CIS 5371 Cryptography

8. Encryption --
Asymmetric Techniques



Textbook encryption algorithms

In this chapter, security (confidentiality) is considered
In the following sense:

 All-or-nothing secrecy. Given the ciphertext y=E,(x),
of plaintext x, the task of the attacker is to retrieve the
whole of x. Otherwise he falils.
— That Is, the adversary either gets x or nothing.
— Nothing means that the attacker does not have any
knowledge about x before of after the attack.

e Passive attacker. The attacker does not manipulate or
modify the ciphertext using data she/he has in possession
and does not ask a key owner to provide encryption or
decryption services.



Textbook encryption algorithms

 All-or-nothing secrecy.

In applications, plaintext data is likely to have
partial information known to the attacker.

e Passive attacker.

One should never expect an attacker to be so
nice and remain passive.



Textbook encryption algorithms
security paradigms

We regard the security offered by the
 All-or-nothing secrecy, and the
o Passive attacker

as models for our security paradigms.



Public Key Cryptography

Alice s  Bob

<

Alice and Bob want to exchange a private key in public.



Public Key Cryptography
The Diffie-Hellman protocol

Let p is a large prime and g €Z," an element
that generates a group of large prime order.

— The order g of g Is a factor of p-1.

— If g = p-1, then we say that g is a generator of Z~

— Usually we take g to be a prime.



Public Key Cryptography
The Diffie-Hellman protocol

Alice g2 mod p Bob

>

g° mod p

The private key is: g2’ mod p
where p is a prime and g is a generator of Z,,”



Example

p=43,9 =3,
Alice and Bob share (p,g) = (43,3).
Alice picks at random her secret exponent a =8
Alice sends Bob: 3% =25 (mod 43).
Bob picks at random his secret exponent b = 37
Bob sends Alice: 337 =20 (mod 43).
The secret key agreed between the two Is:
9 =208 =253 (mod 43).



Man-in-the-middle attack

Alice picks a e, Z,"and sends Malice (“Bob”): g2 (mod p)
Malice (“Alice”) picks m e Z,"and sends Bob: g™ (mod p)
Bob picks b €, Z,"and sends Malice (“Bob) Bob: g° (mod p)
Malice (“Bob”) sends Alice: g™ (mod p)

Alice computes: k; < (gM)2 (mod p)

Bob computes:  k, <~ (g™P (mod p)



The Diffie-Hellman Problem

The Computational Diffie-Hellman Problem -- CDH

 INPUT
— The description of a finite cyclic group G of order g (say Z;")
— Agenerator element g of G
— 03 g% € G, forsome integers 0 <a,b<q.

« OUTPUT
_ gab



The Diffie-Hellman Assumption

« A CDH solver is a PPT algorithm _4 that solves the
CDH problem with advantage € > 0.

 The DHA Is that, for any € > 0, and any arbitrary
Instance of the CDH problem, there is no CDH

solver that will succeed for all sufficiently large
Inputs.



The Discrete Logarithm Problem

The Discrete Logarithm Problem -- DL

 INPUT

— The description of a finite cyclic group G of order g (say Z;")
— Agenerator element g of G
- heG.

« OUTPUT

— The unique integer a < g such that h = g2 modq .

We call the integer a the discrete logarithm of h In
base g and write: a = log;h modq .



The Discrete Logarithm Assumption

e A DL solver is a PPT algorithm _4 that solves the DL
problem with advantage ¢ > 0.

 The DLA s that, for any € > 0, and any arbitrary
Instance of the DL problem, there is no DLA solver
that will succeed for all sufficiently large inputs.



The RSA cryptosystem

Alice performs the following steps
e Choose p, g large primes with |p| = |q|.
e Compute N =pg.
* Compute ¢ (N) = (p-1)(g-1).
 Choose a random integer e < ¢ (N) such that

gcd(e, (N)) = 1 and compute the integer d
such thated = 1 (mod ¢ (N)).

 Make public (N,e) as her public key,
keep (N,d) as her private key, and
discard p,q and ¢ (N).




The RSA cryptosystem

Encryption

Let m <N be the confidential message that Bob wants to
send to Alice.

* Bob creates the ciphertext: ¢ < m¢(mod N).
e Bob sends Alice: c

Decryption

To decrypt the ciphertext ¢ Alice computes:
m « c9(mod N).



