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C t hi  tCryptographic systems

C t t  (M C K K’ G E D)Cryptosystem: (M,C,K,K’,G,E,D)

 M, plaintext message space
 C, ciphertext message space 
 K, K’, encryption and decryption key spaces

G  N K K’  k  i  l i h G : N  KK’, key generation algorithm
 E : MK  C, encryption algorithm
 D : CK’  M  decryption algorithm D : CK  M, decryption algorithm
G,E,D must be efficient
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E lExamples

C t t  (M C K K’ G E D) Cryptosystem: (M,C,K,K’,G,E,D)
 Substitution Cipher: M = C = Z26, with K=K’
 The encryption algorithm  is a mapping Ek:M  C The encryption algorithm  is a mapping Ek:M  C

-- Ek(x) = (x), where kK is the key.   
 The dencryption algorithm is a mapping Dk:M  C

-- Dk(y) = -1(y).

Shift Ciphe  M  C  K  K’  Z  ith Shift Cipher: M = C = K = K’ = Z26, with
-- Ek(x) =  x + k mod26      
-- Dk(y) = y – k mod26
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Dk(y)  y k mod26
where x,y  Z26



ExamplesExamples
Polyalphabetic ciphers: a plaintext message can be y p p p g
encrypted into any ciphertext
Vigenere cipher --
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V  i h  th  ti  dVernam cipher –the one-time pad
M = C = K = K’ = {0 1}n  n > 1M = C = K = K  = {0,1} , n > 1.

The keys k = k1,k2 ,…, kn are selected at random in  K with 
uniform distribution.uniform distribution.
Encryption is bit by bit at a time, with each ciphertext bit 
obtained by XORing each message bit with the corresponding 
key bit.
Decryption is the same as encryption since the XOR operation 
i it iis its own inverse.  
The special case when M = C = K = K’ = {0,1}*, and the key 
is only used once (one-time key) gives us a cipher with a
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is only used once (one time key) gives us a cipher with a 
strong security property: perfect secrecy.



Transposition (permutation) cipher

ExampleExample

M = C = (Z26)m , m > 1,  K=K’ is the set of all 
permutations of {1,…,m}.
 For a key (permutation) 
 -- e(x1, …, xm) = (x(1), …, xm)) 

-- d(y1, …, ym) = (y(1), …, y(1)) (y1, , ym) (y (1), , y (1))
where (1) is the inverse of 
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St t  f l i l i hStructure of classical ciphers

Classical ciphers are based on:

 Substitution and Substitution and
 Transposition.

h   l  h  b  f  d  h  This is also the basis for modern ciphers 
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Cryptanalysis:  yp y
attacks on cryptosystems

 Ciphertext only attacks: the opponent 
possesses a string of ciphertexts: 

y1, y2, …
 Known plaintext attack: the opponent 

   f l               possesses a string of plaintexts              
x1, x2, … 

and the corresponding string of ciphertexts:   and the corresponding string of ciphertexts:   
y1, y2, …
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U f l  f l i l i hUsefulness of classical ciphers

C t l i  f b tit ti  i h Cryptanalysis of substitution ciphers:
Known plaintext attack –- easy to get the keys
Ciphertext only attack -- use statistical propertiesCiphertext only attack -- use statistical properties
of the language.

 Cryptanalysis of polyalphabetic (Vigenere) cipher:
Known plaintext attack –- easy to get the keys
Ciphertext only attack -- use statistical: 
properties of the language.
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Requirements for secure use of  
l l classical ciphers

The notion of information-theoretic cryptographic 
security was developed by Shannon and requires       

that:
 |K|   |M|
 k U K  and is used only once in each encryption

This kind of security is not practical for most y p
applications.
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Th  ti d P f t The one-time-pad -- Perfect secrecy

Assume that there is a distribution on P, K . 
Then the plaintext and the keys are chosen with 
 i  b bili  a certain probability. 

