CIS 5371 Cryptography

7. Symmetric encryption




Cryptographic systems

Cryptosystem: (M,C,K,K',G,E,D)

o M, plaintext message space

o C, ciphertext message space

o K, K, encryption and decryption key spaces
o G:N — KxK, key generation algorithm

o E:MxK— C, encryption algorithm

o D :CxK — M, decryption algorithm

G

E.D must be efficient
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Examples

o Cryptosystem: (M,C,KK G,E,D)

Substitution Cipher: M = C = Z,, with K=K’

o  The encryption algorithm is a mapping E;:M — C
-- E,(X) = n(X), where keK is the key.

o The dencryption algorithm is a mapping D,;:M — C

- Di(y) = (y).

O

o Shift Cipher: M=C=K=K = Z,5, with
-- E.(X) = x + kmod26
-- D (y) =y - k mod26
where X,y € Z,,4
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Examples

Polyalphabetic ciphers: a plaintext message can be
encrypted into any ciphertext
Vigenere cipher --

abcdefghijk I mnopaqggTr s t uv w X y z
0123456 789 101112 13 14 15 16 17 18 19 20 21 22 23 24 25

Key mi ke — 12 8 10 4
Plaintext c r y ptography —> 217 241519 14 6 17 0 15 7 24

pl aintex:t 2 17 24 15 19 14 6 17 0 15 7 24
k e vy 12 8 10 4 12 8 10 4 12 8 10 4
c i phertext 14 25 8 19 5 22 16 21 12 23 17 2

Ciphertext o z i t f w g v m x r c
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Vernam cipher -the one-time pad

M=C=K=K={0,1}",n> 1.

The keys k = ky,ks, ,..., k. are selected at random in K with
uniform distribution.

Encryption is bit by bit at a time, with each ciphertext bit
obtained by XORIng each message bit with the corresponding
key bit.

Decryption is the same as encryption since the XOR operation
IS ItS own Inverse.

The special case when M = € = K = K' = {0,1}*, and the key
IS only used once (one-time key) gives us a cipher with a
strong security property: perfect secrecy.
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Transposition (permutation) cipher

Example

M=C=(Zx)™, m>1, K=K is the set of all
permutations of {1,...,m}.

o For a key (permutation) =

O == €,(Xgs s X)) = (Kygyr =+ X))

=AYy o Ym) = V) o0 Yo )
where 7-'(1) Is the inverse of .
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Structure of classical ciphers

Classical ciphers are based on:

o Substitution and
o  Transposition.

This is also the basis for modern ciphers
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Cryptanalysis:
attacks on cryptosystems

o Ciphertext only attacks: the opponent
possesses a string of ciphertexts:

YIl YZI

o Known plaintext attack: the opponent
possesses a string of plaintexts
Xy, X5, ...
and the corresponding string of ciphertexts:

Y1 Y2, -
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Usefulness of classical ciphers

o  Cryptanalysis of substitution ciphers:
Known plaintext attack -- easy to get the keys
Ciphertext only attack -- use statistical properties

of the language.

o  Cryptanalysis of polyalphabetic (Vigenere) cipher:
Known plaintext attack -- easy to get the keys

Ciphertext only attack -- use statistical:
properties of the language.

symmetric cryptography



Requirements for secure use of
classical ciphers

The notion of information-theoretic cryptographic
security was developed by Shannon and requires

that:
o |K| = [M]
o k eyK and is used only once in each encryption

This kind of security is not practical for most
applications.
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The one-time-pad -- Perfect secrecy

Assume that there is a distribution on P, K.
Then the plaintext and the keys are chosen with
a certain probability.

That is we have:

Pr[x = x] and Pr[k = K],

where X, k are random variables (r.v.'s).
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The one-time-pad -- Perfect secrecy

The probability distribution on P and K induces a
distribution on C, for which:

Priy=y] = 2 Prik=K]Prx=dgy)]

k:y=e, (x), xe P

For this distribution we have,

Prix,y] = Prix=x] x 2, Pr[k=K]

k: x:dk (y)
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Perfect secrecy

Using Bayes' theorem we get:

Prix=x] x 2, Pr[k=k]

K: x:dK ()

Prix=x|y=y] =
Y. Prik=K Prx=dyy)]

k:y=e, (X), x&P
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Perfect secrecy

Definition:

We have perfect secrecy if:
Prix=x]y=y] =Pr[x=x],

forall xeP,yeC.
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Perfect secrecy

Theorem
The One-Time-Pad provides perfect secrecy.

