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8. Encryption --
Asymmetric TechniquesAsymmetric Techniques



Textbook encryption algorithmsTextbook encryption algorithms

In this chapter security (confidentiality) is consideredIn this chapter, security (confidentiality) is considered     
in  the following sense:
• All-or-nothing secrecy.   Given the ciphertext y=EK(x),  g y p y K( )

of plaintext x, the task of the attacker is to retrieve the     
whole of  x. Otherwise  he fails.
– That is the adversary either gets x or nothing– That is, the adversary either gets x or nothing.
– Nothing means that the attacker does not have any 

knowledge about x before of after the attack.
• Passive attacker. The attacker does not manipulate or 

modify the ciphertext using data she/he has in possession 
and does  not ask a key owner to provide encryption or y p yp
decryption services.



b k  l hTextbook encryption algorithms

• All-or-nothing secrecy. 
In applications plaintext data is likely to haveIn applications, plaintext data is likely to have 
partial information known to the attacker.

• Passive attacker• Passive attacker.
One should never expect an attacker to be so 
nice and remain passivenice and remain passive.



T tb k ti  l ithTextbook encryption algorithms
security paradigmsy p g

We regard the security offered by the g y y
• All-or-nothing secrecy, and the 
• Passive attacker• Passive attacker
as models for our security paradigms.



P bli  K  C hPublic Key Cryptography

Ali B bAlice Bob

Alice and Bob want to exchange a private key in public.g p y p



Public Key CryptographyPublic Key Cryptography
The Diffie-Hellman protocol

Let p is a large prime and gZp
* an element    p g p g p

that generates a group of large prime order.
The order q of g is a factor of p 1– The order q of g is a factor of p-1.

– If q = p-1, then we say that g is a generator of Zp
* 

– Usually we take q to be a prime.



Public Key CryptographyPublic Key Cryptography
The Diffie-Hellman protocol

Alice ga mod p Bob         A g p

gb mod p

The private key is: gab mod pThe private key is:  gab mod p
where p is a prime and g is a generator of Zp

*



Examplep
• p = 43, g = 3,
• Alice and Bob share (p,g) = (43,3).
• Alice picks at random her secret exponent  a = 8
• Alice sends Bob:  38  25 (mod 43).
• Bob picks at random his secret exponent  b = 37
• Bob sends Alice:  337  20 (mod 43).
• The secret key agreed between the two is:y g

9   208  2537 (mod 43).



Man-in-the-middle attackMan in the middle attack

• Alice picks a U Zp
* and sends Malice (“Bob”):  ga (mod p)

• Malice (“Alice”) picks m  Zp
* and sends Bob: gm (mod p)( ) p p g ( p)

• Bob picks b U Zp
* and sends Malice (“Bob) Bob: gb (mod p)

• Malice (“Bob”) sends Alice:  gm (mod p)

• Alice computes:  k1  (gm)a (mod p)ce co pu es: k1  (g ) ( od p)

• Bob computes:    k2  (gm)b (mod p)



The Diffie-Hellman ProblemThe Diffie Hellman Problem

The Computational Diffie-Hellman Problem -- CDHThe Computational Diffie Hellman Problem CDH

• INPUT  
*– The description of a finite cyclic group G of order q  (say Zq
*)

– A generator element g of G

– ga, ga G,  for some integers  0 < a,b < q.

• OUTPUT

– gab



The Diffie-Hellman AssumptionThe Diffie-Hellman Assumption

• A CDH solver is a PPT algorithm A that solves the 
CDH problem with advantage  > 0.CDH problem with advantage   0.

• The DHA is that, for any  > 0, and any arbitrary 
instance of the CDH problem there is no CDHinstance of  the CDH problem, there is no CDH   
solver that will succeed for all sufficiently large  
inputsinputs.



The Discrete Logarithm ProblemThe Discrete Logarithm Problem

The Discrete Logarithm Problem -- DLThe Discrete Logarithm Problem DL
• INPUT  

Th d i ti f fi it li G f d ( Z *)– The description of a finite cyclic group G of order q  (say Zq )
– A generator element g of G
– h Gh G.

• OUTPUT
– The unique integer a < q such that h = ga modqThe unique integer a < q such that h  g modq .