That is we have:  
Pr[x = x] and Pr[k = k], 

where x, k are random variables (r.v.’s).
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Th  ti d P f t The one-time-pad -- Perfect secrecy

Th  b bili  di ib i    P d K  i d  The probability distribution on  P and K  induces a 
distribution on  C, for which: 

Pr [y = y]   =        Pr [k = k] Pr [x = dk(y)]
k: y=ek (x),  x  Pk 

For this distribution we have,

Pr [x, y]    =    Pr [x = x]    Pr [k = k]
k: x=dk (y)
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P rf ct s cr c

U i  B ’ h      

Perfect secrecy

Using Bayes’ theorem we get:   

Pr [x = x]   Pr [k = k]Pr [x  x]      Pr [k  k]
K: x=dK (y)

Pr [ x = x | y = y] = [ | y y]

 Pr [k = k]  Pr [x = dk(y)]
k: y=ek (x),  x  P

symmetric cryptography 13

this



P f t Perfect secrecy

D fi itiDefinition:

We have perfect secrecy if: We have perfect secrecy if: 
Pr[x = x| y = y] = Pr[x = x] , 

for all x  P, y  C.
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Perfect secrecyPerfect secrecy

TheoremTheorem
The One-Time-Pad provides perfect secrecy.

Proof
We have:We have:   
Pr [k = k]  =  1 / |K| , and 
for each  P  C  there is e actl one ke kfor each x  P, y  C  there is exactly one  key k
with y = ek(x).  
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Perfect secrecyPerfect secrecy

P f (c ntinu d)Proof (continued)

Then
Pr [y = y]    =  Pr [k = k]  Pr [x = dk(y)]

k: y=ek (x),  x  P

=    1 / |K|   Pr [x = dk(y)] 
k: y=ek (x) x  Pk: y=ek (x),  x  P

=    1/|K| .
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Perfect secrecyPerfect secrecy

Proof (continued)Proof (continued)
Using Bayes’ theorem:

Pr [x=x|y=y] = Pr [y=y|x=x]  Pr [x=x] / Pr [y=y]Pr [x=x|y=y]   = Pr [y=y|x=x]  Pr [x=x]  /  Pr [y=y]
=  Pr [k=k] Pr [x=x]  / Pr [y=y]

We have just seen that: Pr [k=k]  =  Pr[y=y]. 
It follows that:It follows that:
Pr [x=x|y=y]  = Pr [x=x] , 
so we have perfect secrecy.
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so we have perfect secrecy. 



 Bl k hIterating Block ciphers

1.  Key schedule

(Binary) key k     round keys: k1,..., kNr,

2 R d f ti2. Round function g
w r = g(w r-1, k r),  

where w r-1 is the previous statewhere w is the previous state 
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d h  Iterated cipher …

Encryption operation:
w0  xw  x
w1 = g(w0, k1),
w2  g(w1  k2)w2 = g(w1, k2),

wNr = g(wNr-1  kNr)wNr = g(wNr 1, kNr),
y  wNr
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It t d i h  Iterated cipher …

For decryption we must have:
g(.,k) must be invertible for all k

Then decryption is the reverse of encryption 
(bottom-up)
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DEDES
DES i i l t f it t d i h ll dDES is a special type of iterated cipher called a 
Feistel cipher.

Block length 64 bits
Key length 56 bits
Ciphertext length 64 bits

symmetric cryptography 21



DESDES
The round function is:The round function is:

g ([Li-1,Ri-1 ]), Ki ) =  (Li , Ri),

where

Li = Ri 1 and Ri = Li 1 XOR f (Ri 1, Ki).Li   Ri-1 and   Ri    Li-1 XOR  f (Ri-1, Ki).
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DES d tiDES round encryption
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DES i  f tiDES inner function
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DES computation pathDES computation path
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O  DES R dOne DES Round

64 bit input
32 bit Rn

32 bit Ln Inner Function
Kn

+

32 bit Rn+1

64 bit output

32 bit Ln+1
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Inner FunctionInner Function

C bi 32 bi i d 48 bi kCombine 32 bit input and 48 bit key 
into 32 bit output

Expand 32 bit input to 48 bits 
XOR the 48 bit key with the expanded 48 bit inputy p p
Apply the S-boxes to the 48 bit input to produce 32 bit 
output
Permute the resulting 32 bits
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Inner FunctionInner Function

Expand 32 bit input to 48 bits by adding a bit to theExpand 32 bit input to 48 bits by adding a bit to the 
front and the end of each 4 bit segment. 
These bits are taken from adjacent bitsThese bits are taken from adjacent bits. 

