continued

Theorem 1.6. Let I be a branching context-free grammar, let
u e L(), and let u have a derivation tree .7 in [ that has two
different vertices on the same path labeled by the same variable.
Then there is a word v € L(I') such that |v| < |ul.

Proof. Since u = (.7), we need only take v = (.7). O
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Regular Grammars

Definition. A context-free grammar is called regular if each of its
productions has one of the two forms

U—aV o U—a

where U, V are variables and a is a terminal. O

Theorem 2.1. If L is a regular language, then there is a regular
grammar [ such that either L = L(I') or L = L(I") U {0}. O
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A Regular Grammar for Every Regular Language

Proof of Theorem 2.1. Let L = L(.#'), where .7 is a dfa with

states g1, ...Qm, alphabet {s1,...,s,}, transition function ¢, and
the set of accepting states F. We construct a grammar [ with
variables g1, ... gm, terminals s;,...,s,, and start symbol g;. The

productions are
1. gi — s,q; whenever §(qgj,s;) = g;, and
2. q; — s, whenever 6(qg;,s,) € F.

Clearly the grammar [ is regular. To show that L([') = L — {0} we
suppose u € L,u = s;sj,...s;s;,, # 0. Thus, 6*(q1,u) € F, so
that we have

5(‘71:5/1) = qj, 5(qjlvsf2) =dp, - 5(qj/75i/+1) =4qj, € F.

21/35
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A Regular Grammar for Every Regular Language,
Continued

Proof of Theorem 2.1. (Continued) By construction, grammar [
contains the productions

a1 — SiGjys 9y =7 Silps -5 iy 7 Sijs Qi 77 Sipg
Thus, we have in I
q1 = Siqj, = SiSiqj, = -+ = SiySiy - - - Si;qj; = SiSi - - - SiiSiy, = U

so that u € L(IN).

Conversely, suppose that u € L(I'), u = s;sj, ...5s;s,,. Then there
is a derivation of u from g1 in I'. By construction, I has all the
necessary productions to simulate the transition 6*(q1, u) € F in
the dfa .Z . O
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A Regular Language for Every Regular Grammar

Theorem 2.2. Let [ be a regular grammar. Then L(I') is a regular

language.
Proof. Let I have the variables V1, V>, ..., Vk, where S = V is
the start symbol, and terminals s1, s, ...,s,. Since [ is regular, its

productions are of the form V; — s,V; and V; — s,. We now
construct the following ndfa .# which accepts precisely L(I').
» The states are Vi, Vs, ... Vi and an additional state W. V4 is
the initial state and W is the only accepting state.
» For transition functions, let

01(Vi,sr) = {V;| Vi — s Vjis a production of I'},
: B {W} if V; — s, is a production of
02(Viisr) = { 0 otherwise.

Then define the transition function § as
5(\/17 Sr) = 61(\/1'3 Sr) U 52(\//': Sr)-
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A Regular Language for Every Regular Grammar

Proof of Theorem 2.2. (Continued) Now let
U=-s;5sp...5sj., € L(I'). Thus we have
Vl = Sj Vj1 = Si; Si, Vj2 =% SiiSiy - -+ Si) \/,', = SiySip - - - SiiSiiq

where [ contains the productions

Vi— Siy Vju le — Si VJ'27 Vj/-1 = Sj Vj/? Vj/ = Sij
Thus,
Vj1 € 5(\/1?5/'1)7 Vj2 € 5(\/1'175/'2)7 ., We 5(\/1'/75"/“)'

Thus W € 6*(Vi,u) and v € L(.Z).

Conversely, if u = s;s;,...s;s;,, is accepted by .7, then there
must be a sequence of transitions of the form above. Hence, the
productions listed above must all belong to I', so that there is a
derivation of u from V. O

24 /35



Context-Fre ars and Their Derivation Trees (10.1)

Context-Free Languages (10)

g Lemma (10.4)

Every Regular Language Is Context-free

Theorem 2.3. A language L is regular if and only if there is a
regular grammar [ such that either L = L([') or L = L(I") U {0}. O

Corollary 2.4. Every regular language is context-free. O
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Right-linear Grammars

Definition. A context-free grammar is called right-linear if each of
its productions has one of the two forms

U—xV o U-—x,

where U, V are variables and x # 0 is a word consisting entirely of
terminals. O

Thus, a regular grammar is just a right-linear grammar in which
x| =1.
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Right-linear Grammars, Continued

Theorem 2.5. Let [ be a right-linear grammar. Then L(T) is
regular.
Proof. We replace each production of [ of the form

U—aa...apV, n>1
by the productions
U—arlr, 41— aly, Zyo—an-1Zn-1, Zn-1— apV,

where 71, ..., Z,_1 are new variables. Do similar replacement for
production

U—aiar...a,, n>1
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Context-Free Languages (10)

)
m (10.3)
g Lemma (10.4)

Chomsky Normal Form

Definition. A context-free grammar [ with variables 7" and
terminals T is in Chomsky normal form if each of its productions
has one of the forms