We call the integer a the discrete logarithm of h  in        
base g and write:  a =  loggh modq .



The Discrete Logarithm AssumptionThe Discrete Logarithm Assumption

• A DL solver is a PPT algorithm  A that solves the DL 
problem with advantage  > 0.problem with advantage   0.

• The DLA is that, for any  > 0, and any arbitrary 
instance of the DL problem there is no DLA solverinstance of   the DL problem, there is no DLA solver 
that will succeed for all sufficiently large inputs.



The RSA cryptosystemThe RSA cryptosystem
Alice performs the following stepsp g p

• Choose p, q large primes with |p|  |q|.
• Compute  N = pq.p pq
• Compute   (N) = (p-1)(q-1).
• Choose a random integer e <  (N) such thatChoose a random integer e   (N) such that           

gcd(e, (N)) = 1 and compute the integer d
such that ed = 1 (mod  (N)).

• Make public (N,e) as her public key,                          
keep (N,d) as her private key,  and                             
discard p,q and  (N).



The RSA cryptosystemyp y
Encryption
Let < N be the confidential message that Bob ants toLet  m < N be the confidential message that Bob wants to 
send to Alice.

Bob creates the cipherte t:  e (mod N)• Bob creates the ciphertext: c  me (mod N).
• Bob sends Alice: c

Decryption
To decrypt the ciphertext c Alice computes: 

m  cd (mod N).



CheckCheck

We have:We have:   
– ed = 1 (mod  (N)) , so  ed = 1 + t (N).

Th fTherefore, 
– Dd (Ee (m)) = (me)d = m ed =  m t(N)+1

= (m(n)) t m = 1m = m mod n



Examplep
• Let p = 101, q = 113. Then N  = 11413.

(N) 100 112 11200 26527•  (N) = 100 x 112 = 11200 = 26527

• For encryption use  e = 3533.

• Alice publishes:  N = 11413, e = 3533.

• Suppose Bob wants to encrypt: 9726.Suppose Bob wants to encrypt: 9726.

• Bob computes 97263533 mod 11413 = 5761

B b d Ali h i h 5761• Bob sends Alice the ciphertext 5761.

• To decrypt it Alice computes the plaintext:

57616597 (mod 11413)  =  9726



ImplementationImplementation

1. Generate two large primes: p,q
2. N pq  and  (N)= (p-1)(q-1)
3. Choose random e: with 1 < e <  (N)  & gcd(e, (N))=1
4. d  e -1 mod f (n)
5. The public key is (n,e) and the private key is (N,d)



CostCost

In Z :In Zn:
– Cost of a modular multiplication (xy) mod n is  

O (k2) where k = |log n|O (k2),  where  k =  |log2n|
– Cost of a modular exponentiation xz (mod n) is 

O (k2 l )O (k2 log2z) 



Cryptanalysis of Public key cryptosystemsCryptanalysis of Public-key cryptosystems

Active attacks on cryptosystemsActive attacks on cryptosystems
• Chosen-Plaintext Attack (CPA):  

– The attacker chooses plaintexts and obtains the corresponding ciphertexts:The attacker chooses plaintexts and obtains the corresponding ciphertexts: 
the task of the attacker is successful if he can decrypt a (new) target 
ciphertext.  

• Chosen-Ciphertext Attack (CCA1):Chosen Ciphertext Attack (CCA1):  

– The attacker chooses a number of ciphertexts and obtains the 
corresponding plaintexts: the task of the attacker is successful if he can 
decrypt a (new) target ciphertextdecrypt a (new) target ciphertext.  

• Adaptive Chosen-Ciphertext Attack (CCA2):  

– This is a CCS1 attack in which the attacker can adaptively choose 
ciphertexts: the task of the attacker is successful if he can decrypt a (new) 
target ciphertext.



The RSA ProblemThe RSA Problem

The RSA Problem -- RSAThe RSA Problem RSA
• INPUT  

N ith i b– N = pq with p,q prime nmbers.
– e an integer such that  gcd(e,(p-1)(q-1)) =1
– c  ZNc  ZN .

• OUTPUT
– The unique integer m  ZN such that me  c (mod N )The unique integer m  ZN such that m  c (mod N )



Th  RSA A tiThe RSA Assumption

• An RSA solver is a PPT algorithm  A that solves the 
RSA problem with advantage  > 0.RSA problem with advantage   0.