Proof

We have:

Prlk=k] = 1/|K|, and

foreach x ¢ P,y € C there is exactly one key k
with y = e, (x).
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Perfect secrecy

Proof (continued)

Then
Priy=y]

2 Prlk=K]-Pr[x=dy)]

k: y=ey (x), xe P

171K - 2 Prx=d(y)]

k: y=ek (x), xe P

K] .
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Perfect secrecy

Proof (continued)
Using Bayes’ theorem:
Pr[x=x|y=y] = Pr[y=y|x=x] x Pr [x=x] / Pr [y=y]
= Pr [k=k] Pr [x=x] /Pr [y=y]

We have just seen that: Pr [k=k] = Pr[y=y].
It follows that:

Pr [x=x|ly=y] = Pr[x=Xx],

so we have perfect secrecy.
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Iterating Block ciphers

1. Key schedule
(Binary) key k = round keys: Ki,..., kv
2. Round function g

w' = g(W r-1’ k r),
where w 1 is the previous state
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Iterated cipher ...

Encryption operation:
W €& X

W1 = g(WO’ kl)’
W2 = g(Wl’ k2),

WNr = g(WNr-l, kNr),
y & WNr
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Iterated cipher ..

For decryption we must have:
g(.,k) must be invertible for all k

Then decryption Is the reverse of encryption
(bottom-up)
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DES

DES is a special type of iterated cipher called a
Feistel cipher.

Block length 64 bits

Key length 56 bits

Ciphertext length 64 bits
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DES

The round function is:
g ([LinRis D, KY) = (L, Ry,
where
L. =R, and R, = L, ; XOR f (R, K).
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DES round encryption

i

L;, R it '
48
K;
32i ‘ x32
gfg
L, . yoF,
i 1
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DES inner function

iy K;
32 § a8
expansion
48
48
61
5, So Sa Sa Ss Sa S Sa

RN

[ [/~

32.r

e parmutation
32

8 x 6 bits

substitution

8 x 4 bits

f{Ri—~1,K:i) = P(S(E(R:i—-1) & Ki))
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DES computation path

(a) twisted ladder

L input f
M2 - - - 654 TFiGq
initial
[ § permutation
+64

¥

irregular swap

{ Ris Las 1
+6a
4
_7 inverse
e permutation
64
output ]
€162 - - - caa

(b) untwisted ladder

f o]

e

L output J

Li == 1
Ri = Li_ 31 & F(Ri—1, Ki)

symmetric cryptography

25



One DES Round
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Inner Function

Combine 32 bit input and 48 bit key
Into 32 bit output

Expand 32 bit input to 48 bits
XOR the 48 bit key with the expanded 48 bit input

Apply the S-boxes to the 48 bit input to produce 32 bit
output

Permute the resulting 32 bits
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Inner Function

front and the enc

Expand 32 bit input to 48 bits by adding a bit to the

of each 4 bit segment.

These bits are taken from adjacent bits.

Notice several

'IIIEEI-IIII
1121314150415060718190.. 242526 27/28126 2812610/ 31 22 L

bit values are repeated: 4, 5, 8, 9, 28, 29, etc.
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S Boxes

There are 8 different S-Boxes, 1 for each chunk
S-box process maps 6 bit input to 4 bit output

S box performs substitution on 4 bits

There are 8 possible substitutions in each S box
Inner 4 bits are fed into an S box

Outer 2 bits determine which substitution is used
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S Boxes

Use bits 1 & 6 to select the row

| / Bits 2-5 to select the substitution
|

0000/ 0001{0010{0011|{0100/0101{0110{0111|1000|1001|1010{1011|1100{1101|1110{1111

00 |1110|0100|1101|0001|0010{1111{1011{1000{0011{1010{0110{1100(0101|1001|0000|0111

01 |0000|1111|0111|0100{1110{0010{1101{0001{1010{0110{1100{1011{1001|0101|0011|1000

10 |0100{0001{1110{1000(1101(0110(0010{1011|1111}1100|1001|0111|0011|1010|0101|0000

11 |1111{1100{1000{0010(0100(1001(0001|0111/0101|1011|0011|1110|1010|0000|0110{1101
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DES: The Initial and Final
Permutations

There iIs also an initial and a final permutation:
the final permutation is the inverse of the initial
Permutation.
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Decrypting DES

DES (and all Feistel structures) is invertible through “reverse”
encryption because
The input to the nt" step is the output of the n-1t" step

Everything needed (except the key) to produce the input
to the inner function of the n-1% step is available from
the output of the nt"step.