Check

We have:

— ed=1(mod @(N)), so ed=1+1tp(N).
Therefore,

~  Dy(E.(m)) = (m)d =med = mioNL

— (mco(n))tx m=1xm = m mod n



Example

Letp=101,q=113. Then N =11413.

o (N) =100 x 112 = 11200 = 26527

For encryption use e = 3533.

Alice publishes: N =11413, e = 3533.
Suppose Bob wants to encrypt: 9726.

Bob computes 9726333 mod 11413 = 5761
Bob sends Alice the ciphertext 5761.

To decrypt it Alice computes the plaintext:
5761597 (mod 11413) = 9726



gk~ b

Implementation

Generate two large primes: p,g

N < pg and ¢ (N)= (p-1)(9-1)

Choose random e: with1 <e < @ (N) & gcd(e,@ (N))=1
d €< e-1modf(n)

The public key Is (n,e) and the private key is (N,d)



Cost

InZ:
— Cost of a modular multiplication (xxy) mod n s
O (k?), where k = |log,n|
— Cost of a modular exponentiation x? (mod n) IS
O (k?log,2)



Cryptanalysis of Public-key cryptosystems

Active attacks on cryptosystems
» Chosen-Plaintext Attack (CPA):

— The attacker chooses plaintexts and obtains the corresponding ciphertexts:
the task of the attacker is successful if he can decrypt a (new) target
ciphertext.

» Chosen-Ciphertext Attack (CCAL):

— The attacker chooses a number of ciphertexts and obtains the
corresponding plaintexts: the task of the attacker is successful if he can
decrypt a (new) target ciphertext.

« Adaptive Chosen-Ciphertext Attack (CCA2):
— This i1s a CCS1 attack in which the attacker can adaptively choose
ciphertexts: the task of the attacker is successful if he can decrypt a (new)
target ciphertext.



The RSA Problem

The RSA Problem -- RSA

 INPUT

— N =pqg with p,q prime nmbers.
— e an integer such that gcd(e,(p-1)(g-1)) =1
- Ccely.

« OUTPUT

— The unique integer m € Z,, such that mé =c (mod N )



The RSA Assumption

* An RSA solver is a PPT algorithm _4 that solves the
RSA problem with advantage € > 0.

 The RSA Assumption is that, for any € > 0, and any
arbitrary instance of the RSA problem, there is no

RSA solver that will succeed for all sufficiently large
Inputs.



The Integer Factorization Problem

The IF Problem -- IF
e INPUT

— N an odd composite integer with at least two distinct prime
factors.

« OUTPUT
— A prime p such that p | N.



The IF Assumption

* An integer factorizer is a PPT algorithm _4 that solves
the IF problem with advantage € > 0.

« The IF Assumption is that, for any € > 0, and any
arbitrary instance of the IF problem, there is no

Integer factorizer that will succeed for all sufficiently
large inputs.



Security of RSA

1. Relation to factoring.
Recovering the plaintext m from an RSA ciphertext c Is
easy If factoring Is possible.

2. The RSA problem
Recovering the plaintext m from an RSA ciphertext c Is
easy If the RSA problem is easy.

3. Relation between factoring and the RSA problem
« If Factoring Is easy then the RSA problem is easy.
e The converse is likely not to be true.



The Rabin cryptosystem

Alice performs the following steps
e Choose p, q large primes with |p| = |q].
e Compute N =pg.
» Pickarandom integerb e, Z2.*

« Make public (N,b) as her public key,
keep (p,q) as her private key.




The Rabin cryptosystem

Encryption

Letm € Z," be the confidential message that Bob wants
to send to Alice.

* Bob creates the ciphertext: ¢ <~ m(m+b) (mod N).
 Bobsends Alice: ¢

Decryption

To decrypt the ciphertext ¢ Alice solves the quadratic equation:
m? +bm—c =0(mod N),
form < N.



The Rabin cryptosystem

Decryption

_b;\/X (mod N),

From elementary mathematics: m=
where A = b?+4c (mod N).
Since m was chosenin Z,”, A must be in QR .

Notice that if p,q are such that p =q =3 (mod 4), then it is
easier to compute square roots modulo N.



Remarks

e Supposep =g =3 (mod4), n=npaq.
e Let y = x?(mod n).
e Then:

( (p+1)/4) — y(p+1)/2 — y(p—l)/2 X y — y (mOd p)

Because
yP2 =1 (mod p).