• The RSA Assumption is that, for any  > 0, and any 
arbitrary instance of the RSA problem there is noarbitrary instance of   the RSA problem, there is no 
RSA solver that will succeed for all sufficiently large 
inputsinputs.



h   F  P blThe Integer Factorization Problem

The IF Problem -- IF
• INPUT• INPUT  

– N an odd composite integer with at least two distinct prime 
factors.

• OUTPUT
– A prime p such that p | N.A prime p such that p | N.



The IF AssumptionThe IF Assumption

• An integer factorizer is a PPT algorithm  A that solves 
the IF problem with advantage  > 0.the IF problem with advantage   0.

• The IF Assumption is that, for any  > 0, and any 
arbitrary instance of the IF problem there is noarbitrary instance of  the IF problem, there is no 
integer factorizer that will succeed for all sufficiently 
large inputslarge inputs.



Security of RSASecurity of RSA
1. Relation to factoring.
R i h l i f RSA i h iRecovering the plaintext m from an RSA ciphertext c is
easy if factoring is possible.

2. The RSA problem 
Recovering the plaintext m from an RSA ciphertext c isg p p
easy if the RSA problem is easy.

3. Relation between factoring and the RSA problem
• If Factoring is easy then the RSA problem is easy.
• The converse is likely not to be true• The converse is likely not to be true.



The Rabin cryptosystemThe Rabin cryptosystem

Ali f th f ll i tAlice performs the following steps
• Choose p, q large primes with |p| = |q|.

• Compute  N = pq.

• Pick a random integer b  Z *• Pick a random integer b U Zn

• Make public (N,b) as her public key,                            
keep (p q) as her private keykeep (p,q) as her private key. 



The Rabin cryptosystemThe Rabin cryptosystem
Encryption
Let m Zn

* be the confidential message that Bob wants 
to send to Alice.

• Bob creates the ciphertext: c  m(m+b) (mod N).
• Bob sends Alice: c

iDecryption
To decrypt the ciphertext  c Alice solves the quadratic equation: 

2 b 0 ( d N)m2 + bm –c  0 (mod N),
for m  <  N.



The Rabin cryptosystemThe Rabin cryptosystem

DecryptionDecryption
From elementary mathematics:

h  b2 +4 ( d N)
,)(mod

2
Nbm 



where  = b2 +4c (mod N).
Since  m was chosen in  Zn

*,  must be in QRN .

Notice that if p,q are such that p  q  3 (mod 4), then it is
easier to compute square roots modulo Neasier to compute square roots modulo N.



RemarksRemarks

• Suppose p  q  3 (mod 4) n = pqSuppose p  q  3 (mod 4), n  pq.
• Let  y  x 2 (mod n).  
• Then:

B

)(mod)( 2/)1(2/)1(24/)1( pyyyyy ppp  

Because
.)(mod12/)1( py p 



Remarks (continued)Remarks (continued)

• It follows that:• It follows that:

)(mod4/)1( py p

is a square root of y modulo p.
A i il t li f th th i

)( py

• A similar argument applies for the other prime q.
• So we get the quadratic residues modulo p and 

modulo qmodulo q.
• We then get the quadratic residue modulo n by using 

the Chinese Remainder Theoremthe Chinese Remainder Theorem.



ExampleExample
Suppose n = 77.Suppose  n  77.
Then  e(x)  =  x 2   (mod 77)

d(y) = (mod 77)yd(y)           (mod 77)
Suppose Bob wants to decrypt y = 23.

y

7mod4223 24/)17(  

34/)111( 11mod1123 34/)111(  



Example  continuedExample, continued
Using the Chinese Remainder Theorem we computeUsing the Chinese Remainder Theorem we compute
the 4 square roots of 23 modulo 77 to be:

)77(mod32),77(mod10 



Th  R bi  P blThe Rabin Problem

• INPUT  

– N = pq with p,q prime numbers.
– y  x 2 (mod N),  x  ZN

*

• OUTPUT

– z ZN
* such that z  x2 (mod N).N ( )



Security of RabinSecurity of Rabin
1. Relation to factoring.1. Relation to factoring.
Recovering the plaintext m from a Rabin ciphertext c 
is easy if the IF problem is easy.