X—=YZ or X —a,

where X, Y. Z €V andae T. O

Theorem 3.1. There is an algorithm that transforms a given
positive context-free grammar I into a Chomsky normal form
grammar A such that L(') = L(A). O
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Chomsky Normal Form, Continued

Proof of Theorem 3.1. Using Theorem 1.5, we begin with a
branching context-free grammar [ with variable 7" and terminals
T. We then perform the following two steps:

1. a new variable X; is introduced for each a € T, and for each
production X — x € ', [x| > 1, we replace it with X — x’
where x’ is obtained from x by replacing each terminal a by
the corresponding new variable X;;

2. For productions of the form X — X1 X5 ... X, k > 2, we

introduce new variables Z;, 7>, ..., Zx_» and replace the
production with the following
X — X121

Zikz — Xk—2Zk—2

Zk—2 — Xk—lxk' O 29/35
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Chomsky Normal Form, Examples

Consider the following branching context-free grammar
S—aXbY, X —aX, Y —=bY, X—a Y —b

The resulting grammar, respectively, from the two steps is:
1.
S = XoXXpY, X = X, X, Y = XpY,

X—a Xyo—a Y—=b X,—b
2. For the production S — X, XX, Y, we replace it with the

following:
S — X4
Z1 — X2
Zy — XpY.

The resulting grammar is in Chomsky normal form.
30/35
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Bar-Hillel's Pumping Lemma

An application of Chomsky normal form is in the proof of the
following theorem, which is an analogy for context-free languages
of the pumping lemma for regular languages.

Theorem 4.1. Let I be a Chomsky normal form grammar with
exactly n variables, and let L = L(I'). Then, for every x € L for
which |x| > 2", we have x = r1q1rqar2, where

1. \qqu2| <2m
2. 12 #0;
3. forall i >0,rng rglr, € L.

31/35



mmars and Their Derivation Trees (10.1)
0.2

Context-Free Languages (10)

A Small Lemma

Lemma. Let S = u, where [ is a Chomsky normal form
grammar. Suppose that .7 is a derivation tree for v in I" and that
no path in .7 contains more than k nodes. Then |u| < 2¢72.

Proof. First, suppose, that .7 has just one leaf labeled by a
terminal a. Then u = a, and .7 just have two nodes, S and a, and
one path of length 1 < k = 2. Clearly |u| =1 < 2272,

Otherwise, since I is in Chomsky normal form, the root of .7 is
labeled by S where S — XY for variables X and Y. Let .77 and %
be the two trees whose roots are labeled by X and Y, respectively.
In each of .77 and .7, the longest path must contain < k — 1
nodes. Proceeding inductively, we may assume that each of the
Ti, P> have < 2573 leaves. Hence

lu] < 2K=3 4 2k=3 = pk2,

32/35
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Bar-Hillel's Pumping Lemma, Proof

Proof of Theorem 4.1. Let x € L, where |x| > 2", and let .7 be a
derivation tree for x in . Let a1, ap, ..., ap, be the longest path
in 7. Then m> n-+2 and a,, is a leaf. This is because, if

m < n+ 1, by the small lemma, |x| < 2" — 1 is a contradiction.

Note that a1, ap, ..., amn_1 are all labeled by variables, while a, is
labeled by a terminal. Let 71,72, ..., 7n+2 be the path consisting
of the vertices apm_pn1,m—n-2,.- -, Cm_1, m.

Since there are only n variables in the alphabet of I, the
pigeon-hole principle guarantees that there is a variable X that
labels two different vertices: o = v; and 5 = ~;, where j < j. (See
Fig. 4.2.)
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Bar-Hillel's Pumping Lemma, Proof

(Proof of Theorem 4.1., Continued)
Hence, the operations of pruning and splicing can be applied. Let
r = (79). Then we have, for example,

< p> = nrnr,
(Z) = nalra n,
(F)s) = nalrayn

Thatis, r1 g} r gb r» € L(T),i > 0. Note that the path in .7
consists of < n+ 2 nodes, so by the small lemma
g1 1 @2 = g1 (T7) @ = (T < 2" m

34 /35
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Bar-Hillel's Pumping Lemma, Application

Theorem 4.2. The language [ = {al”lpl"lcl"] | n > 0} is not
context-free.

Proof. Suppose that L is context-free with L = L(I"), where I is a

Chomsky normal form grammar with n variables. Choose k so

large that |a[k]b[k]c[k]\ > 2" Then alKlplKl ekl = 1 g1 rgors, where
Xi=n qg'] r qg] rpelL

forall i > 0. As xo = nqgi1girgogars € L, we know that g1 and ¢»

must each contain only one of the letters a, b, c. That is, one

letter is missing in both g1 and go.

But as / = 2,3, 4, ... contains more and more copies of g; and g

and since g1g2 # 0, it is impossible for x; to have the same

number of occurrences of a, b, and c. This contradiction shows

that L is not context-free. O o
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