This String

1 2 3 4 5 6 7 8 25 26 27 28 29 30 31 32

32 1 2 3 4 5 4 5 6 7 8 9 24 25 26 27 28 29 28 29 30 31 32 1

g

32 1 2 3 4 5 4 5 6 7 8 9 … 24 25 26 27 28 29 28 29 30 31 32 1

Becomes this String

Notice several bit values are repeated: 4, 5, 8, 9, 28, 29, etc.
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S BoxesS Boxes

 There are 8 different S-Boxes, 1 for each chunk
 S-box process maps 6 bit input to 4 bit output
 S box performs substitution on 4 bits
 There are 8 possible substitutions in each S box
 Inner 4 bits are fed into an S box
 Outer 2 bits determine which substitution is used
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 BS Boxes
Use bits 1 & 6 to select the row

Bits 2-5 to select the substitution

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

00 1110 0100 1101 0001 0010 1111 1011 1000 0011 1010 0110 1100 0101 1001 0000 0111

01 0000 1111 0111 0100 1110 0010 1101 0001 1010 0110 1100 1011 1001 0101 0011 1000

10 0100 0001 1110 1000 1101 0110 0010 1011 1111 1100 1001 0111 0011 1010 0101 0000

11 1111 1100 1000 0010 0100 1001 0001 0111 0101 1011 0011 1110 1010 0000 0110 1101
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DES: The Initial and Final 
PPermutations

There is also an initial and a final permutation: 
the final permutation is the inverse of the initial p
Permutation.
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D ti  DESDecrypting DES
DES (and all Feistel structures) is invertible through “reverse”DES (and all Feistel structures) is invertible through “reverse”      
encryption because
 The input to the nth step is the output of the n-1th step The input to the n step is the output of the n 1 step 
 Everything needed (except the key) to produce the input 

to the inner function of the n-1th step is available from 
hthe output of the nthstep.

So we can Work backwards to step 1So we can Work backwards to step 1.
Note that the S-boxes are not reversible (and don't need to be)
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Encrypt round n Decrypt round n+1

64 bit output
32 bit Rn

64 bit input
32 bit Rn

K 32 bit Ln Inner 
Function

Kn32 bit Ln Inner 
Function

Kn

32 bi L

++

32 bit Rn+1

64 bit input

32 bit Ln+132 bit Rn+1

64 bit output

32 bit Ln+1
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K  h d lKey schedule

INPUT: 64-bit key:  k1, k2, … , k64

OUTPUT:  sixteen 48-bit keys: k1, k2, … , k16

The algorithm used for generating the key schedule 
bi d l t bit f K t t th dcombines and selects bits of K to generate the round 

keys two bit selection tables.
f d il H db k f A li d C h-- for details see Handbook of Applied Cryptography.
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W k KWeak Keys
Let Co and Do are the 28 bit key halvesLet Co and Do are the 28 bit key halves 
 There are 4 week keys in the keyspace (256)

 C0 = All zeros & D0 = All zeros C0  All zeros & D0  All zeros
 C0 = All ones & D0 = All zeros
 C0 = All zeros & D0 = All ones
 C0 = All ones & D0 = All ones

 There are 12 semi-weak keys, where Co & Do are the       
following in some combinationfollowing in some combination 
 All zeros, All ones, 010101…, 101010…

-- for details see Handbook of Applied Cryptography
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for details see Handbook of Applied Cryptography.



Att k   it t d i hAttacks on iterated ciphers
Suppose that there a probabilistic linear relation between pp p
some plaintext bits and state bits immediately preceding 
the last round.
Say the bits XOR to 0 with probability bounded away 
from ½.
Linear cryptanalysis is a known plaintext attack. 
The attacker needs to know a large number of pairs (xi,yi) 
encrypted with the same key K, and uses a linear relation
to decrypt a given cipher
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K h ff ’ tiKerchoffs’ assumption

The adversary knows all details of    
the encrypting functionthe encrypting function
except the secret key

symmetric cryptography 37



Diff i  d C f i  ShDiffusion and Confusion -- Shannon

Diff i Th  l i hi  b  h   Diffusion. The relationship between the 
statistics of the plaintext and the 
ciphertext is as complex as possible:  ciphertext is as complex as possible:  
the value of each plaintext bit affects 
many plaintext bits.many plaintext bits.