3. Relation between factoring and the Rabin problem
U d CPA tt k th R bi t i• Under CPA attacks the Rabin system is secure  
iff the IF problem is hard.

• Under CCA attacks the Rabin problem  is p
completely insecure.



Security of RabinSecurity of Rabin
Under CPA attacks the Rabin system is secure  iff the IF y ff
problem is hard.
Proof: 
W h thi f th h b 0We show this for the case when b = 0.
Suppose that there is an algorithm that breaks Rabin with 
non-negligible probability   > 0.
Let m be a random message, c  m2 (mod N).
The decryption m’ of  m is one of the 4 square roots 
of cof c.
With probability ½, we have m’ m (mod N).
Then gcd(m’m, N)  =  p or q.
Thi t di t th IF ti Th i t i i lThis contradicts the IF assumption. The converse is trivial.



Security of RabinSecurity of Rabin

Under CCA attacks the Rabin system is completely insecureUnder CCA attacks the Rabin system is completely insecure.

Proof: 
We show this for the case when b = 0We show this for the case when b = 0.
The adversary picks an m and computes c  m2 (mod N).
Then he gets its decryption m’.Then he gets its decryption m .
This is one of the 4 square roots of c, and with probability ½, 

gcd(m’m, N)  =  p or q.
Then the adversary can decrypt any ciphertext.



The ELGamal cryptosystemThe ELGamal cryptosystem

Ali f th f ll i tAlice performs the following steps
• Choose a large random primes p.

• Compute a random multiplicative generator g  Zp*

• Pick x  Z as private key• Pick  x U Zp-1 as private key
• Compute the public key y  gx (mod p).

• Make public (p,g,y) as her public key, and keep (p,x) 
as her private key. 



The ElGamal cryptosystemThe ElGamal cryptosystem
EncryptionEncryption
Let m < p be the confidential message that Bob wants 
to send to Aliceto send to Alice.
Bob picks  k U Zp-1 and computes the ciphertext (c1, c2)

• c1 gk (mod p).c1 g (mod p).
• c2 yk m (mod p).

DecryptionDecryption
To decrypt the ciphertext (c1, c2) Alice computes

m c2/c1
x (mod p).m c2/c1 (mod p).



Th  ElG l t tThe ElGamal cryptosystem

Check: 

c1
x   (gk)x  yk  c2/m (mod p).



ExampleExample
Use p = 43 g =3 m = 14 x = 7 y = 37Use   p = 43,  g =3,  m = 14,  x = 7,  y = 37.
Alice’s private key:  x = 7
Alice’s public key: (p,g,y) = (43,3,37).
Encryption with k  = 26:yp

• c1 = gk (mod p) = 326 (mod 43) =15.
• c2 = yk m (mod p) = 3726 ×14 (mod 43) =31 .2 y ( p) ( )

Decryption:
m = c2/c1

x (mod p) = 31/157 (mod 43) = 14m  c2/c1 (mod p)   31/15 (mod 43)  14 .



Security of ElGamalSecurity of ElGamal
1. Relation to the DL.
Recovering the plaintext m from an ElGamal 
ciphertext c is easy if the DL problem is easy.c p e te t c s easy t e p ob e s easy.

2 ELGamal and the CDH problem2. ELGamal and the CDH problem 
For messages that are uniformly distributed, the 
ElGamal encryption system is secure against CPAsElGamal encryption system is secure against CPAs 
iff the CDA problem is hard.



Security of ElGamal
For messages that are uniformly distributed, the ElGamal  
encryption system is secure against CPAs iff the CDH 
problem is hard.

Proof: 
Suppose there exists an oracle that breaks ElGamal with non negligible 
probability  > 0.
Then since m = c /c x (mod p) can be computedThen since m = c2/c1

x (mod p)  can be computed,  
c2/m = g (logg y log g c1) (mod p)  can also be computed.

For an arbitrary CDH instance (p,g,g1,g2), take (p,g,g1) as the ElGamal 
public key and (c1=g2, c2) as ciphertext. 
Then the oracle outputs  

/ (log g log g ) ( d )c2/m = g (loggg1 loggg2) (mod p)
which is a solution for the CDH instance.