So we can Work backwards to step 1.
Note that the S-boxes are not reversible (and don't need to be)
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Encrypt round n Decrypt round n+1

FN
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Key schedule

INPUT:  64-bit key: ki, ks, ..., K,
OUTPUT: sixteen 48-bit keys: Ky, Ko, ... , Kig

The algorithm used for generating the key schedule
combines and selects bits of K to generate the round

keys two bit selection tables.
-- for details see Handbook of Applied Cryptography.
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Weak Keys

Let Co and Do are the 28 bit key halves

There are 4 week keys in the keyspace (2°9)
C, = All zeros & D, = All zeros
C, = All ones & D, = All zeros
C, = All zeros & D, = All ones
C, = All ones & D, = All ones

There are 12 semi-weak keys, where C, & D, are the
following in some combination

All zeros, All ones, 010101..., 101010...
-- for details see Handbook of Applied Cryptography.
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Attacks on iterated ciphers

Suppose that there a probabilistic linear relation between
some plaintext bits and state bits immediately preceding
the last round.

Say the bits XOR to 0 with probability bounded away
from Y.

Linear cryptanalysis is a known plaintext attack.

The attacker needs to know a large number of pairs (x;,y;)
encrypted with the same key K, and uses a linear relation
to decrypt a given cipher
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Kerchoffs' assumption

The adversary knows all details of
the encrypting function
except the secret key
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Diffusion and Confusion -- Shannon

o Diffusion. The relationship between the
statistics of the plaintext and the
ciphertext is as complex as possible:

the value of each plaintext bit affects
many plaintext bits.

o Confusion: the relationship between the
statistics of the ciphertext and the

value of the key is as complex as
possible.
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Attacks on DES

o Brute force
o Linear Cryptanalysis
-- Known plaintext attack
o Differential cryptanalysis
Chosen plaintext attack

Modify plaintext bits, observe change
in ciphertext

No dramatic improvement on brute force
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Linear cryptanalysis
(known plantext)

For each pair (x;,y;), decrypt using all possible
candidate keys for the last round and
determine if the linear relation holds.

If it does, increment a frequency counter
for the candidate key used.

Hopefully, at the end, this counter can be
used to determine the correct values for
the subkey bits.
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Differential cryptanalysis
(chosen plaintext)

Differential cryptanalysis is a chosen plaintext attack.

In this case the XOR of two inputs x, x* Is compared with
that of the corresponding outputs y, y*.

In general we look for pairs x, x* for which x’=x+x* s fixed.
For each such pair, decrypt y, y* using all possible candidate
keys for the last round, and determine if their XOR has a
certain value.

Again use a frequency counter.

Hopefully, at the end, this counter can be used to

determine the correct values for the subkey bits.
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The security of DES

None of these attacks have a serious impact on the
security of DES.

The main problem with DES is that it has relatively
short key length. Consequently it is subject to
brute-force or exhaustive key search attacks.

One solution to overcome this problem is to run
DES a multiple number of times.
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Countering Attacks

o Large keyspace combats brute force attack
o Triple DES, typically two key mode: E,,D,,E,,
o Use AES
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Triple DES

Encryption:
C = Ex;(Dky(Eky(m))

Decryption:
m = D, (Exy(Dxy(C))
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AES

Block length 128 bits.

Key lengths 128 (or 192 or 256).
The AES is an iterated cipher with Nr=10 (or 12 or 14)
In each round we have:

o Subkey mixing: State € Roundkey XOR State

o A substitution: SubBytes(State)
o A permutation: ShiftRows(State) & MixColumns(State)
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Modes of operation

Four basic modes of operation are available for
block ciphers:
o Electronic codebook mode: ECB

o Cip
o Cip

ner bloc
ner feed

o Out

out feed

K chaining mode: CBC
pack mode: CFB

pack mode: OFB
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Electronic Codebook mode, ECB

Each plaintext x; Is encrypted with the same
key K:

Vi = ex(X).

So, the naive use of a block cipher.
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ECB

nei i
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Cipher Block Chaining mode, CBC

Each cipher block y; , 1s X0r-ed with the next
plaintext x; :
Yi = ek (Yi1 XOR X;)
before being encrypted to get the next plaintext y;.
The chain is initialized with
an initialization vector: y, =1V
with length, the block size.
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Cipher and Output feedback modes
(CFB & OFB)

CFB

z, = IV and recursively:
zi = ex(Yia) and y;= X;XOR z,

OFB

z, = IV and recursively:
Z; = ey(z;,) and y;= X;XOR z,
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CFB mode
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OFB mode

v le
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Key Channel Establishment for
symmeftric cryptosystems

= Conventional techniques
= Public-key techniques
- Quantum Key distribution technigues
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