Remarks (continued)

It follows that:

+ y(p+1)/4 (mOd p)

IS a square root of y modulo p.
A similar argument applies for the other prime q.

So we get the quadratic residues modulo p and
modulo g.

We then get the quadratic residue modulo n by using
the Chinese Remainder Theorem.



Example

Suppose n=77.
Then e(x) = x2? (mod 77)
d(y) = vy (mod 77)
Suppose Bob wants to decrypt y = 23.

+ 234 = 4922 = +Amod7

+23WHM4 = 413 = +1 mod 11



Example, continued

Using the Chinese Remainder Theorem we compute
the 4 square roots of 23 modulo 77 to be:

+10 (mod 77), £32(mod 77)



The Rabin Problem

 INPUT

— N = pg with p,g prime numbers.
—y=x2(modN), xeZ,
« OUTPUT

—Z € Z such that z =x2 (mod N).



Security of Rabin

1. Relation to factoring.
Recovering the plaintext m from a Rabin ciphertext c
IS easy If the IF problem is easy.

3. Relation between factoring and the Rabin problem

e Under CPA attacks the Rabin system Is secure
Iff the IF problem is hard.

» Under CCA attacks the Rabin problem is
completely insecure.




Security of Rabin

Under CPA attacks the Rabin system is secure iff the IF
problem is hard.

Proof:

We show this for the case when b = 0.

Suppose that there is an algorithm that breaks Rabin with
non-negligible probability € > 0.

Let m be a random message, ¢ = m? (mod N).

The decryption m’ of m is one of the 4 square roots

of c.

With probability ¥2, we have m’= #m (mod N).

Then gcd(m’#m, N) = porg.

This contradicts the IF assumption. The converse Is trivial.



Security of Rabin

Under CCA attacks the Rabin system is completely insecure.

Proof:

We show this for the case when b = 0.

The adversary picks an m and computes ¢ = m? (mod N).

Then he gets its decryption m’.

This is one of the 4 square roots of ¢, and with probability 2,
gcd(m’#m, N) = porq.

Then the adversary can decrypt any ciphertext.



The ELGamal cryptosystem

Alice performs the following steps
 Choose a large random primes p.
 Compute a random multiplicative generator g € Z,*
* Pick x ey Z,, as private key
e Compute the public key y €< g*(mod p).

« Make public (p,g,y) as her public key, and keep (p,x)
as her private key.



The ElGamal cryptosystem

Encryption

Let m < p be the confidential message that Bob wants

to send to Alice.
Bob picks k e, Z, ; and computes the ciphertext (c,, C,)

¢ ¢, € g¢(mod p).
¢ ¢, € ykm (mod p).
Decryption

To decrypt the ciphertext (c,, C,) Alice computes
m €< c,/c,X(mod p).



The ElGamal cryptosystem

Check:
= (g¥* = yk= ¢c,/m (mod p).



Example

Use p=43, g=3, m=14, x=7, y=3/.
Alice’s private key: x=7
Alice’s public key: (p,g.y) = (43,3,37).

Encryption with k = 26:
e ¢, = g¥(mod p) = 3?6 (mod 43) =15.
e ¢, =ykm (mod p) = 3726 x14 (mod 43) =31

Decryption:
m =c,/c;X(mod p) =31/15"(mod 43) = 14 .



Security of ElGamal

1. Relation to the DL.
Recovering the plaintext m from an ElGamal
ciphertext c i1s easy if the DL problem is easy.

2. ELGamal and the CDH problem
For messages that are uniformly distributed, the

ElGamal encryption system is secure against CPAS
Iff the CDA problem is hard.



Security of ElGamal

For messages that are uniformly distributed, the ElIGamal
encryption system is secure against CPAs iff the CDH
problem is hard.

Proof:
Suppose there exists an oracle that breaks EIGamal with non negligible
probability € > 0.
Then since m =c,/c,*(mod p) can be computed,
c,/m =g (logg¥log 1) (mod p) can also be computed.
For an arbitrary CDH instance (p,9,9,,9,), take (p,9,9,) as the EIGamal
public key and (c,=g,, C,) as ciphertext.
Then the oracle outputs
C,/m = g (I°dg91 109497) (mod p)
which is a solution for the CDH instance.