 Confusion: the relationship between the 
statistics of the ciphertext and the statistics of the ciphertext and the 
value of the key is as complex as 
possible.
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Attacks on DESAttacks on DES
 Brute force Brute force
 Linear Cryptanalysis 

Kn wn plaintext attack-- Known plaintext attack
 Differential cryptanalysis

Ch s  l i t t tt k Chosen plaintext attack
 Modify plaintext bits, observe change  

in ciphertextin ciphertext

No dramatic improvement on brute force
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No dramatic improvement on brute force



Linear cryptanalysis 
(known plantext)
For each pair ( ) decrypt usin  all possible For each pair (xi,yi), decrypt using all possible 
candidate keys for the last round and 
determine if the linear relation holdsdetermine if the linear relation holds.
If it does, increment a frequency counter  
for the candidate key used.for the candidate key used.
Hopefully, at the end, this counter can be 
used to  determine the correct values for  
the subkey bits.
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Differential cryptanalysis 
( h  l )(chosen plaintext)

Differential cr ptanal sis is a chosen plainte t attackDifferential cryptanalysis is a chosen plaintext attack.
In this case the XOR of two inputs x, x* is compared with 
that of the corresponding outputs y y*that of the corresponding outputs y, y .
In general we look for pairs x, x* for which x’=x+x* is fixed.
For each such pair, decrypt y, y* using all possible candidateFor each such pair, decrypt y, y  using all possible candidate  
keys for the last round, and determine if their XOR has a 
certain value.
Again use a frequency counter.
Hopefully, at the end, this counter can be used to 

symmetric cryptography 41

determine the correct values for the subkey bits.



Th   f DEThe security of DES
N f th tt k h i i t thNone of these attacks have a serious impact on the 
security of DES. 
Th i bl i h DES i h i h l i lThe main problem with DES is that it has relatively 
short key length. Consequently it is subject to 
brute-force or exhaustive key search attacks.
One solution to overcome this problem is to run 
DES a multiple number of times.
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Counterin  AttacksCountering Attacks

 Large keyspace combats brute force attack
 Triple DES, typically two key mode: Ek1Dk2Ek1

 Use AES
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T l  DETriple DES
E tiEncryption:

c = Ek1(Dk2(Ek1(m))

Decryption:
D (E (D )m = Dk1(Ek2(Dk1(c))
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AESAES
Block length 128 bitsBlock length 128 bits.
Key lengths 128 (or 192 or 256).

h i i d i h i h ( )The AES is an iterated cipher with Nr=10 (or 12 or 14)
In each round we have:

S bk i i S  dk O S Subkey mixing:  State  Roundkey XOR State
 A substitution:    SubBytes(State)
 A permutation: ShiftRows(State) & MixColumns(State) A permutation: ShiftRows(State) & MixColumns(State)
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M des f perati nModes of operation

Four basic modes of operation are available for 
block ciphers:
 Electronic codebook mode: ECB
 Cipher block chaining mode: CBC
 Cipher feedback mode: CFB
 Output feedback mode: OFBp
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El t i  C d b k d  ECBElectronic Codebook mode, ECB

Each plaintext xi is encrypted with the same 
key K:key K: 

yi = eK(xi).

So, the naïve use of a block cipher.So, the naïve use of a block cipher.
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ECBECB

x1 x2 x3 x4

DES DES DES DES

y4y3y2y1
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Cipher Bl ck Chainin  m de  CBCCipher Block Chaining mode, CBC

Each cipher block yi-1 is xor-ed with the next 
plaintext xi :plaintext xi :

yi = eK(yi-1 XOR xi)
b f b i d h l ibefore being encrypted to get the next plaintext yi.
The chain is initialized with 

an initialization vector:   y0  = IV
with length, the block size.
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CBCCBC

x1 x2 x3 x4

+ + ++
IV

DES DES DES DES

y4y3y2y1
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Cipher and Output feedback modes  
(CFB & OFB)(CFB & OFB)

FBCFB
z0  = IV and recursively: 

zi = eK(yi-1)  and   yi =  xi XOR zi

OFBOFB
z0  = IV and recursively: 

zi = eK(zi-1)  and   yi =  xi XOR zi
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CFB dCFB mode

x1 x2

IV eK eK+ eK+

y1 y2
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OFB dOFB mode

IV eK eK

x1 x2

+ +

y1 y2
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Key Channel Establishment for 
t i  t tsymmetric cryptosystems

 Conventional techniques
 Public-key techniquesy q
 Quantum Key distribution techniques
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